1 /* 2 * Copyright (C) 2010 Citrix Ltd. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 * 7 * Contributions after 2012-01-13 are licensed under the terms of the 8 * GNU GPL, version 2 or (at your option) any later version. 9 */ 10 11 #include "qemu/osdep.h" 12 13 #include "cpu.h" 14 #include "hw/pci/pci.h" 15 #include "hw/pci/pci_host.h" 16 #include "hw/i386/pc.h" 17 #include "hw/irq.h" 18 #include "hw/hw.h" 19 #include "hw/i386/apic-msidef.h" 20 #include "hw/xen/xen_common.h" 21 #include "hw/xen/xen-legacy-backend.h" 22 #include "hw/xen/xen-bus.h" 23 #include "qapi/error.h" 24 #include "qapi/qapi-commands-misc.h" 25 #include "qemu/error-report.h" 26 #include "qemu/range.h" 27 #include "sysemu/xen-mapcache.h" 28 #include "trace.h" 29 #include "exec/address-spaces.h" 30 31 #include <xen/hvm/ioreq.h> 32 #include <xen/hvm/e820.h> 33 34 //#define DEBUG_XEN_HVM 35 36 #ifdef DEBUG_XEN_HVM 37 #define DPRINTF(fmt, ...) \ 38 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) 39 #else 40 #define DPRINTF(fmt, ...) \ 41 do { } while (0) 42 #endif 43 44 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; 45 static MemoryRegion *framebuffer; 46 static bool xen_in_migration; 47 48 /* Compatibility with older version */ 49 50 /* This allows QEMU to build on a system that has Xen 4.5 or earlier 51 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h 52 * needs to be included before this block and hw/xen/xen_common.h needs to 53 * be included before xen/hvm/ioreq.h 54 */ 55 #ifndef IOREQ_TYPE_VMWARE_PORT 56 #define IOREQ_TYPE_VMWARE_PORT 3 57 struct vmware_regs { 58 uint32_t esi; 59 uint32_t edi; 60 uint32_t ebx; 61 uint32_t ecx; 62 uint32_t edx; 63 }; 64 typedef struct vmware_regs vmware_regs_t; 65 66 struct shared_vmport_iopage { 67 struct vmware_regs vcpu_vmport_regs[1]; 68 }; 69 typedef struct shared_vmport_iopage shared_vmport_iopage_t; 70 #endif 71 72 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) 73 { 74 return shared_page->vcpu_ioreq[i].vp_eport; 75 } 76 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) 77 { 78 return &shared_page->vcpu_ioreq[vcpu]; 79 } 80 81 #define BUFFER_IO_MAX_DELAY 100 82 83 typedef struct XenPhysmap { 84 hwaddr start_addr; 85 ram_addr_t size; 86 const char *name; 87 hwaddr phys_offset; 88 89 QLIST_ENTRY(XenPhysmap) list; 90 } XenPhysmap; 91 92 static QLIST_HEAD(, XenPhysmap) xen_physmap; 93 94 typedef struct XenPciDevice { 95 PCIDevice *pci_dev; 96 uint32_t sbdf; 97 QLIST_ENTRY(XenPciDevice) entry; 98 } XenPciDevice; 99 100 typedef struct XenIOState { 101 ioservid_t ioservid; 102 shared_iopage_t *shared_page; 103 shared_vmport_iopage_t *shared_vmport_page; 104 buffered_iopage_t *buffered_io_page; 105 QEMUTimer *buffered_io_timer; 106 CPUState **cpu_by_vcpu_id; 107 /* the evtchn port for polling the notification, */ 108 evtchn_port_t *ioreq_local_port; 109 /* evtchn remote and local ports for buffered io */ 110 evtchn_port_t bufioreq_remote_port; 111 evtchn_port_t bufioreq_local_port; 112 /* the evtchn fd for polling */ 113 xenevtchn_handle *xce_handle; 114 /* which vcpu we are serving */ 115 int send_vcpu; 116 117 struct xs_handle *xenstore; 118 MemoryListener memory_listener; 119 MemoryListener io_listener; 120 QLIST_HEAD(, XenPciDevice) dev_list; 121 DeviceListener device_listener; 122 hwaddr free_phys_offset; 123 const XenPhysmap *log_for_dirtybit; 124 /* Buffer used by xen_sync_dirty_bitmap */ 125 unsigned long *dirty_bitmap; 126 127 Notifier exit; 128 Notifier suspend; 129 Notifier wakeup; 130 } XenIOState; 131 132 /* Xen specific function for piix pci */ 133 134 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) 135 { 136 return irq_num + ((pci_dev->devfn >> 3) << 2); 137 } 138 139 void xen_piix3_set_irq(void *opaque, int irq_num, int level) 140 { 141 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2, 142 irq_num & 3, level); 143 } 144 145 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) 146 { 147 int i; 148 149 /* Scan for updates to PCI link routes (0x60-0x63). */ 150 for (i = 0; i < len; i++) { 151 uint8_t v = (val >> (8 * i)) & 0xff; 152 if (v & 0x80) { 153 v = 0; 154 } 155 v &= 0xf; 156 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { 157 xen_set_pci_link_route(xen_domid, address + i - 0x60, v); 158 } 159 } 160 } 161 162 int xen_is_pirq_msi(uint32_t msi_data) 163 { 164 /* If vector is 0, the msi is remapped into a pirq, passed as 165 * dest_id. 166 */ 167 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0; 168 } 169 170 void xen_hvm_inject_msi(uint64_t addr, uint32_t data) 171 { 172 xen_inject_msi(xen_domid, addr, data); 173 } 174 175 static void xen_suspend_notifier(Notifier *notifier, void *data) 176 { 177 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); 178 } 179 180 /* Xen Interrupt Controller */ 181 182 static void xen_set_irq(void *opaque, int irq, int level) 183 { 184 xen_set_isa_irq_level(xen_domid, irq, level); 185 } 186 187 qemu_irq *xen_interrupt_controller_init(void) 188 { 189 return qemu_allocate_irqs(xen_set_irq, NULL, 16); 190 } 191 192 /* Memory Ops */ 193 194 static void xen_ram_init(PCMachineState *pcms, 195 ram_addr_t ram_size, MemoryRegion **ram_memory_p) 196 { 197 MemoryRegion *sysmem = get_system_memory(); 198 ram_addr_t block_len; 199 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(), 200 PC_MACHINE_MAX_RAM_BELOW_4G, 201 &error_abort); 202 203 /* Handle the machine opt max-ram-below-4g. It is basically doing 204 * min(xen limit, user limit). 