1 /* 2 * Copyright (C) 2010 Citrix Ltd. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 * 7 * Contributions after 2012-01-13 are licensed under the terms of the 8 * GNU GPL, version 2 or (at your option) any later version. 9 */ 10 11 #include "qemu/osdep.h" 12 #include "qemu/units.h" 13 14 #include "cpu.h" 15 #include "hw/pci/pci.h" 16 #include "hw/pci/pci_host.h" 17 #include "hw/i386/pc.h" 18 #include "hw/irq.h" 19 #include "hw/hw.h" 20 #include "hw/i386/apic-msidef.h" 21 #include "hw/xen/xen_native.h" 22 #include "hw/xen/xen-legacy-backend.h" 23 #include "hw/xen/xen-bus.h" 24 #include "hw/xen/xen-x86.h" 25 #include "qapi/error.h" 26 #include "qapi/qapi-commands-migration.h" 27 #include "qemu/error-report.h" 28 #include "qemu/main-loop.h" 29 #include "qemu/range.h" 30 #include "sysemu/runstate.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/xen.h" 33 #include "sysemu/xen-mapcache.h" 34 #include "trace.h" 35 36 #include <xen/hvm/ioreq.h> 37 #include <xen/hvm/e820.h> 38 39 //#define DEBUG_XEN_HVM 40 41 #ifdef DEBUG_XEN_HVM 42 #define DPRINTF(fmt, ...) \ 43 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) 44 #else 45 #define DPRINTF(fmt, ...) \ 46 do { } while (0) 47 #endif 48 49 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; 50 static MemoryRegion *framebuffer; 51 static bool xen_in_migration; 52 53 /* Compatibility with older version */ 54 55 /* 56 * This allows QEMU to build on a system that has Xen 4.5 or earlier installed. 57 * This is here (not in hw/xen/xen_native.h) because xen/hvm/ioreq.h needs to 58 * be included before this block and hw/xen/xen_native.h needs to be included 59 * before xen/hvm/ioreq.h 60 */ 61 #ifndef IOREQ_TYPE_VMWARE_PORT 62 #define IOREQ_TYPE_VMWARE_PORT 3 63 struct vmware_regs { 64 uint32_t esi; 65 uint32_t edi; 66 uint32_t ebx; 67 uint32_t ecx; 68 uint32_t edx; 69 }; 70 typedef struct vmware_regs vmware_regs_t; 71 72 struct shared_vmport_iopage { 73 struct vmware_regs vcpu_vmport_regs[1]; 74 }; 75 typedef struct shared_vmport_iopage shared_vmport_iopage_t; 76 #endif 77 78 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) 79 { 80 return shared_page->vcpu_ioreq[i].vp_eport; 81 } 82 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) 83 { 84 return &shared_page->vcpu_ioreq[vcpu]; 85 } 86 87 #define BUFFER_IO_MAX_DELAY 100 88 89 typedef struct XenPhysmap { 90 hwaddr start_addr; 91 ram_addr_t size; 92 const char *name; 93 hwaddr phys_offset; 94 95 QLIST_ENTRY(XenPhysmap) list; 96 } XenPhysmap; 97 98 static QLIST_HEAD(, XenPhysmap) xen_physmap; 99 100 typedef struct XenPciDevice { 101 PCIDevice *pci_dev; 102 uint32_t sbdf; 103 QLIST_ENTRY(XenPciDevice) entry; 104 } XenPciDevice; 105 106 typedef struct XenIOState { 107 ioservid_t ioservid; 108 shared_iopage_t *shared_page; 109 shared_vmport_iopage_t *shared_vmport_page; 110 buffered_iopage_t *buffered_io_page; 111 xenforeignmemory_resource_handle *fres; 112 QEMUTimer *buffered_io_timer; 113 CPUState **cpu_by_vcpu_id; 114 /* the evtchn port for polling the notification, */ 115 evtchn_port_t *ioreq_local_port; 116 /* evtchn remote and local ports for buffered io */ 117 evtchn_port_t bufioreq_remote_port; 118 evtchn_port_t bufioreq_local_port; 119 /* the evtchn fd for polling */ 120 xenevtchn_handle *xce_handle; 121 /* which vcpu we are serving */ 122 int send_vcpu; 123 124 struct xs_handle *xenstore; 125 MemoryListener memory_listener; 126 MemoryListener io_listener; 127 QLIST_HEAD(, XenPciDevice) dev_list; 128 DeviceListener device_listener; 129 hwaddr free_phys_offset; 130 const XenPhysmap *log_for_dirtybit; 131 /* Buffer used by xen_sync_dirty_bitmap */ 132 unsigned long *dirty_bitmap; 133 134 Notifier exit; 135 Notifier suspend; 136 Notifier wakeup; 137 } XenIOState; 138 139 /* Xen specific function for piix pci */ 140 141 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) 142 { 143 return irq_num + (PCI_SLOT(pci_dev->devfn) << 2); 144 } 145 146 void xen_piix3_set_irq(void *opaque, int irq_num, int level) 147 { 148 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2, 149 irq_num & 3, level); 150 } 151 152 int xen_set_pci_link_route(uint8_t link, uint8_t irq) 153 { 154 return xendevicemodel_set_pci_link_route(xen_dmod, xen_domid, link, irq); 155 } 156 157 int xen_is_pirq_msi(uint32_t msi_data) 158 { 159 /* If vector is 0, the msi is remapped into a pirq, passed as 160 * dest_id. 161 */ 162 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0; 163 } 164 165 void xen_hvm_inject_msi(uint64_t addr, uint32_t data) 166 { 167 xen_inject_msi(xen_domid, addr, data); 168 } 169 170 static void xen_suspend_notifier(Notifier *notifier, void *data) 171 { 172 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); 173 } 174 175 /* Xen Interrupt Controller */ 176 177 static void xen_set_irq(void *opaque, int irq, int level) 178 { 179 xen_set_isa_irq_level(xen_domid, irq, level); 180 } 181 182 qemu_irq *xen_interrupt_controller_init(void) 183 { 184 return qemu_allocate_irqs(xen_set_irq, NULL, 16); 185 } 186 187 /* Memory Ops */ 188 189 static void xen_ram_init(PCMachineState *pcms, 190 ram_addr_t ram_size, MemoryRegion **ram_memory_p) 191 { 192 X86MachineState *x86ms = X86_MACHINE(pcms); 193 MemoryRegion *sysmem = get_system_memory(); 194 ram_addr_t block_len; 195 uint64_t user_lowmem = 196 object_property_get_uint(qdev_get_machine(), 197 PC_MACHINE_MAX_RAM_BELOW_4G, 198 &error_abort); 199 200 /* Handle the machine opt max-ram-below-4g. It is basically doing 201 * min(xen limit, user limit). 