1 /* 2 * Copyright (C) 2010 Citrix Ltd. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 * 7 * Contributions after 2012-01-13 are licensed under the terms of the 8 * GNU GPL, version 2 or (at your option) any later version. 9 */ 10 11 #include "qemu/osdep.h" 12 13 #include "cpu.h" 14 #include "hw/pci/pci.h" 15 #include "hw/pci/pci_host.h" 16 #include "hw/i386/pc.h" 17 #include "hw/i386/apic-msidef.h" 18 #include "hw/xen/xen_common.h" 19 #include "hw/xen/xen-legacy-backend.h" 20 #include "hw/xen/xen-bus.h" 21 #include "qapi/error.h" 22 #include "qapi/qapi-commands-misc.h" 23 #include "qemu/error-report.h" 24 #include "qemu/range.h" 25 #include "sysemu/xen-mapcache.h" 26 #include "trace.h" 27 #include "exec/address-spaces.h" 28 29 #include <xen/hvm/ioreq.h> 30 #include <xen/hvm/e820.h> 31 32 //#define DEBUG_XEN_HVM 33 34 #ifdef DEBUG_XEN_HVM 35 #define DPRINTF(fmt, ...) \ 36 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) 37 #else 38 #define DPRINTF(fmt, ...) \ 39 do { } while (0) 40 #endif 41 42 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; 43 static MemoryRegion *framebuffer; 44 static bool xen_in_migration; 45 46 /* Compatibility with older version */ 47 48 /* This allows QEMU to build on a system that has Xen 4.5 or earlier 49 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h 50 * needs to be included before this block and hw/xen/xen_common.h needs to 51 * be included before xen/hvm/ioreq.h 52 */ 53 #ifndef IOREQ_TYPE_VMWARE_PORT 54 #define IOREQ_TYPE_VMWARE_PORT 3 55 struct vmware_regs { 56 uint32_t esi; 57 uint32_t edi; 58 uint32_t ebx; 59 uint32_t ecx; 60 uint32_t edx; 61 }; 62 typedef struct vmware_regs vmware_regs_t; 63 64 struct shared_vmport_iopage { 65 struct vmware_regs vcpu_vmport_regs[1]; 66 }; 67 typedef struct shared_vmport_iopage shared_vmport_iopage_t; 68 #endif 69 70 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) 71 { 72 return shared_page->vcpu_ioreq[i].vp_eport; 73 } 74 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) 75 { 76 return &shared_page->vcpu_ioreq[vcpu]; 77 } 78 79 #define BUFFER_IO_MAX_DELAY 100 80 81 typedef struct XenPhysmap { 82 hwaddr start_addr; 83 ram_addr_t size; 84 const char *name; 85 hwaddr phys_offset; 86 87 QLIST_ENTRY(XenPhysmap) list; 88 } XenPhysmap; 89 90 static QLIST_HEAD(, XenPhysmap) xen_physmap; 91 92 typedef struct XenPciDevice { 93 PCIDevice *pci_dev; 94 uint32_t sbdf; 95 QLIST_ENTRY(XenPciDevice) entry; 96 } XenPciDevice; 97 98 typedef struct XenIOState { 99 ioservid_t ioservid; 100 shared_iopage_t *shared_page; 101 shared_vmport_iopage_t *shared_vmport_page; 102 buffered_iopage_t *buffered_io_page; 103 QEMUTimer *buffered_io_timer; 104 CPUState **cpu_by_vcpu_id; 105 /* the evtchn port for polling the notification, */ 106 evtchn_port_t *ioreq_local_port; 107 /* evtchn remote and local ports for buffered io */ 108 evtchn_port_t bufioreq_remote_port; 109 evtchn_port_t bufioreq_local_port; 110 /* the evtchn fd for polling */ 111 xenevtchn_handle *xce_handle; 112 /* which vcpu we are serving */ 113 int send_vcpu; 114 115 struct xs_handle *xenstore; 116 MemoryListener memory_listener; 117 MemoryListener io_listener; 118 QLIST_HEAD(, XenPciDevice) dev_list; 119 DeviceListener device_listener; 120 hwaddr free_phys_offset; 121 const XenPhysmap *log_for_dirtybit; 122 /* Buffer used by xen_sync_dirty_bitmap */ 123 unsigned long *dirty_bitmap; 124 125 Notifier exit; 126 Notifier suspend; 127 Notifier wakeup; 128 } XenIOState; 129 130 /* Xen specific function for piix pci */ 131 132 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) 133 { 134 return irq_num + ((pci_dev->devfn >> 3) << 2); 135 } 136 137 void xen_piix3_set_irq(void *opaque, int irq_num, int level) 138 { 139 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2, 140 irq_num & 3, level); 141 } 142 143 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) 