205 */ 206 if (!user_lowmem) { 207 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */ 208 } 209 if (HVM_BELOW_4G_RAM_END <= user_lowmem) { 210 user_lowmem = HVM_BELOW_4G_RAM_END; 211 } 212 213 if (ram_size >= user_lowmem) { 214 pcms->above_4g_mem_size = ram_size - user_lowmem; 215 pcms->below_4g_mem_size = user_lowmem; 216 } else { 217 pcms->above_4g_mem_size = 0; 218 pcms->below_4g_mem_size = ram_size; 219 } 220 if (!pcms->above_4g_mem_size) { 221 block_len = ram_size; 222 } else { 223 /* 224 * Xen does not allocate the memory continuously, it keeps a 225 * hole of the size computed above or passed in. 226 */ 227 block_len = (1ULL << 32) + pcms->above_4g_mem_size; 228 } 229 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, 230 &error_fatal); 231 *ram_memory_p = &ram_memory; 232 233 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", 234 &ram_memory, 0, 0xa0000); 235 memory_region_add_subregion(sysmem, 0, &ram_640k); 236 /* Skip of the VGA IO memory space, it will be registered later by the VGA 237 * emulated device. 238 * 239 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load 240 * the Options ROM, so it is registered here as RAM. 241 */ 242 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", 243 &ram_memory, 0xc0000, 244 pcms->below_4g_mem_size - 0xc0000); 245 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); 246 if (pcms->above_4g_mem_size > 0) { 247 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", 248 &ram_memory, 0x100000000ULL, 249 pcms->above_4g_mem_size); 250 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); 251 } 252 } 253 254 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, 255 Error **errp) 256 { 257 unsigned long nr_pfn; 258 xen_pfn_t *pfn_list; 259 int i; 260 261 if (runstate_check(RUN_STATE_INMIGRATE)) { 262 /* RAM already populated in Xen */ 263 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT 264 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", 265 __func__, size, ram_addr); 266 return; 267 } 268 269 if (mr == &ram_memory) { 270 return; 271 } 272 273 trace_xen_ram_alloc(ram_addr, size); 274 275 nr_pfn = size >> TARGET_PAGE_BITS; 276 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); 277 278 for (i = 0; i < nr_pfn; i++) { 279 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; 280 } 281 282 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { 283 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, 284 ram_addr); 285 } 286 287 g_free(pfn_list); 288 } 289 290 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size) 291 { 292 XenPhysmap *physmap = NULL; 293 294 start_addr &= TARGET_PAGE_MASK; 295 296 QLIST_FOREACH(physmap, &xen_physmap, list) { 297 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { 298 return physmap; 299 } 300 } 301 return NULL; 302 } 303 304 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size) 305 { 306 hwaddr addr = phys_offset & TARGET_PAGE_MASK; 307 XenPhysmap *physmap = NULL; 308 309 QLIST_FOREACH(physmap, &xen_physmap, list) { 310 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { 311 return physmap->start_addr + (phys_offset - physmap->phys_offset); 312 } 313 } 314 315 return phys_offset; 316 } 317 318 #ifdef XEN_COMPAT_PHYSMAP 319 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 320 { 321 char path[80], value[17]; 322 323 snprintf(path, sizeof(path), 324 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", 325 xen_domid, (uint64_t)physmap->phys_offset); 326 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr); 327 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 328 return -1; 329 } 330 snprintf(path, sizeof(path), 331 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", 332 xen_domid, (uint64_t)physmap->phys_offset); 333 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size); 334 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 335 return -1; 336 } 337 if (physmap->name) { 338 snprintf(path, sizeof(path), 339 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", 340 xen_domid, (uint64_t)physmap->phys_offset); 341 if (!xs_write(state->xenstore, 0, path, 342 physmap->name, strlen(physmap->name))) { 343 return -1; 344 } 345 } 346 return 0; 347 } 348 #else 349 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 350 { 351 return 0; 352 } 353 #endif 354 355 static int xen_add_to_physmap(XenIOState *state, 356 hwaddr start_addr, 357 ram_addr_t size, 358 MemoryRegion *mr, 359 hwaddr offset_within_region) 360 { 361 unsigned long nr_pages; 362 int rc = 0; 363 XenPhysmap *physmap = NULL; 364 hwaddr pfn, start_gpfn; 365 hwaddr phys_offset = memory_region_get_ram_addr(mr); 366 const char *mr_name; 367 368 if (get_physmapping(start_addr, size)) { 369 return 0; 370 } 371 if (size <= 0) { 372 return -1; 373 } 374 375 /* Xen can only handle a single dirty log region for now and we want 376 * the linear framebuffer to be that region. 377 * Avoid tracking any regions that is not videoram and avoid tracking 378 * the legacy vga region. */ 379 if (mr == framebuffer && start_addr > 0xbffff) { 380 goto go_physmap; 381 } 382 return -1; 383 384 go_physmap: 385 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", 386 start_addr, start_addr + size); 387 388 mr_name = memory_region_name(mr); 389 390 physmap = g_malloc(sizeof(XenPhysmap)); 391 392 physmap->start_addr = start_addr; 393 physmap->size = size; 394 physmap->name = mr_name; 395 physmap->phys_offset = phys_offset; 396 397 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 398 399 if (runstate_check(RUN_STATE_INMIGRATE)) { 400 /* Now when we have a physmap entry we can replace a dummy mapping with 401 * a real one of guest foreign memory. */ 402 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size); 403 