202 */ 203 if (!user_lowmem) { 204 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */ 205 } 206 if (HVM_BELOW_4G_RAM_END <= user_lowmem) { 207 user_lowmem = HVM_BELOW_4G_RAM_END; 208 } 209 210 if (ram_size >= user_lowmem) { 211 x86ms->above_4g_mem_size = ram_size - user_lowmem; 212 x86ms->below_4g_mem_size = user_lowmem; 213 } else { 214 x86ms->above_4g_mem_size = 0; 215 x86ms->below_4g_mem_size = ram_size; 216 } 217 if (!x86ms->above_4g_mem_size) { 218 block_len = ram_size; 219 } else { 220 /* 221 * Xen does not allocate the memory continuously, it keeps a 222 * hole of the size computed above or passed in. 223 */ 224 block_len = (4 * GiB) + x86ms->above_4g_mem_size; 225 } 226 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, 227 &error_fatal); 228 *ram_memory_p = &ram_memory; 229 230 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", 231 &ram_memory, 0, 0xa0000); 232 memory_region_add_subregion(sysmem, 0, &ram_640k); 233 /* Skip of the VGA IO memory space, it will be registered later by the VGA 234 * emulated device. 235 * 236 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load 237 * the Options ROM, so it is registered here as RAM. 238 */ 239 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", 240 &ram_memory, 0xc0000, 241 x86ms->below_4g_mem_size - 0xc0000); 242 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); 243 if (x86ms->above_4g_mem_size > 0) { 244 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", 245 &ram_memory, 0x100000000ULL, 246 x86ms->above_4g_mem_size); 247 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); 248 } 249 } 250 251 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, 252 Error **errp) 253 { 254 unsigned long nr_pfn; 255 xen_pfn_t *pfn_list; 256 int i; 257 258 if (runstate_check(RUN_STATE_INMIGRATE)) { 259 /* RAM already populated in Xen */ 260 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT 261 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", 262 __func__, size, ram_addr); 263 return; 264 } 265 266 if (mr == &ram_memory) { 267 return; 268 } 269 270 trace_xen_ram_alloc(ram_addr, size); 271 272 nr_pfn = size >> TARGET_PAGE_BITS; 273 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); 274 275 for (i = 0; i < nr_pfn; i++) { 276 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; 277 } 278 279 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { 280 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, 281 ram_addr); 282 } 283 284 g_free(pfn_list); 285 } 286 287 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size) 288 { 289 XenPhysmap *physmap = NULL; 290 291 start_addr &= TARGET_PAGE_MASK; 292 293 QLIST_FOREACH(physmap, &xen_physmap, list) { 294 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { 295 return physmap; 296 } 297 } 298 return NULL; 299 } 300 301 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size) 302 { 303 hwaddr addr = phys_offset & TARGET_PAGE_MASK; 304 XenPhysmap *physmap = NULL; 305 306 QLIST_FOREACH(physmap, &xen_physmap, list) { 307 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { 308 return physmap->start_addr + (phys_offset - physmap->phys_offset); 309 } 310 } 311 312 return phys_offset; 313 } 314 315 #ifdef XEN_COMPAT_PHYSMAP 316 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 317 { 318 char path[80], value[17]; 319 320 snprintf(path, sizeof(path), 321 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", 322 xen_domid, (uint64_t)physmap->phys_offset); 323 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr); 324 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 325 return -1; 326 } 327 snprintf(path, sizeof(path), 328 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", 329 xen_domid, (uint64_t)physmap->phys_offset); 330 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size); 331 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 332 return -1; 333 } 334 if (physmap->name) { 335 snprintf(path, sizeof(path), 336 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", 337 xen_domid, (uint64_t)physmap->phys_offset); 338 if (!xs_write(state->xenstore, 0, path, 339 physmap->name, strlen(physmap->name))) { 340 return -1; 341 } 342 } 343 return 0; 344 } 345 #else 346 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 347 { 348 return 0; 349 } 350 #endif 351 352 static int xen_add_to_physmap(XenIOState *state, 353 hwaddr start_addr, 354 ram_addr_t size, 355 MemoryRegion *mr, 356 hwaddr offset_within_region) 357 { 358 unsigned long nr_pages; 359 int rc = 0; 360 XenPhysmap *physmap = NULL; 361 hwaddr pfn, start_gpfn; 362 hwaddr phys_offset = memory_region_get_ram_addr(mr); 363 const char *mr_name; 364 365 if (get_physmapping(start_addr, size)) { 366 return 0; 367 } 368 if (size <= 0) { 369 return -1; 370 } 371 372 /* Xen can only handle a single dirty log region for now and we want 373 * the linear framebuffer to be that region. 374 * Avoid tracking any regions that is not videoram and avoid tracking 375 * the legacy vga region. */ 376 if (mr == framebuffer && start_addr > 0xbffff) { 377 goto go_physmap; 378 } 379 return -1; 380 381 go_physmap: 382 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", 383 start_addr, start_addr + size); 384 385 mr_name = memory_region_name(mr); 386 387 physmap = g_new(XenPhysmap, 1); 388 389 physmap->start_addr = start_addr; 390 physmap->size = size; 391 physmap->name = mr_name; 392 physmap->phys_offset = phys_offset; 393 394 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 395 396 if (runstate_check(RUN_STATE_INMIGRATE)) { 397 /* Now when we have a physmap entry we can replace a dummy mapping with 398 * a real one of guest foreign memory. */ 399 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size); 400 assert(p && p == memory_region_get_ram_ptr(mr)); 