assert(p && p == memory_region_get_ram_ptr(mr)); 404 405 return 0; 406 } 407 408 pfn = phys_offset >> TARGET_PAGE_BITS; 409 start_gpfn = start_addr >> TARGET_PAGE_BITS; 410 nr_pages = size >> TARGET_PAGE_BITS; 411 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn, 412 start_gpfn); 413 if (rc) { 414 int saved_errno = errno; 415 416 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx 417 " to GFN %"HWADDR_PRIx" failed: %s", 418 nr_pages, pfn, start_gpfn, strerror(saved_errno)); 419 errno = saved_errno; 420 return -1; 421 } 422 423 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid, 424 start_addr >> TARGET_PAGE_BITS, 425 (start_addr + size - 1) >> TARGET_PAGE_BITS, 426 XEN_DOMCTL_MEM_CACHEATTR_WB); 427 if (rc) { 428 error_report("pin_memory_cacheattr failed: %s", strerror(errno)); 429 } 430 return xen_save_physmap(state, physmap); 431 } 432 433 static int xen_remove_from_physmap(XenIOState *state, 434 hwaddr start_addr, 435 ram_addr_t size) 436 { 437 int rc = 0; 438 XenPhysmap *physmap = NULL; 439 hwaddr phys_offset = 0; 440 441 physmap = get_physmapping(start_addr, size); 442 if (physmap == NULL) { 443 return -1; 444 } 445 446 phys_offset = physmap->phys_offset; 447 size = physmap->size; 448 449 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " 450 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); 451 452 size >>= TARGET_PAGE_BITS; 453 start_addr >>= TARGET_PAGE_BITS; 454 phys_offset >>= TARGET_PAGE_BITS; 455 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr, 456 phys_offset); 457 if (rc) { 458 int saved_errno = errno; 459 460 error_report("relocate_memory "RAM_ADDR_FMT" pages" 461 " from GFN %"HWADDR_PRIx 462 " to GFN %"HWADDR_PRIx" failed: %s", 463 size, start_addr, phys_offset, strerror(saved_errno)); 464 errno = saved_errno; 465 return -1; 466 } 467 468 QLIST_REMOVE(physmap, list); 469 if (state->log_for_dirtybit == physmap) { 470 state->log_for_dirtybit = NULL; 471 g_free(state->dirty_bitmap); 472 state->dirty_bitmap = NULL; 473 } 474 g_free(physmap); 475 476 return 0; 477 } 478 479 static void xen_set_memory(struct MemoryListener *listener, 480 MemoryRegionSection *section, 481 bool add) 482 { 483 XenIOState *state = container_of(listener, XenIOState, memory_listener); 484 hwaddr start_addr = section->offset_within_address_space; 485 ram_addr_t size = int128_get64(section->size); 486 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); 487 hvmmem_type_t mem_type; 488 489 if (section->mr == &ram_memory) { 490 return; 491 } else { 492 if (add) { 493 xen_map_memory_section(xen_domid, state->ioservid, 494 section); 495 } else { 496 xen_unmap_memory_section(xen_domid, state->ioservid, 497 section); 498 } 499 } 500 501 if (!memory_region_is_ram(section->mr)) { 502 return; 503 } 504 505 if (log_dirty != add) { 506 return; 507 } 508 509 trace_xen_client_set_memory(start_addr, size, log_dirty); 510 511 start_addr &= TARGET_PAGE_MASK; 512 size = TARGET_PAGE_ALIGN(size); 513 514 if (add) { 515 if (!memory_region_is_rom(section->mr)) { 516 xen_add_to_physmap(state, start_addr, size, 517 section->mr, section->offset_within_region); 518 } else { 519 mem_type = HVMMEM_ram_ro; 520 if (xen_set_mem_type(xen_domid, mem_type, 521 start_addr >> TARGET_PAGE_BITS, 522 size >> TARGET_PAGE_BITS)) { 523 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n", 524 start_addr); 525 } 526 } 527 } else { 528 if (xen_remove_from_physmap(state, start_addr, size) < 0) { 529 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); 530 } 531 } 532 } 533 534 static void xen_region_add(MemoryListener *listener, 535 MemoryRegionSection *section) 536 { 537 memory_region_ref(section->mr); 538 xen_set_memory(listener, section, true); 539 } 540 541 static void xen_region_del(MemoryListener *listener, 542 MemoryRegionSection *section) 543 { 544 xen_set_memory(listener, section, false); 545 memory_region_unref(section->mr); 546 } 547 548 static void xen_io_add(MemoryListener *listener, 549 MemoryRegionSection *section) 550 { 551 XenIOState *state = container_of(listener, XenIOState, io_listener); 552 MemoryRegion *mr = section->mr; 553 554 if (mr->ops == &unassigned_io_ops) { 555 return; 556 } 557 558 memory_region_ref(mr); 559 560 xen_map_io_section(xen_domid, state->ioservid, section); 561 } 562 563 static void xen_io_del(MemoryListener *listener, 564 MemoryRegionSection *section) 565 { 566 XenIOState *state = container_of(listener, XenIOState, io_listener); 567 MemoryRegion *mr = section->mr; 568 569 if (mr->ops == &unassigned_io_ops) { 570 return; 571 } 572 573 xen_unmap_io_section(xen_domid, state->ioservid, section); 574 575 memory_region_unref(mr); 576 } 577 578 static void xen_device_realize(DeviceListener *listener, 579 DeviceState *dev) 580 { 581 XenIOState *state = container_of(listener, XenIOState, device_listener); 582 583 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 584 PCIDevice *pci_dev = PCI_DEVICE(dev); 585 XenPciDevice *xendev = g_new(XenPciDevice, 1); 586 587 xendev->pci_dev = pci_dev; 588 xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev), 589 pci_dev->devfn); 590 QLIST_INSERT_HEAD(&state->dev_list, xendev, entry); 591 592 xen_map_pcidev(xen_domid, state->ioservid, pci_dev); 593 } 594 } 595 596 static void xen_device_unrealize(DeviceListener *listener, 597 DeviceState *dev) 598 { 599 XenIOState *state = container_of(listener, XenIOState, device_listener); 600 601 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 602 PCIDevice *pci_dev = PCI_DEVICE(dev); 603 XenPciDevice *xendev, *next; 604 605 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev); 