401 402 return 0; 403 } 404 405 pfn = phys_offset >> TARGET_PAGE_BITS; 406 start_gpfn = start_addr >> TARGET_PAGE_BITS; 407 nr_pages = size >> TARGET_PAGE_BITS; 408 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn, 409 start_gpfn); 410 if (rc) { 411 int saved_errno = errno; 412 413 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx 414 " to GFN %"HWADDR_PRIx" failed: %s", 415 nr_pages, pfn, start_gpfn, strerror(saved_errno)); 416 errno = saved_errno; 417 return -1; 418 } 419 420 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid, 421 start_addr >> TARGET_PAGE_BITS, 422 (start_addr + size - 1) >> TARGET_PAGE_BITS, 423 XEN_DOMCTL_MEM_CACHEATTR_WB); 424 if (rc) { 425 error_report("pin_memory_cacheattr failed: %s", strerror(errno)); 426 } 427 return xen_save_physmap(state, physmap); 428 } 429 430 static int xen_remove_from_physmap(XenIOState *state, 431 hwaddr start_addr, 432 ram_addr_t size) 433 { 434 int rc = 0; 435 XenPhysmap *physmap = NULL; 436 hwaddr phys_offset = 0; 437 438 physmap = get_physmapping(start_addr, size); 439 if (physmap == NULL) { 440 return -1; 441 } 442 443 phys_offset = physmap->phys_offset; 444 size = physmap->size; 445 446 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " 447 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); 448 449 size >>= TARGET_PAGE_BITS; 450 start_addr >>= TARGET_PAGE_BITS; 451 phys_offset >>= TARGET_PAGE_BITS; 452 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr, 453 phys_offset); 454 if (rc) { 455 int saved_errno = errno; 456 457 error_report("relocate_memory "RAM_ADDR_FMT" pages" 458 " from GFN %"HWADDR_PRIx 459 " to GFN %"HWADDR_PRIx" failed: %s", 460 size, start_addr, phys_offset, strerror(saved_errno)); 461 errno = saved_errno; 462 return -1; 463 } 464 465 QLIST_REMOVE(physmap, list); 466 if (state->log_for_dirtybit == physmap) { 467 state->log_for_dirtybit = NULL; 468 g_free(state->dirty_bitmap); 469 state->dirty_bitmap = NULL; 470 } 471 g_free(physmap); 472 473 return 0; 474 } 475 476 static void xen_set_memory(struct MemoryListener *listener, 477 MemoryRegionSection *section, 478 bool add) 479 { 480 XenIOState *state = container_of(listener, XenIOState, memory_listener); 481 hwaddr start_addr = section->offset_within_address_space; 482 ram_addr_t size = int128_get64(section->size); 483 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); 484 hvmmem_type_t mem_type; 485 486 if (section->mr == &ram_memory) { 487 return; 488 } else { 489 if (add) { 490 xen_map_memory_section(xen_domid, state->ioservid, 491 section); 492 } else { 493 xen_unmap_memory_section(xen_domid, state->ioservid, 494 section); 495 } 496 } 497 498 if (!memory_region_is_ram(section->mr)) { 499 return; 500 } 501 502 if (log_dirty != add) { 503 return; 504 } 505 506 trace_xen_client_set_memory(start_addr, size, log_dirty); 507 508 start_addr &= TARGET_PAGE_MASK; 509 size = TARGET_PAGE_ALIGN(size); 510 511 if (add) { 512 if (!memory_region_is_rom(section->mr)) { 513 xen_add_to_physmap(state, start_addr, size, 514 section->mr, section->offset_within_region); 515 } else { 516 mem_type = HVMMEM_ram_ro; 517 if (xen_set_mem_type(xen_domid, mem_type, 518 start_addr >> TARGET_PAGE_BITS, 519 size >> TARGET_PAGE_BITS)) { 520 DPRINTF("xen_set_mem_type error, addr: "HWADDR_FMT_plx"\n", 521 start_addr); 522 } 523 } 524 } else { 525 if (xen_remove_from_physmap(state, start_addr, size) < 0) { 526 DPRINTF("physmapping does not exist at "HWADDR_FMT_plx"\n", start_addr); 527 } 528 } 529 } 530 531 static void xen_region_add(MemoryListener *listener, 532 MemoryRegionSection *section) 533 { 534 memory_region_ref(section->mr); 535 xen_set_memory(listener, section, true); 536 } 537 538 static void xen_region_del(MemoryListener *listener, 539 MemoryRegionSection *section) 540 { 541 xen_set_memory(listener, section, false); 542 memory_region_unref(section->mr); 543 } 544 545 static void xen_io_add(MemoryListener *listener, 546 MemoryRegionSection *section) 547 { 548 XenIOState *state = container_of(listener, XenIOState, io_listener); 549 MemoryRegion *mr = section->mr; 550 551 if (mr->ops == &unassigned_io_ops) { 552 return; 553 } 554 555 memory_region_ref(mr); 556 557 xen_map_io_section(xen_domid, state->ioservid, section); 558 } 559 560 static void xen_io_del(MemoryListener *listener, 561 MemoryRegionSection *section) 562 { 563 XenIOState *state = container_of(listener, XenIOState, io_listener); 564 MemoryRegion *mr = section->mr; 565 566 if (mr->ops == &unassigned_io_ops) { 567 return; 568 } 569 570 xen_unmap_io_section(xen_domid, state->ioservid, section); 571 572 memory_region_unref(mr); 573 } 574 575 static void xen_device_realize(DeviceListener *listener, 576 DeviceState *dev) 577 { 578 XenIOState *state = container_of(listener, XenIOState, device_listener); 579 580 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 581 PCIDevice *pci_dev = PCI_DEVICE(dev); 582 XenPciDevice *xendev = g_new(XenPciDevice, 1); 583 584 xendev->pci_dev = pci_dev; 585 xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev), 586 pci_dev->devfn); 587 QLIST_INSERT_HEAD(&state->dev_list, xendev, entry); 588 589 xen_map_pcidev(xen_domid, state->ioservid, pci_dev); 590 } 591 } 592 593 static void xen_device_unrealize(DeviceListener *listener, 594 DeviceState *dev) 595 { 596 XenIOState *state = container_of(listener, XenIOState, device_listener); 597 598 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 599 PCIDevice *pci_dev = PCI_DEVICE(dev); 600 XenPciDevice *xendev, *next; 601 602 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev); 603 604 QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) { 605 if (xendev->pci_dev == pci_dev) { 606 QLIST_REMOVE(xendev, entry); 607 g_free(xendev); 608 break; 609 } 610 } 611 } 612 } 613 614 static void xen_sync_dirty_bitmap(XenIOState *state, 615 hwaddr start_addr, 616 ram_addr_t size) 617 { 618 hwaddr npages = size >> TARGET_PAGE_BITS; 619 const int width = sizeof(unsigned long) * 8; 620 size_t bitmap_size = DIV_ROUND_UP(npages, width); 621 int rc, i, j; 622 const XenPhysmap *physmap = NULL; 623 624 physmap = get_physmapping(start_addr, size); 625 if (physmap == NULL) { 626 /* not handled */ 627 return; 628 } 629 630 if (state->log_for_dirtybit == NULL) { 631 state->log_for_dirtybit = physmap; 632 state->dirty_bitmap = g_new(unsigned long, bitmap_size); 633 } else if (state->log_for_dirtybit != physmap) { 634 /* Only one range for dirty bitmap can be tracked. */ 635 return; 636 } 637 638 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS, 639 npages, state->dirty_bitmap); 640 if (rc < 0) { 641 #ifndef ENODATA 642 #define ENODATA ENOENT 643 #endif 644 if (errno == ENODATA) { 645 memory_region_set_dirty(framebuffer, 0, size); 646 DPRINTF("xen: track_dirty_vram failed (0x" HWADDR_FMT_plx 647 ", 0x" HWADDR_FMT_plx "): %s\n", 648 start_addr, start_addr + size, strerror(errno)); 649 } 650 return; 651 } 652 653 for (i = 0; i < bitmap_size; i++) { 654 unsigned long map = state->dirty_bitmap[i]; 655 while (map != 0) { 656 j = ctzl(map); 657 map &= ~(1ul << j); 658 memory_region_set_dirty(framebuffer, 659 (i * width + j) * TARGET_PAGE_SIZE, 660 TARGET_PAGE_SIZE); 661 }; 662 } 663 } 664 665 static void xen_log_start(MemoryListener *listener, 666 MemoryRegionSection *section, 667 int old, int new) 668 { 669 XenIOState *state = container_of(listener, XenIOState, memory_listener); 670 671 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { 672 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 673 int128_get64(section->size)); 674 } 675 } 676 677 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, 678 int old, int new) 679 { 680 XenIOState *state = container_of(listener, XenIOState, memory_listener); 681 682 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { 683 state->log_for_dirtybit = NULL; 684 g_free(state->dirty_bitmap); 685 state->dirty_bitmap = NULL; 686 /* Disable dirty bit tracking */ 687 xen_track_dirty_vram(xen_domid, 0, 0, NULL); 688 } 689 } 690 691 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) 692 { 693 XenIOState *state = container_of(listener, XenIOState, memory_listener); 694 695 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 696 int128_get64(section->size)); 697 } 698 699 static void xen_log_global_start(MemoryListener *listener) 700 { 701 if (xen_enabled()) { 702 xen_in_migration = true; 703 } 704 } 705 706 static void xen_log_global_stop(MemoryListener *listener) 707 { 708 xen_in_migration = false; 709 } 710 711 static MemoryListener xen_memory_listener = { 712 .name = "xen-memory", 713 .region_add = xen_region_add, 714 .region_del = xen_region_del, 715 .log_start = xen_log_start, 716 .log_stop = xen_log_stop, 717 .log_sync = xen_log_sync, 718 .log_global_start = xen_log_global_start, 719 .log_global_stop = xen_log_global_stop, 720 .priority = 10, 721 }; 722 723 static MemoryListener xen_io_listener = { 724 .name = "xen-io", 725 .region_add = xen_io_add, 726 .region_del = xen_io_del, 727 .priority = 10, 728 }; 729 730 static DeviceListener xen_device_listener = { 731 .realize = xen_device_realize, 732 .unrealize = xen_device_unrealize, 733 }; 734 735 /* get the ioreq packets from share mem */ 736 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) 737 { 738 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); 739 740 if (req->state != STATE_IOREQ_READY) { 741 DPRINTF("I/O request not ready: " 742 "%x, ptr: %x, port: %"PRIx64", " 743 "data: %"PRIx64", count: %u, size: %u\n", 744 req->state, req->data_is_ptr, req->addr, 745 req->data, req->count, req->size); 746 return NULL; 747 } 748 749 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ 750 751 req->state = STATE_IOREQ_INPROCESS; 752 return req; 753 } 754 755 /* use poll to get the port notification */ 756 /* ioreq_vec--out,the */ 757 /* retval--the number of ioreq packet */ 758 static ioreq_t *cpu_get_ioreq(XenIOState *state) 759 { 760 MachineState *ms = MACHINE(qdev_get_machine()); 761 unsigned int max_cpus = ms->smp.max_cpus; 762 int i; 763 evtchn_port_t port; 764 765 port = qemu_xen_evtchn_pending(state->xce_handle); 766 if (port == state->bufioreq_local_port) { 767 timer_mod(state->buffered_io_timer, 768 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 769 return NULL; 770 } 771 772 if (port != -1) { 773 for (i = 0; i < max_cpus; i++) { 774 if (state->ioreq_local_port[i] == port) { 775 break; 776 } 777 } 778 779 if (i == max_cpus) { 780 hw_error("Fatal error while trying to get io event!\n"); 781 } 782 783 /* unmask the wanted port again */ 784 qemu_xen_evtchn_unmask(state->xce_handle, port); 785 786 /* get the io packet from shared memory */ 787 state->send_vcpu = i; 788 return cpu_get_ioreq_from_shared_memory(state, i); 789 } 790 791 /* read error or read nothing */ 792 return NULL; 793 } 794 795 static uint32_t do_inp(uint32_t addr, unsigned long size) 796 { 797 switch (size) { 798 case 1: 799 return cpu_inb(addr); 800 case 2: 801 return cpu_inw(addr); 802 case 4: 803 return cpu_inl(addr); 804 default: 805 hw_error("inp: bad size: %04x %lx", addr, size); 806 } 807 } 808 809 static void do_outp(uint32_t addr, 810 unsigned long size, uint32_t val) 811 { 812 switch (size) { 813 case 1: 814 return cpu_outb(addr, val); 815 case 2: 816 return cpu_outw(addr, val); 817 case 4: 818 return cpu_outl(addr, val); 819 default: 820 hw_error("outp: bad size: %04x %lx", addr, size); 821 } 822 } 823 824 /* 825 * Helper functions which read/write an object from/to physical guest 826 * memory, as part of the implementation of an ioreq. 