606 607 QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) { 608 if (xendev->pci_dev == pci_dev) { 609 QLIST_REMOVE(xendev, entry); 610 g_free(xendev); 611 break; 612 } 613 } 614 } 615 } 616 617 static void xen_sync_dirty_bitmap(XenIOState *state, 618 hwaddr start_addr, 619 ram_addr_t size) 620 { 621 hwaddr npages = size >> TARGET_PAGE_BITS; 622 const int width = sizeof(unsigned long) * 8; 623 size_t bitmap_size = DIV_ROUND_UP(npages, width); 624 int rc, i, j; 625 const XenPhysmap *physmap = NULL; 626 627 physmap = get_physmapping(start_addr, size); 628 if (physmap == NULL) { 629 /* not handled */ 630 return; 631 } 632 633 if (state->log_for_dirtybit == NULL) { 634 state->log_for_dirtybit = physmap; 635 state->dirty_bitmap = g_new(unsigned long, bitmap_size); 636 } else if (state->log_for_dirtybit != physmap) { 637 /* Only one range for dirty bitmap can be tracked. */ 638 return; 639 } 640 641 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS, 642 npages, state->dirty_bitmap); 643 if (rc < 0) { 644 #ifndef ENODATA 645 #define ENODATA ENOENT 646 #endif 647 if (errno == ENODATA) { 648 memory_region_set_dirty(framebuffer, 0, size); 649 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx 650 ", 0x" TARGET_FMT_plx "): %s\n", 651 start_addr, start_addr + size, strerror(errno)); 652 } 653 return; 654 } 655 656 for (i = 0; i < bitmap_size; i++) { 657 unsigned long map = state->dirty_bitmap[i]; 658 while (map != 0) { 659 j = ctzl(map); 660 map &= ~(1ul << j); 661 memory_region_set_dirty(framebuffer, 662 (i * width + j) * TARGET_PAGE_SIZE, 663 TARGET_PAGE_SIZE); 664 }; 665 } 666 } 667 668 static void xen_log_start(MemoryListener *listener, 669 MemoryRegionSection *section, 670 int old, int new) 671 { 672 XenIOState *state = container_of(listener, XenIOState, memory_listener); 673 674 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { 675 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 676 int128_get64(section->size)); 677 } 678 } 679 680 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, 681 int old, int new) 682 { 683 XenIOState *state = container_of(listener, XenIOState, memory_listener); 684 685 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { 686 state->log_for_dirtybit = NULL; 687 g_free(state->dirty_bitmap); 688 state->dirty_bitmap = NULL; 689 /* Disable dirty bit tracking */ 690 xen_track_dirty_vram(xen_domid, 0, 0, NULL); 691 } 692 } 693 694 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) 695 { 696 XenIOState *state = container_of(listener, XenIOState, memory_listener); 697 698 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 699 int128_get64(section->size)); 700 } 701 702 static void xen_log_global_start(MemoryListener *listener) 703 { 704 if (xen_enabled()) { 705 xen_in_migration = true; 706 } 707 } 708 709 static void xen_log_global_stop(MemoryListener *listener) 710 { 711 xen_in_migration = false; 712 } 713 714 static MemoryListener xen_memory_listener = { 715 .region_add = xen_region_add, 716 .region_del = xen_region_del, 717 .log_start = xen_log_start, 718 .log_stop = xen_log_stop, 719 .log_sync = xen_log_sync, 720 .log_global_start = xen_log_global_start, 721 .log_global_stop = xen_log_global_stop, 722 .priority = 10, 723 }; 724 725 static MemoryListener xen_io_listener = { 726 .region_add = xen_io_add, 727 .region_del = xen_io_del, 728 .priority = 10, 729 }; 730 731 static DeviceListener xen_device_listener = { 732 .realize = xen_device_realize, 733 .unrealize = xen_device_unrealize, 734 }; 735 736 /* get the ioreq packets from share mem */ 737 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) 738 { 739 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); 740 741 if (req->state != STATE_IOREQ_READY) { 742 DPRINTF("I/O request not ready: " 743 "%x, ptr: %x, port: %"PRIx64", " 744 "data: %"PRIx64", count: %u, size: %u\n", 745 req->state, req->data_is_ptr, req->addr, 746 req->data, req->count, req->size); 747 return NULL; 748 } 749 750 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ 751 752 req->state = STATE_IOREQ_INPROCESS; 753 return req; 754 } 755 756 /* use poll to get the port notification */ 757 /* ioreq_vec--out,the */ 758 /* retval--the number of ioreq packet */ 759 static ioreq_t *cpu_get_ioreq(XenIOState *state) 760 { 761 MachineState *ms = MACHINE(qdev_get_machine()); 762 unsigned int max_cpus = ms->smp.max_cpus; 763 int i; 764 evtchn_port_t port; 765 766 port = xenevtchn_pending(state->xce_handle); 767 if (port == state->bufioreq_local_port) { 768 timer_mod(state->buffered_io_timer, 769 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 770 return NULL; 771 } 772 773 if (port != -1) { 774 for (i = 0; i < max_cpus; i++) { 775 if (state->ioreq_local_port[i] == port) { 776 break; 777 } 778 } 779 780 if (i == max_cpus) { 781 hw_error("Fatal error while trying to get io event!\n"); 782 } 783 784 /* unmask the wanted port again */ 785 xenevtchn_unmask(state->xce_handle, port); 786 787 /* get the io packet from shared memory */ 788 state->send_vcpu = i; 789 return cpu_get_ioreq_from_shared_memory(state, i); 790 } 791 792 /* read error or read nothing */ 793 return NULL; 794 } 795 796 static uint32_t do_inp(uint32_t addr, unsigned long size) 797 { 798 switch (size) { 799 case 1: 800 return cpu_inb(addr); 801 case 2: 802 return cpu_inw(addr); 803 case 4: 804 return cpu_inl(addr); 805 default: 806 hw_error("inp: bad size: %04x %lx", addr, size); 807 } 808 } 809 810 static void do_outp(uint32_t addr, 811 unsigned long size, uint32_t val) 812 { 813 switch (size) { 814 case 1: 815 return cpu_outb(addr, val); 816 case 2: 817 return cpu_outw(addr, val); 818 case 4: 819 return cpu_outl(addr, val); 820 default: 821 hw_error("outp: bad size: %04x %lx", addr, size); 822 } 823 } 824 825 /* 826 * Helper functions which read/write an object from/to physical guest 827 * memory, as part of the implementation of an ioreq. 828 * 829 * Equivalent to 830 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, 831 * val, req->size, 0/1) 832 * except without the integer overflow problems. 833 */ 834 static void rw_phys_req_item(hwaddr addr, 835 ioreq_t *req, uint32_t i, void *val, int rw) 836 { 837 /* Do everything unsigned so overflow just results in a truncated result 838 * and accesses to undesired parts of guest memory, which is up 839 * to the guest */ 840 hwaddr offset = (hwaddr)req->size * i; 841 if (req->df) { 842 addr -= offset; 843 } else { 844 addr += offset; 845 } 846 cpu_physical_memory_rw(addr, val, req->size, rw); 847 } 848 849 static inline void read_phys_req_item(hwaddr addr, 850 ioreq_t *req, uint32_t i, void *val) 851 { 852 rw_phys_req_item(addr, req, i, val, 0); 853 } 854 static inline void write_phys_req_item(hwaddr addr, 855 ioreq_t *req, uint32_t i, void *val) 856 { 857 rw_phys_req_item(addr, req, i, val, 1); 858 } 859 860 861 static void cpu_ioreq_pio(ioreq_t *req) 862 { 863 uint32_t i; 864 865 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, 866 req->data, req->count, req->size); 867 868 if (req->size > sizeof(uint32_t)) { 869 hw_error("PIO: bad size (%u)", req->size); 870 } 871 872 if (req->dir == IOREQ_READ) { 873 if (!req->data_is_ptr) { 874 req->data = do_inp(req->addr, req->size); 875 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, 876 req->size); 877 } else { 878 uint32_t tmp; 879 880 for (i = 0; i < req->count; i++) { 881 tmp = do_inp(req->addr, req->size); 882 write_phys_req_item(req->data, req, i, &tmp); 883 } 884 } 885 } else if (req->dir == IOREQ_WRITE) { 886 if (!req->data_is_ptr) { 887 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, 888 req->size); 889 do_outp(req->addr, req->size, req->data); 890 } else { 891 for (i = 0; i < req->count; i++) { 892 uint32_t tmp = 0; 893 894 read_phys_req_item(req->data, req, i, &tmp); 895 do_outp(req->addr, req->size, tmp); 896 } 897 } 898 } 899 } 900 901 static void cpu_ioreq_move(ioreq_t *req) 902 { 903 uint32_t i; 904 905 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, 906 req->data, req->count, req->size); 907 908 if (req->size > sizeof(req->data)) { 909 hw_error("MMIO: bad size (%u)", req->size); 910 } 911 912 if (!req->data_is_ptr) { 913 if (req->dir == IOREQ_READ) { 914 for (i = 0; i < req->count; i++) { 915 read_phys_req_item(req->addr, req, i, &req->data); 916 } 917 } else if (req->dir == IOREQ_WRITE) { 918 for (i = 0; i < req->count; i++) { 919 write_phys_req_item(req->addr, req, i, &req->data); 920 } 921 } 922 } else { 923 uint64_t tmp; 924 925 if (req->dir == IOREQ_READ) { 926 for (i = 0; i < req->count; i++) { 927 read_phys_req_item(req->addr, req, i, &tmp); 928 write_phys_req_item(req->data, req, i, &tmp); 929 } 930 } else if (req->dir == IOREQ_WRITE) { 931 for (i = 0; i < req->count; i++) { 932 read_phys_req_item(req->data, req, i, &tmp); 933 write_phys_req_item(req->addr, req, i, &tmp); 934 } 935 } 936 } 937 } 938 939 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req) 940 { 941 uint32_t sbdf = req->addr >> 32; 942 uint32_t reg = req->addr; 943 XenPciDevice *xendev; 944 945 if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) && 946 req->size != sizeof(uint32_t)) { 947 hw_error("PCI config access: bad size (%u)", req->size); 948 } 949 950 if (req->count != 1) { 951 hw_error("PCI config access: bad count (%u)", req->count); 952 } 953 954 QLIST_FOREACH(xendev, &state->dev_list, entry) { 955 if (xendev->sbdf != sbdf) { 956 continue; 957 } 958 959 if (!req->data_is_ptr) { 960 if (req->dir == IOREQ_READ) { 961 req->data = pci_host_config_read_common( 962 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 963 req->size); 964 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 965 req->size, req->data); 966 } else if (req->dir == IOREQ_WRITE) { 967 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 968 req->size, req->data); 969 pci_host_config_write_common( 970 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 971 req->data, req->size); 972 } 973 } else { 974 uint32_t tmp; 975 976 if (req->dir == IOREQ_READ) { 977 tmp = pci_host_config_read_common( 978 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 979 req->size); 980 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 981 req->size, tmp); 982 write_phys_req_item(req->data, req, 0, &tmp); 983 } else if (req->dir == IOREQ_WRITE) { 984 read_phys_req_item(req->data, req, 0, &tmp); 985 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 986 req->size, tmp); 987 pci_host_config_write_common( 988 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 989 tmp, req->size); 990 } 991 } 992 } 993 } 994 995 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) 996 { 997 X86CPU *cpu; 998 CPUX86State *env; 999 1000 cpu = X86_CPU(current_cpu); 1001 env = &cpu->env; 1002 env->regs[R_EAX] = req->data; 1003 env->regs[R_EBX] = vmport_regs->ebx; 1004 env->regs[R_ECX] = vmport_regs->ecx; 1005 env->regs[R_EDX] = vmport_regs->edx; 1006 env->regs[R_ESI] = vmport_regs->esi; 1007 env->regs[R_EDI] = vmport_regs->edi; 1008 } 1009 1010 static void regs_from_cpu(vmware_regs_t *vmport_regs) 1011 { 1012 X86CPU *cpu = X86_CPU(current_cpu); 1013 CPUX86State *env = &cpu->env; 1014 1015 vmport_regs->ebx = env->regs[R_EBX]; 1016 vmport_regs->ecx = env->regs[R_ECX]; 1017 vmport_regs->edx = env->regs[R_EDX]; 1018 vmport_regs->esi = env->regs[R_ESI]; 1019 vmport_regs->edi = env->regs[R_EDI]; 1020 } 1021 1022 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) 1023 { 1024 vmware_regs_t *vmport_regs; 1025 1026 assert(state->shared_vmport_page); 1027 vmport_regs = 1028 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; 1029 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); 1030 1031 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; 1032 regs_to_cpu(vmport_regs, req); 1033 cpu_ioreq_pio(req); 1034 regs_from_cpu(vmport_regs); 1035 current_cpu = NULL; 1036 } 1037 1038 static void handle_ioreq(XenIOState *state, ioreq_t *req) 1039 { 1040 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, 1041 req->addr, req->data, req->count, req->size); 1042 1043 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && 1044 (req->size < sizeof (target_ulong))) { 1045 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; 1046 } 1047 1048 if (req->dir == IOREQ_WRITE) 1049 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, 1050 req->addr, req->data, req->count, req->size); 1051 1052 switch (req->type) { 1053 case IOREQ_TYPE_PIO: 1054 cpu_ioreq_pio(req); 1055 break; 1056 case IOREQ_TYPE_COPY: 1057 cpu_ioreq_move(req); 1058 break; 1059 case IOREQ_TYPE_VMWARE_PORT: 1060 handle_vmport_ioreq(state, req); 1061 break; 1062 case IOREQ_TYPE_TIMEOFFSET: 1063 break; 1064 case IOREQ_TYPE_INVALIDATE: 1065 xen_invalidate_map_cache(); 1066 break; 1067 case IOREQ_TYPE_PCI_CONFIG: 1068 cpu_ioreq_config(state, req); 1069 break; 1070 default: 1071 hw_error("Invalid ioreq type 0x%x\n", req->type); 1072 } 1073 if (req->dir == IOREQ_READ) { 1074 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, 1075 req->addr, req->data, req->count, req->size); 1076 } 1077 } 1078 1079 static int handle_buffered_iopage(XenIOState *state) 1080 { 1081 buffered_iopage_t *buf_page = state->buffered_io_page; 1082 buf_ioreq_t *buf_req = NULL; 1083 ioreq_t req; 1084 int qw; 1085 1086 if (!buf_page) { 1087 return 0; 1088 } 1089 1090 memset(&req, 0x00, sizeof(req)); 1091 req.state = STATE_IOREQ_READY; 1092 req.count = 1; 1093 req.dir = IOREQ_WRITE; 1094 1095 for (;;) { 1096 uint32_t rdptr = buf_page->read_pointer, wrptr; 1097 1098 xen_rmb(); 1099 wrptr = buf_page->write_pointer; 1100 xen_rmb(); 1101 if (rdptr != buf_page->read_pointer) { 1102 continue; 1103 } 1104 if (rdptr == wrptr) { 1105 break; 1106 } 1107 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; 1108 req.size = 1U << buf_req->size; 1109 req.addr = buf_req->addr; 1110 req.data = buf_req->data; 1111 req.type = buf_req->type; 1112 xen_rmb(); 1113 qw = (req.size == 8); 1114 if (qw) { 1115 if (rdptr + 1 == wrptr) { 1116 hw_error("Incomplete quad word buffered ioreq"); 1117 } 1118 buf_req = &buf_page->buf_ioreq[(rdptr + 1) % 1119 IOREQ_BUFFER_SLOT_NUM]; 1120 req.data |= ((uint64_t)buf_req->data) << 32; 1121 xen_rmb(); 1122 } 1123 1124 handle_ioreq(state, &req); 1125 1126 /* Only req.data may get updated by handle_ioreq(), albeit even that 1127 * should not happen as such data would never make it to the guest (we 1128 * can only usefully see writes here after all). 1129 */ 1130 assert(req.state == STATE_IOREQ_READY); 1131 assert(req.count == 1); 1132 assert(req.dir == IOREQ_WRITE); 1133 assert(!req.data_is_ptr); 1134 1135 atomic_add(&buf_page->read_pointer, qw + 1); 1136 } 1137 1138 return req.count; 1139 } 1140 1141 static void handle_buffered_io(void *opaque) 1142 { 1143 XenIOState *state = opaque; 1144 1145 if (handle_buffered_iopage(state)) { 1146 timer_mod(state->buffered_io_timer, 1147 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 1148 } else { 1149 timer_del(state->buffered_io_timer); 1150 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port); 1151 } 1152 } 1153 1154 static void cpu_handle_ioreq(void *opaque) 1155 { 1156 XenIOState *state = opaque; 1157 ioreq_t *req = cpu_get_ioreq(state); 1158 1159 handle_buffered_iopage(state); 1160 if (req) { 1161 ioreq_t copy = *req; 1162 1163 xen_rmb(); 1164 handle_ioreq(state, ©); 1165 req->data = copy.data; 1166 1167 if (req->state != STATE_IOREQ_INPROCESS) { 1168 fprintf(stderr, "Badness in I/O request ... not in service?!: " 1169 "%x, ptr: %x, port: %"PRIx64", " 1170 "data: %"PRIx64", count: %u, size: %u, type: %u\n", 1171 req->state, req->data_is_ptr, req->addr, 1172 req->data, req->count, req->size, req->type); 1173 destroy_hvm_domain(false); 1174 return; 1175 } 1176 1177 xen_wmb(); /* Update ioreq contents /then/ update state. */ 1178 1179 /* 1180 * We do this before we send the response so that the tools 1181 * have the opportunity to pick up on the reset before the 1182 * guest resumes and does a hlt with interrupts disabled which 1183 * causes Xen to powerdown the domain. 