827 * 828 * Equivalent to 829 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, 830 * val, req->size, 0/1) 831 * except without the integer overflow problems. 832 */ 833 static void rw_phys_req_item(hwaddr addr, 834 ioreq_t *req, uint32_t i, void *val, int rw) 835 { 836 /* Do everything unsigned so overflow just results in a truncated result 837 * and accesses to undesired parts of guest memory, which is up 838 * to the guest */ 839 hwaddr offset = (hwaddr)req->size * i; 840 if (req->df) { 841 addr -= offset; 842 } else { 843 addr += offset; 844 } 845 cpu_physical_memory_rw(addr, val, req->size, rw); 846 } 847 848 static inline void read_phys_req_item(hwaddr addr, 849 ioreq_t *req, uint32_t i, void *val) 850 { 851 rw_phys_req_item(addr, req, i, val, 0); 852 } 853 static inline void write_phys_req_item(hwaddr addr, 854 ioreq_t *req, uint32_t i, void *val) 855 { 856 rw_phys_req_item(addr, req, i, val, 1); 857 } 858 859 860 static void cpu_ioreq_pio(ioreq_t *req) 861 { 862 uint32_t i; 863 864 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, 865 req->data, req->count, req->size); 866 867 if (req->size > sizeof(uint32_t)) { 868 hw_error("PIO: bad size (%u)", req->size); 869 } 870 871 if (req->dir == IOREQ_READ) { 872 if (!req->data_is_ptr) { 873 req->data = do_inp(req->addr, req->size); 874 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, 875 req->size); 876 } else { 877 uint32_t tmp; 878 879 for (i = 0; i < req->count; i++) { 880 tmp = do_inp(req->addr, req->size); 881 write_phys_req_item(req->data, req, i, &tmp); 882 } 883 } 884 } else if (req->dir == IOREQ_WRITE) { 885 if (!req->data_is_ptr) { 886 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, 887 req->size); 888 do_outp(req->addr, req->size, req->data); 889 } else { 890 for (i = 0; i < req->count; i++) { 891 uint32_t tmp = 0; 892 893 read_phys_req_item(req->data, req, i, &tmp); 894 do_outp(req->addr, req->size, tmp); 895 } 896 } 897 } 898 } 899 900 static void cpu_ioreq_move(ioreq_t *req) 901 { 902 uint32_t i; 903 904 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, 905 req->data, req->count, req->size); 906 907 if (req->size > sizeof(req->data)) { 908 hw_error("MMIO: bad size (%u)", req->size); 909 } 910 911 if (!req->data_is_ptr) { 912 if (req->dir == IOREQ_READ) { 913 for (i = 0; i < req->count; i++) { 914 read_phys_req_item(req->addr, req, i, &req->data); 915 } 916 } else if (req->dir == IOREQ_WRITE) { 917 for (i = 0; i < req->count; i++) { 918 write_phys_req_item(req->addr, req, i, &req->data); 919 } 920 } 921 } else { 922 uint64_t tmp; 923 924 if (req->dir == IOREQ_READ) { 925 for (i = 0; i < req->count; i++) { 926 read_phys_req_item(req->addr, req, i, &tmp); 927 write_phys_req_item(req->data, req, i, &tmp); 928 } 929 } else if (req->dir == IOREQ_WRITE) { 930 for (i = 0; i < req->count; i++) { 931 read_phys_req_item(req->data, req, i, &tmp); 932 write_phys_req_item(req->addr, req, i, &tmp); 933 } 934 } 935 } 936 } 937 938 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req) 939 { 940 uint32_t sbdf = req->addr >> 32; 941 uint32_t reg = req->addr; 942 XenPciDevice *xendev; 943 944 if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) && 945 req->size != sizeof(uint32_t)) { 946 hw_error("PCI config access: bad size (%u)", req->size); 947 } 948 949 if (req->count != 1) { 950 hw_error("PCI config access: bad count (%u)", req->count); 951 } 952 953 QLIST_FOREACH(xendev, &state->dev_list, entry) { 954 if (xendev->sbdf != sbdf) { 955 continue; 956 } 957 958 if (!req->data_is_ptr) { 959 if (req->dir == IOREQ_READ) { 960 req->data = pci_host_config_read_common( 961 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 962 req->size); 963 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 964 req->size, req->data); 965 } else if (req->dir == IOREQ_WRITE) { 966 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 967 req->size, req->data); 968 pci_host_config_write_common( 969 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 970 req->data, req->size); 971 } 972 } else { 973 uint32_t tmp; 974 975 if (req->dir == IOREQ_READ) { 976 tmp = pci_host_config_read_common( 977 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 978 req->size); 979 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 980 req->size, tmp); 981 write_phys_req_item(req->data, req, 0, &tmp); 982 } else if (req->dir == IOREQ_WRITE) { 983 read_phys_req_item(req->data, req, 0, &tmp); 984 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 985 req->size, tmp); 986 pci_host_config_write_common( 987 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 988 tmp, req->size); 989 } 990 } 991 } 992 } 993 994 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) 995 { 996 X86CPU *cpu; 997 CPUX86State *env; 998 999 cpu = X86_CPU(current_cpu); 1000 env = &cpu->env; 1001 env->regs[R_EAX] = req->data; 1002 env->regs[R_EBX] = vmport_regs->ebx; 1003 env->regs[R_ECX] = vmport_regs->ecx; 1004 env->regs[R_EDX] = vmport_regs->edx; 1005 env->regs[R_ESI] = vmport_regs->esi; 1006 env->regs[R_EDI] = vmport_regs->edi; 1007 } 1008 1009 static void regs_from_cpu(vmware_regs_t *vmport_regs) 1010 { 1011 X86CPU *cpu = X86_CPU(current_cpu); 1012 CPUX86State *env = &cpu->env; 1013 1014 vmport_regs->ebx = env->regs[R_EBX]; 1015 vmport_regs->ecx = env->regs[R_ECX]; 1016 vmport_regs->edx = env->regs[R_EDX]; 1017 