1184 */ 1185 if (runstate_is_running()) { 1186 ShutdownCause request; 1187 1188 if (qemu_shutdown_requested_get()) { 1189 destroy_hvm_domain(false); 1190 } 1191 request = qemu_reset_requested_get(); 1192 if (request) { 1193 qemu_system_reset(request); 1194 destroy_hvm_domain(true); 1195 } 1196 } 1197 1198 req->state = STATE_IORESP_READY; 1199 xenevtchn_notify(state->xce_handle, 1200 state->ioreq_local_port[state->send_vcpu]); 1201 } 1202 } 1203 1204 static void xen_main_loop_prepare(XenIOState *state) 1205 { 1206 int evtchn_fd = -1; 1207 1208 if (state->xce_handle != NULL) { 1209 evtchn_fd = xenevtchn_fd(state->xce_handle); 1210 } 1211 1212 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, 1213 state); 1214 1215 if (evtchn_fd != -1) { 1216 CPUState *cpu_state; 1217 1218 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); 1219 CPU_FOREACH(cpu_state) { 1220 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", 1221 __func__, cpu_state->cpu_index, cpu_state); 1222 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; 1223 } 1224 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); 1225 } 1226 } 1227 1228 1229 static void xen_hvm_change_state_handler(void *opaque, int running, 1230 RunState rstate) 1231 { 1232 XenIOState *state = opaque; 1233 1234 if (running) { 1235 xen_main_loop_prepare(state); 1236 } 1237 1238 xen_set_ioreq_server_state(xen_domid, 1239 state->ioservid, 1240 (rstate == RUN_STATE_RUNNING)); 1241 } 1242 1243 static void xen_exit_notifier(Notifier *n, void *data) 1244 { 1245 XenIOState *state = container_of(n, XenIOState, exit); 1246 1247 xenevtchn_close(state->xce_handle); 1248 xs_daemon_close(state->xenstore); 1249 } 1250 1251 #ifdef XEN_COMPAT_PHYSMAP 1252 static void xen_read_physmap(XenIOState *state) 1253 { 1254 XenPhysmap *physmap = NULL; 1255 unsigned int len, num, i; 1256 char path[80], *value = NULL; 1257 char **entries = NULL; 1258 1259 snprintf(path, sizeof(path), 1260 "/local/domain/0/device-model/%d/physmap", xen_domid); 1261 entries = xs_directory(state->xenstore, 0, path, &num); 1262 if (entries == NULL) 1263 return; 1264 1265 for (i = 0; i < num; i++) { 1266 physmap = g_malloc(sizeof (XenPhysmap)); 1267 physmap->phys_offset = strtoull(entries[i], NULL, 16); 1268 snprintf(path, sizeof(path), 1269 "/local/domain/0/device-model/%d/physmap/%s/start_addr", 1270 xen_domid, entries[i]); 1271 value = xs_read(state->xenstore, 0, path, &len); 1272 if (value == NULL) { 1273 g_free(physmap); 1274 continue; 1275 } 1276 physmap->start_addr = strtoull(value, NULL, 16); 1277 free(value); 1278 1279 snprintf(path, sizeof(path), 1280 "/local/domain/0/device-model/%d/physmap/%s/size", 1281 xen_domid, entries[i]); 1282 value = xs_read(state->xenstore, 0, path, &len); 1283 if (value == NULL) { 1284 g_free(physmap); 1285 continue; 1286 } 1287 physmap->size = strtoull(value, NULL, 16); 1288 free(value); 1289 1290 snprintf(path, sizeof(path), 1291 "/local/domain/0/device-model/%d/physmap/%s/name", 1292 xen_domid, entries[i]); 1293 physmap->name = xs_read(state->xenstore, 0, path, &len); 1294 1295 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 1296 } 1297 free(entries); 1298 } 1299 #else 1300 static void xen_read_physmap(XenIOState *state) 1301 { 1302 } 1303 #endif 1304 1305 static void xen_wakeup_notifier(Notifier *notifier, void *data) 1306 { 1307 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); 1308 } 1309 1310 static int xen_map_ioreq_server(XenIOState *state) 1311 { 1312 void *addr = NULL; 1313 xenforeignmemory_resource_handle *fres; 1314 xen_pfn_t ioreq_pfn; 1315 xen_pfn_t bufioreq_pfn; 1316 evtchn_port_t bufioreq_evtchn; 1317 int rc; 1318 1319 /* 1320 * Attempt to map using the resource API and fall back to normal 1321 * foreign mapping if this is not supported. 1322 */ 1323 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0); 1324 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1); 1325 fres = xenforeignmemory_map_resource(xen_fmem, xen_domid, 1326 XENMEM_resource_ioreq_server, 1327 state->ioservid, 0, 2, 1328 &addr, 1329 PROT_READ | PROT_WRITE, 0); 1330 if (fres != NULL) { 1331 trace_xen_map_resource_ioreq(state->ioservid, addr); 1332 state->buffered_io_page = addr; 1333 state->shared_page = addr + TARGET_PAGE_SIZE; 1334 } else if (errno != EOPNOTSUPP) { 1335 error_report("failed to map ioreq server resources: error %d handle=%p", 1336 errno, xen_xc); 1337 return -1; 1338 } 1339 1340 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid, 1341 (state->shared_page == NULL) ? 1342 &ioreq_pfn : NULL, 1343 (state->buffered_io_page == NULL) ? 1344 &bufioreq_pfn : NULL, 1345 &bufioreq_evtchn); 1346 if (rc < 0) { 1347 error_report("failed to get ioreq server info: error %d handle=%p", 1348 errno, xen_xc); 1349 return rc; 1350 } 1351 1352 if (state->shared_page == NULL) { 1353 DPRINTF("shared page at pfn %lx\n", ioreq_pfn); 1354 1355 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, 1356 PROT_READ | PROT_WRITE, 1357 1, &ioreq_pfn, NULL); 1358 if (state->shared_page == NULL) { 1359 error_report("map shared IO page returned error %d handle=%p", 1360 errno, xen_xc); 1361 } 1362 } 1363 1364 if (state->buffered_io_page == NULL) { 1365 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); 1366 1367 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, 1368 PROT_READ | PROT_WRITE, 1369 1, &bufioreq_pfn, 1370 NULL); 1371 if (state->buffered_io_page == NULL) { 1372 error_report("map buffered IO page returned error %d", errno); 1373 return -1; 1374 } 1375 } 1376 1377 if (state->shared_page == NULL || state->buffered_io_page == NULL) { 1378 return -1; 1379 } 1380 1381 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); 1382 1383 state->bufioreq_remote_port = bufioreq_evtchn; 1384 1385 return 0; 1386 } 1387 1388 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory) 1389 { 1390 MachineState *ms = MACHINE(pcms); 1391 unsigned int max_cpus = ms->smp.max_cpus; 1392 int i, rc; 1393 xen_pfn_t ioreq_pfn; 1394 XenIOState *state; 1395 1396 state = g_malloc0(sizeof (XenIOState)); 1397 1398 state->xce_handle = xenevtchn_open(NULL, 0); 1399 if (state->xce_handle == NULL) { 1400 perror("xen: event channel open"); 1401 goto err; 1402 } 1403 1404 state->xenstore = xs_daemon_open(); 1405 if (state->xenstore == NULL) { 1406 perror("xen: xenstore open"); 1407 goto err; 1408 } 1409 1410 xen_create_ioreq_server(xen_domid, &state->ioservid); 