vmport_regs->esi = env->regs[R_ESI]; 1018 vmport_regs->edi = env->regs[R_EDI]; 1019 } 1020 1021 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) 1022 { 1023 vmware_regs_t *vmport_regs; 1024 1025 assert(state->shared_vmport_page); 1026 vmport_regs = 1027 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; 1028 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); 1029 1030 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; 1031 regs_to_cpu(vmport_regs, req); 1032 cpu_ioreq_pio(req); 1033 regs_from_cpu(vmport_regs); 1034 current_cpu = NULL; 1035 } 1036 1037 static void handle_ioreq(XenIOState *state, ioreq_t *req) 1038 { 1039 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, 1040 req->addr, req->data, req->count, req->size); 1041 1042 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && 1043 (req->size < sizeof (target_ulong))) { 1044 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; 1045 } 1046 1047 if (req->dir == IOREQ_WRITE) 1048 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, 1049 req->addr, req->data, req->count, req->size); 1050 1051 switch (req->type) { 1052 case IOREQ_TYPE_PIO: 1053 cpu_ioreq_pio(req); 1054 break; 1055 case IOREQ_TYPE_COPY: 1056 cpu_ioreq_move(req); 1057 break; 1058 case IOREQ_TYPE_VMWARE_PORT: 1059 handle_vmport_ioreq(state, req); 1060 break; 1061 case IOREQ_TYPE_TIMEOFFSET: 1062 break; 1063 case IOREQ_TYPE_INVALIDATE: 1064 xen_invalidate_map_cache(); 1065 break; 1066 case IOREQ_TYPE_PCI_CONFIG: 1067 cpu_ioreq_config(state, req); 1068 break; 1069 default: 1070 hw_error("Invalid ioreq type 0x%x\n", req->type); 1071 } 1072 if (req->dir == IOREQ_READ) { 1073 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, 1074 req->addr, req->data, req->count, req->size); 1075 } 1076 } 1077 1078 static bool handle_buffered_iopage(XenIOState *state) 1079 { 1080 buffered_iopage_t *buf_page = state->buffered_io_page; 1081 buf_ioreq_t *buf_req = NULL; 1082 bool handled_ioreq = false; 1083 ioreq_t req; 1084 int qw; 1085 1086 if (!buf_page) { 1087 return 0; 1088 } 1089 1090 memset(&req, 0x00, sizeof(req)); 1091 req.state = STATE_IOREQ_READY; 1092 req.count = 1; 1093 req.dir = IOREQ_WRITE; 1094 1095 for (;;) { 1096 uint32_t rdptr = buf_page->read_pointer, wrptr; 1097 1098 xen_rmb(); 1099 wrptr = buf_page->write_pointer; 1100 xen_rmb(); 1101 if (rdptr != buf_page->read_pointer) { 1102 continue; 1103 } 1104 if (rdptr == wrptr) { 1105 break; 1106 } 1107 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; 1108 req.size = 1U << buf_req->size; 1109 req.addr = buf_req->addr; 1110 req.data = buf_req->data; 1111 req.type = buf_req->type; 1112 xen_rmb(); 1113 qw = (req.size == 8); 1114 if (qw) { 1115 if (rdptr + 1 == wrptr) { 1116 hw_error("Incomplete quad word buffered ioreq"); 1117 } 1118 buf_req = &buf_page->buf_ioreq[(rdptr + 1) % 1119 IOREQ_BUFFER_SLOT_NUM]; 1120 req.data |= ((uint64_t)buf_req->data) << 32; 1121 xen_rmb(); 1122 } 1123 1124 handle_ioreq(state, &req); 1125 1126 /* Only req.data may get updated by handle_ioreq(), albeit even that 1127 * should not happen as such data would never make it to the guest (we 1128 * can only usefully see writes here after all). 1129 */ 1130 assert(req.state == STATE_IOREQ_READY); 1131 assert(req.count == 1); 1132 assert(req.dir == IOREQ_WRITE); 1133 assert(!req.data_is_ptr); 1134 1135 qatomic_add(&buf_page->read_pointer, qw + 1); 1136 handled_ioreq = true; 1137 } 1138 1139 return handled_ioreq; 1140 } 1141 1142 static void handle_buffered_io(void *opaque) 1143 { 1144 XenIOState *state = opaque; 1145 1146 if (handle_buffered_iopage(state)) { 1147 timer_mod(state->buffered_io_timer, 1148 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 1149 } else { 1150 timer_del(state->buffered_io_timer); 1151 qemu_xen_evtchn_unmask(state->xce_handle, state->bufioreq_local_port); 1152 } 1153 } 1154 1155 static void cpu_handle_ioreq(void *opaque) 1156 { 1157 XenIOState *state = opaque; 1158 ioreq_t *req = cpu_get_ioreq(state); 1159 1160 handle_buffered_iopage(state); 1161 if (req) { 1162 ioreq_t copy = *req; 1163 1164 xen_rmb(); 1165 handle_ioreq(state, ©); 1166 req->data = copy.data; 1167 1168 if (req->state != STATE_IOREQ_INPROCESS) { 1169 fprintf(stderr, "Badness in I/O request ... not in service?!: " 1170 "%x, ptr: %x, port: %"PRIx64", " 1171 "data: %"PRIx64", count: %u, size: %u, type: %u\n", 1172 req->state, req->data_is_ptr, req->addr, 1173 req->data, req->count, req->size, req->type); 1174 destroy_hvm_domain(false); 1175 return; 1176 } 1177 1178 xen_wmb(); /* Update ioreq contents /then/ update state. */ 1179 1180 /* 1181 * We do this before we send the response so that the tools 1182 * have the opportunity to pick up on the reset before the 1183 * guest resumes and does a hlt with interrupts disabled which 1184 * causes Xen to powerdown the domain. 1185 */ 1186 if (runstate_is_running()) { 1187 ShutdownCause request; 1188 1189 if (qemu_shutdown_requested_get()) { 1190 destroy_hvm_domain(false); 1191 } 1192 request = qemu_reset_requested_get(); 1193 if (request) { 1194 qemu_system_reset(request); 1195 destroy_hvm_domain(true); 1196 } 1197 } 1198 1199 req->state = STATE_IORESP_READY; 1200 qemu_xen_evtchn_notify(state->xce_handle, 1201 state->ioreq_local_port[state->send_vcpu]); 1202 } 1203 } 1204 1205 static void xen_main_loop_prepare(XenIOState *state) 1206 { 1207 int evtchn_fd = -1; 1208 1209 if (state->xce_handle != NULL) { 1210 evtchn_fd = qemu_xen_evtchn_fd(state->xce_handle); 1211 } 1212 1213 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, 1214 state); 1215 1216 if (evtchn_fd != -1) { 1217 CPUState *cpu_state; 1218 1219 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); 1220 CPU_FOREACH(cpu_state) { 1221 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", 1222 __func__, cpu_state->cpu_index, cpu_state); 1223 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; 1224 } 1225 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); 1226 } 1227 } 1228 1229 1230 static void xen_hvm_change_state_handler(void *opaque, bool running, 1231 RunState rstate) 1232 { 1233 XenIOState *state = opaque; 1234 1235 if (running) { 1236 xen_main_loop_prepare(state); 1237 } 1238 1239 xen_set_ioreq_server_state(xen_domid, 1240 state->ioservid, 1241 (rstate == RUN_STATE_RUNNING)); 1242 } 1243 1244 static void xen_exit_notifier(Notifier *n, void *data) 1245 { 1246 XenIOState *state = container_of(n, XenIOState, exit); 1247 1248 xen_destroy_ioreq_server(xen_domid, state->ioservid); 1249 if (state->fres != NULL) { 1250 xenforeignmemory_unmap_resource(xen_fmem, state->fres); 1251 } 1252 1253 qemu_xen_evtchn_close(state->xce_handle); 1254 xs_daemon_close(state->xenstore); 1255 } 1256 1257 #ifdef XEN_COMPAT_PHYSMAP 1258 static void xen_read_physmap(XenIOState *state) 1259 { 1260 XenPhysmap *physmap = NULL; 1261 unsigned int len, num, i; 1262 char path[80], *value = NULL; 1263 char **entries = NULL; 1264 1265 snprintf(path, sizeof(path), 1266 "/local/domain/0/device-model/%d/physmap", xen_domid); 1267 entries = xs_directory(state->xenstore, 0, path, &num); 1268 if (entries == NULL) 1269 return; 1270 1271 for (i = 0; i < num; i++) { 1272 physmap = g_new(XenPhysmap, 1); 1273 physmap->phys_offset = strtoull(entries[i], NULL, 16); 1274 snprintf(path, sizeof(path), 1275 "/local/domain/0/device-model/%d/physmap/%s/start_addr", 1276 xen_domid, entries[i]); 1277 value = xs_read(state->xenstore, 0, path, &len); 1278 if (value == NULL) { 1279 g_free(physmap); 1280 continue; 1281 } 1282 physmap->start_addr = strtoull(value, NULL, 16); 1283 free(value); 1284 1285 snprintf(path, sizeof(path), 1286 "/local/domain/0/device-model/%d/physmap/%s/size", 1287 xen_domid, entries[i]); 1288 value = xs_read(state->xenstore, 0, path, &len); 1289 if (value == NULL) { 1290 g_free(physmap); 1291 continue; 1292 } 1293 physmap->size = strtoull(value, NULL, 16); 1294 free(value); 1295 1296 snprintf(path, sizeof(path), 1297 "/local/domain/0/device-model/%d/physmap/%s/name", 1298 xen_domid, entries[i]); 1299 physmap->name = xs_read(state->xenstore, 0, path, &len); 1300 1301 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 1302 } 1303 free(entries); 1304 } 1305 #else 1306 static void xen_read_physmap(XenIOState *state) 1307 { 1308 } 1309 #endif 1310 1311 static void xen_wakeup_notifier(Notifier *notifier, void *data) 1312 { 1313 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); 1314 } 1315 1316 static int xen_map_ioreq_server(XenIOState *state) 1317 { 1318 void *addr = NULL; 1319 xen_pfn_t ioreq_pfn; 1320 xen_pfn_t bufioreq_pfn; 1321 evtchn_port_t bufioreq_evtchn; 1322 int rc; 1323 1324 /* 1325 * Attempt to map using the resource API and fall back to normal 1326 * foreign mapping if this is not supported. 1327 */ 1328 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0); 1329 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1); 1330 state->fres = xenforeignmemory_map_resource(xen_fmem, xen_domid, 1331 XENMEM_resource_ioreq_server, 1332 state->ioservid, 0, 2, 1333 &addr, 1334 PROT_READ | PROT_WRITE, 0); 1335 if (state->fres != NULL) { 1336 trace_xen_map_resource_ioreq(state->ioservid, addr); 1337 state->buffered_io_page = addr; 1338 state->shared_page = addr + TARGET_PAGE_SIZE; 1339 } else if (errno != EOPNOTSUPP) { 1340 error_report("failed to map ioreq server resources: error %d handle=%p", 1341 errno, xen_xc); 1342 return -1; 1343 } 1344 1345 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid, 1346 (state->shared_page == NULL) ? 1347 &ioreq_pfn : NULL, 1348 (state->buffered_io_page == NULL) ? 1349 &bufioreq_pfn : NULL, 1350 &bufioreq_evtchn); 1351 if (rc < 0) { 1352 error_report("failed to get ioreq server info: error %d handle=%p", 1353 errno, xen_xc); 1354 return rc; 1355 } 1356 1357 if (state->shared_page == NULL) { 1358 DPRINTF("shared page at pfn %lx\n", ioreq_pfn); 1359 1360 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, 1361 PROT_READ | PROT_WRITE, 1362 1, &ioreq_pfn, NULL); 1363 if (state->shared_page == NULL) { 1364 error_report("map shared IO page returned error %d handle=%p", 1365 errno, xen_xc); 1366 } 1367 } 1368 1369 if (state->buffered_io_page == NULL) { 1370 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); 1371 1372 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, 1373 PROT_READ | PROT_WRITE, 1374 1, &bufioreq_pfn, 1375 NULL); 1376 if (state->buffered_io_page == NULL) { 1377 error_report("map buffered IO page returned error %d", errno); 1378 return -1; 1379 } 1380 } 1381 1382 if (state->shared_page == NULL || state->buffered_io_page == NULL) { 1383 return -1; 1384 } 1385 1386 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); 1387 1388 state->bufioreq_remote_port = bufioreq_evtchn; 1389 1390 return 0; 1391 } 1392 1393 void xen_hvm_init_pc(PCMachineState *pcms, MemoryRegion **ram_memory) 1394 { 1395 MachineState *ms = MACHINE(pcms); 1396 unsigned int max_cpus = ms->smp.max_cpus; 1397 int i, rc; 1398 xen_pfn_t ioreq_pfn; 1399 XenIOState *state; 1400 1401 setup_xen_backend_ops(); 1402 1403 state = g_new0(XenIOState, 1); 1404 1405 state->xce_handle = qemu_xen_evtchn_open(); 1406 if (state->xce_handle == NULL) { 1407 perror("xen: event channel open"); 1408 goto err; 1409 } 1410 1411 state->xenstore = xs_daemon_open(); 1412 if (state->xenstore == NULL) { 1413 perror("xen: xenstore open"); 1414 goto err; 1415 } 1416 1417 xen_create_ioreq_server(xen_domid, &state->ioservid); 1418 1419 state->exit.notify = xen_exit_notifier; 1420 qemu_add_exit_notifier(&state->exit); 1421 1422 state->suspend.notify = xen_suspend_notifier; 1423 qemu_register_suspend_notifier(&state->suspend); 1424 1425 state->wakeup.notify = xen_wakeup_notifier; 1426 qemu_register_wakeup_notifier(&state->wakeup); 1427 1428 /* 1429 * Register wake-up support in QMP query-current-machine API 1430 */ 1431 qemu_register_wakeup_support(); 1432 1433 rc = xen_map_ioreq_server(state); 1434 if (rc < 0) { 1435 goto err; 1436 } 1437 1438 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); 1439 if (!rc) { 1440 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); 1441 state->shared_vmport_page = 1442 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1443 1, &ioreq_pfn, NULL); 1444 if (state->shared_vmport_page == NULL) { 1445 error_report("map shared vmport IO page returned error %d handle=%p", 1446 errno, xen_xc); 1447 goto err; 1448 } 1449 } else if (rc != -ENOSYS) { 1450 error_report("get vmport regs pfn returned error %d, rc=%d", 1451 errno, rc); 1452 goto err; 1453 } 1454 1455 /* Note: cpus is empty at this point in init */ 1456 state->cpu_by_vcpu_id = g_new0(CPUState *, max_cpus); 1457 1458 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true); 1459 if (rc < 0) { 1460 error_report("failed to enable ioreq server info: error %d handle=%p", 1461 errno, xen_xc); 1462 goto err; 1463 } 1464 1465 state->ioreq_local_port = g_new0(evtchn_port_t, max_cpus); 1466 1467 /* FIXME: how about if we overflow the page here? */ 1468 for (i = 0; i < max_cpus; i++) { 1469 rc = qemu_xen_evtchn_bind_interdomain(state->xce_handle, xen_domid, 1470 xen_vcpu_eport(state->shared_page, 1471 i)); 1472 if (rc == -1) { 1473 error_report("shared evtchn %d bind error %d", i, errno); 1474 goto err; 1475 } 1476 state->ioreq_local_port[i] = rc; 1477 } 1478 1479 rc = qemu_xen_evtchn_bind_interdomain(state->xce_handle, xen_domid, 1480 state->bufioreq_remote_port); 1481 if (rc == -1) { 1482 error_report("buffered evtchn bind error %d", errno); 1483 goto err; 1484 } 1485 state->bufioreq_local_port = rc; 1486 1487 /* Init RAM management */ 1488 #ifdef XEN_COMPAT_PHYSMAP 1489 xen_map_cache_init(xen_phys_offset_to_gaddr, state); 1490 #else 1491 xen_map_cache_init(NULL, state); 1492 #endif 1493 xen_ram_init(pcms, ms->ram_size, ram_memory); 1494 1495 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); 1496 1497 state->memory_listener = xen_memory_listener; 1498 memory_listener_register(&state->memory_listener, &address_space_memory); 1499 state->log_for_dirtybit = NULL; 1500 1501 state->io_listener = xen_io_listener; 1502 memory_listener_register(&state->io_listener, &address_space_io); 1503 1504 state->device_listener = xen_device_listener; 1505 QLIST_INIT(&state->dev_list); 1506 device_listener_register(&state->device_listener); 1507 1508 xen_bus_init(); 1509 xen_be_init(); 1510 1511 QLIST_INIT(&xen_physmap); 1512 xen_read_physmap(state); 1513 1514 /* Disable ACPI build because Xen handles it */ 1515 pcms->acpi_build_enabled = false; 1516 1517 return; 1518 1519 err: 1520 error_report("xen hardware virtual machine initialisation failed"); 1521 exit(1); 1522 } 1523 1524 void destroy_hvm_domain(bool reboot) 1525 { 1526 xc_interface *xc_handle; 1527 int sts; 1528 int rc; 1529 1530 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff; 1531 1532 if (xen_dmod) { 1533 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason); 1534 if (!rc) { 1535 return; 1536 } 1537 if (errno != ENOTTY /* old Xen */) { 1538 perror("xendevicemodel_shutdown failed"); 1539 } 1540 /* well, try the old thing then */ 1541 } 1542 1543 xc_handle = xc_interface_open(0, 0, 0); 1544 if (xc_handle == NULL) { 1545 fprintf(stderr, "Cannot acquire xenctrl handle\n"); 1546 } else { 1547 sts = xc_domain_shutdown(xc_handle, xen_domid, reason); 1548 if (sts != 0) { 1549 fprintf(stderr, "xc_domain_shutdown failed to issue %s, " 1550 "sts %d, %s\n", reboot ? "reboot" : "poweroff", 1551 sts, strerror(errno)); 1552 } else { 1553 fprintf(stderr, "Issued domain %d %s\n", xen_domid, 1554 reboot ? "reboot" : "poweroff"); 1555 } 1556 xc_interface_close(xc_handle); 1557 } 1558 } 1559 1560 void xen_register_framebuffer(MemoryRegion *mr) 1561 { 1562 framebuffer = mr; 1563 } 1564 1565 void xen_shutdown_fatal_error(const char *fmt, ...) 1566 { 1567 va_list ap; 1568 1569 va_start(ap, fmt); 1570 vfprintf(stderr, fmt, ap); 1571 va_end(ap); 1572 fprintf(stderr, "Will destroy the domain.\n"); 1573 /* destroy the domain */ 1574 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR); 1575 } 1576 1577 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length) 1578 { 1579 if (unlikely(xen_in_migration)) { 1580 int rc; 1581 ram_addr_t start_pfn, nb_pages; 1582 1583 start = xen_phys_offset_to_gaddr(start, length); 1584 1585 if (length == 0) { 1586 length = TARGET_PAGE_SIZE; 1587 } 1588 start_pfn = start >> TARGET_PAGE_BITS; 1589 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) 1590 - start_pfn; 1591 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages); 1592 if (rc) { 1593 fprintf(stderr, 1594 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", 1595 __func__, start, nb_pages, errno, strerror(errno)); 1596 } 1597 } 1598 } 1599 1600 void qmp_xen_set_global_dirty_log(bool enable, Error **errp) 1601 { 1602 if (enable) { 1603 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 1604 } else { 1605 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 1606 } 1607 } 1608