1411 1412 state->exit.notify = xen_exit_notifier; 1413 qemu_add_exit_notifier(&state->exit); 1414 1415 state->suspend.notify = xen_suspend_notifier; 1416 qemu_register_suspend_notifier(&state->suspend); 1417 1418 state->wakeup.notify = xen_wakeup_notifier; 1419 qemu_register_wakeup_notifier(&state->wakeup); 1420 1421 /* 1422 * Register wake-up support in QMP query-current-machine API 1423 */ 1424 qemu_register_wakeup_support(); 1425 1426 rc = xen_map_ioreq_server(state); 1427 if (rc < 0) { 1428 goto err; 1429 } 1430 1431 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); 1432 if (!rc) { 1433 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); 1434 state->shared_vmport_page = 1435 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1436 1, &ioreq_pfn, NULL); 1437 if (state->shared_vmport_page == NULL) { 1438 error_report("map shared vmport IO page returned error %d handle=%p", 1439 errno, xen_xc); 1440 goto err; 1441 } 1442 } else if (rc != -ENOSYS) { 1443 error_report("get vmport regs pfn returned error %d, rc=%d", 1444 errno, rc); 1445 goto err; 1446 } 1447 1448 /* Note: cpus is empty at this point in init */ 1449 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *)); 1450 1451 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true); 1452 if (rc < 0) { 1453 error_report("failed to enable ioreq server info: error %d handle=%p", 1454 errno, xen_xc); 1455 goto err; 1456 } 1457 1458 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t)); 1459 1460 /* FIXME: how about if we overflow the page here? */ 1461 for (i = 0; i < max_cpus; i++) { 1462 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1463 xen_vcpu_eport(state->shared_page, i)); 1464 if (rc == -1) { 1465 error_report("shared evtchn %d bind error %d", i, errno); 1466 goto err; 1467 } 1468 state->ioreq_local_port[i] = rc; 1469 } 1470 1471 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1472 state->bufioreq_remote_port); 1473 if (rc == -1) { 1474 error_report("buffered evtchn bind error %d", errno); 1475 goto err; 1476 } 1477 state->bufioreq_local_port = rc; 1478 1479 /* Init RAM management */ 1480 #ifdef XEN_COMPAT_PHYSMAP 1481 xen_map_cache_init(xen_phys_offset_to_gaddr, state); 1482 #else 1483 xen_map_cache_init(NULL, state); 1484 #endif 1485 xen_ram_init(pcms, ram_size, ram_memory); 1486 1487 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); 1488 1489 state->memory_listener = xen_memory_listener; 1490 memory_listener_register(&state->memory_listener, &address_space_memory); 1491 state->log_for_dirtybit = NULL; 1492 1493 state->io_listener = xen_io_listener; 1494 memory_listener_register(&state->io_listener, &address_space_io); 1495 1496 state->device_listener = xen_device_listener; 1497 QLIST_INIT(&state->dev_list); 1498 device_listener_register(&state->device_listener); 1499 1500 xen_bus_init(); 1501 1502 /* Initialize backend core & drivers */ 1503 if (xen_be_init() != 0) { 1504 error_report("xen backend core setup failed"); 1505 goto err; 1506 } 1507 xen_be_register_common(); 1508 1509 QLIST_INIT(&xen_physmap); 1510 xen_read_physmap(state); 1511 1512 /* Disable ACPI build because Xen handles it */ 1513 pcms->acpi_build_enabled = false; 1514 1515 return; 1516 1517 err: 1518 error_report("xen hardware virtual machine initialisation failed"); 1519 exit(1); 1520 } 1521 1522 void destroy_hvm_domain(bool reboot) 1523 { 1524 xc_interface *xc_handle; 1525 int sts; 1526 int rc; 1527 1528 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff; 1529 1530 if (xen_dmod) { 1531 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason); 1532 if (!rc) { 1533 return; 1534 } 1535 if (errno != ENOTTY /* old Xen */) { 1536 perror("xendevicemodel_shutdown failed"); 1537 } 1538 /* well, try the old thing then */ 1539 } 1540 1541 xc_handle = xc_interface_open(0, 0, 0); 1542 if (xc_handle == NULL) { 1543 fprintf(stderr, "Cannot acquire xenctrl handle\n"); 1544 } else { 1545 sts = xc_domain_shutdown(xc_handle, xen_domid, reason); 1546 if (sts != 0) { 1547 fprintf(stderr, "xc_domain_shutdown failed to issue %s, " 1548 "sts %d, %s\n", reboot ? "reboot" : "poweroff", 1549 sts, strerror(errno)); 1550 } else { 1551 fprintf(stderr, "Issued domain %d %s\n", xen_domid, 1552 reboot ? "reboot" : "poweroff"); 1553 } 1554 xc_interface_close(xc_handle); 1555 } 1556 } 1557 1558 void xen_register_framebuffer(MemoryRegion *mr) 1559 { 1560 framebuffer = mr; 1561 } 1562 1563 void xen_shutdown_fatal_error(const char *fmt, ...) 1564 { 1565 va_list ap; 1566 1567 va_start(ap, fmt); 1568 vfprintf(stderr, fmt, ap); 1569 va_end(ap); 1570 fprintf(stderr, "Will destroy the domain.\n"); 1571 /* destroy the domain */ 1572 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR); 1573 } 1574 1575 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length) 1576 { 1577 if (unlikely(xen_in_migration)) { 1578 int rc; 1579 ram_addr_t start_pfn, nb_pages; 1580 1581 start = xen_phys_offset_to_gaddr(start, length); 1582 1583 if (length == 0) { 1584 length = TARGET_PAGE_SIZE; 1585 } 1586 start_pfn = start >> TARGET_PAGE_BITS; 1587 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) 1588 - start_pfn; 1589 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages); 1590 if (rc) { 1591 fprintf(stderr, 1592 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", 1593 __func__, start, nb_pages, errno, strerror(errno)); 1594 } 1595 } 1596 } 1597 1598 void qmp_xen_set_global_dirty_log(bool enable, Error **errp) 1599 { 1600 if (enable) { 1601 memory_global_dirty_log_start(); 1602 } else { 1603 memory_global_dirty_log_stop(); 1604 } 1605 } 1606