144 { 145 int i; 146 147 /* Scan for updates to PCI link routes (0x60-0x63). */ 148 for (i = 0; i < len; i++) { 149 uint8_t v = (val >> (8 * i)) & 0xff; 150 if (v & 0x80) { 151 v = 0; 152 } 153 v &= 0xf; 154 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { 155 xen_set_pci_link_route(xen_domid, address + i - 0x60, v); 156 } 157 } 158 } 159 160 int xen_is_pirq_msi(uint32_t msi_data) 161 { 162 /* If vector is 0, the msi is remapped into a pirq, passed as 163 * dest_id. 164 */ 165 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0; 166 } 167 168 void xen_hvm_inject_msi(uint64_t addr, uint32_t data) 169 { 170 xen_inject_msi(xen_domid, addr, data); 171 } 172 173 static void xen_suspend_notifier(Notifier *notifier, void *data) 174 { 175 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); 176 } 177 178 /* Xen Interrupt Controller */ 179 180 static void xen_set_irq(void *opaque, int irq, int level) 181 { 182 xen_set_isa_irq_level(xen_domid, irq, level); 183 } 184 185 qemu_irq *xen_interrupt_controller_init(void) 186 { 187 return qemu_allocate_irqs(xen_set_irq, NULL, 16); 188 } 189 190 /* Memory Ops */ 191 192 static void xen_ram_init(PCMachineState *pcms, 193 ram_addr_t ram_size, MemoryRegion **ram_memory_p) 194 { 195 MemoryRegion *sysmem = get_system_memory(); 196 ram_addr_t block_len; 197 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(), 198 PC_MACHINE_MAX_RAM_BELOW_4G, 199 &error_abort); 200 201 /* Handle the machine opt max-ram-below-4g. It is basically doing 202 * min(xen limit, user limit). 203 */ 204 if (!user_lowmem) { 205 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */ 206 } 207 if (HVM_BELOW_4G_RAM_END <= user_lowmem) { 208 user_lowmem = HVM_BELOW_4G_RAM_END; 209 } 210 211 if (ram_size >= user_lowmem) { 212 pcms->above_4g_mem_size = ram_size - user_lowmem; 213 pcms->below_4g_mem_size = user_lowmem; 214 } else { 215 pcms->above_4g_mem_size = 0; 216 pcms->below_4g_mem_size = ram_size; 217 } 218 if (!pcms->above_4g_mem_size) { 219 block_len = ram_size; 220 } else { 221 /* 222 * Xen does not allocate the memory continuously, it keeps a 223 * hole of the size computed above or passed in. 224 */ 225 block_len = (1ULL << 32) + pcms->above_4g_mem_size; 226 } 227 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, 228 &error_fatal); 229 *ram_memory_p = &ram_memory; 230 231 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", 232 &ram_memory, 0, 0xa0000); 233 memory_region_add_subregion(sysmem, 0, &ram_640k); 234 /* Skip of the VGA IO memory space, it will be registered later by the VGA 235 * emulated device. 236 * 237 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load 238 * the Options ROM, so it is registered here as RAM. 239 */ 240 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", 241 &ram_memory, 0xc0000, 242 pcms->below_4g_mem_size - 0xc0000); 243 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); 244 if (pcms->above_4g_mem_size > 0) { 245 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", 246 &ram_memory, 0x100000000ULL, 247 pcms->above_4g_mem_size); 248 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); 249 } 250 } 251 252 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, 253 Error **errp) 254 { 255 unsigned long nr_pfn; 256 xen_pfn_t *pfn_list; 257 int i; 258 259 if (runstate_check(RUN_STATE_INMIGRATE)) { 260 /* RAM already populated in Xen */ 261 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT 262 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", 263 __func__, size, ram_addr); 264 return; 265 } 266 267 if (mr == &ram_memory) { 268 return; 269 } 270 271 trace_xen_ram_alloc(ram_addr, size); 272 273 nr_pfn = size >> TARGET_PAGE_BITS; 274 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); 275 276 for (i = 0; i < nr_pfn; i++) { 277 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; 278 } 279 280 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { 281 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, 282 ram_addr); 283 } 284 285 g_free(pfn_list); 286 } 287 288 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size) 289 { 290 XenPhysmap *physmap = NULL; 291 292 start_addr &= TARGET_PAGE_MASK; 293 294 QLIST_FOREACH(physmap, &xen_physmap, list) { 295 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { 296 return physmap; 297 } 298 } 299 return NULL; 300 } 301 302 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size) 303 { 304 hwaddr addr = phys_offset & TARGET_PAGE_MASK; 305 XenPhysmap *physmap = NULL; 306 307 QLIST_FOREACH(physmap, &xen_physmap, list) { 308 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { 309 return physmap->start_addr + (phys_offset - physmap->phys_offset); 310 } 311 } 312 313 return phys_offset; 314 } 315 316 #ifdef XEN_COMPAT_PHYSMAP 317 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 318 { 319 char path[80], value[17]; 320 321 snprintf(path, sizeof(path), 322 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", 323 xen_domid, (uint64_t)physmap->phys_offset); 324 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr); 325 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 326 return -1; 327 } 328 snprintf(path, sizeof(path), 329 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", 330 xen_domid, (uint64_t)physmap->phys_offset); 331 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size); 332 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 333 return -1; 334 } 335 if (physmap->name) { 336 snprintf(path, sizeof(path), 337 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", 338 xen_domid, (uint64_t)physmap->phys_offset); 339 if (!xs_write(state->xenstore, 0, path, 340 physmap->name, strlen(physmap->name))) { 341 return -1; 342 } 343 } 344 return 0; 345 } 346 #else 347 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 348 { 349 return 0; 350 } 351 #endif 352 353 static int xen_add_to_physmap(XenIOState *state, 354 hwaddr start_addr, 355 ram_addr_t size, 356 MemoryRegion *mr, 357 hwaddr offset_within_region) 358 { 359 unsigned long nr_pages; 360 int rc = 0; 361 XenPhysmap *physmap = NULL; 362 hwaddr pfn, start_gpfn; 363 hwaddr phys_offset = memory_region_get_ram_addr(mr); 364 const char *mr_name; 365 366 if (get_physmapping(start_addr, size)) { 367 return 0; 368 } 369 if (size <= 0) { 370 return -1; 371 } 372 373 /* Xen can only handle a single dirty log region for now and we want 374 * the linear framebuffer to be that region. 375 * Avoid tracking any regions that is not videoram and avoid tracking 376 * the legacy vga region. */ 377 if (mr == framebuffer && start_addr > 0xbffff) { 378 goto go_physmap; 379 } 380 return -1; 381 382 go_physmap: 383 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", 384 start_addr, start_addr + size); 385 386 mr_name = memory_region_name(mr); 387 388 physmap = g_malloc(sizeof(XenPhysmap)); 389 390 physmap->start_addr = start_addr; 391 physmap->size = size; 392 physmap->name = mr_name; 393 physmap->phys_offset = phys_offset; 394 395 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 396 397 if (runstate_check(RUN_STATE_INMIGRATE)) { 398 /* Now when we have a physmap entry we can replace a dummy mapping with 399 * a real one of guest foreign memory. */ 400 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size); 401 assert(p && p == memory_region_get_ram_ptr(mr)); 402 403 return 0; 404 } 405 406 pfn = phys_offset >> TARGET_PAGE_BITS; 407 start_gpfn = start_addr >> TARGET_PAGE_BITS; 408 nr_pages = size >> TARGET_PAGE_BITS; 409 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn, 410 start_gpfn); 411 if (rc) { 412 int saved_errno = errno; 413 414 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx 415 " to GFN %"HWADDR_PRIx" failed: %s", 416 nr_pages, pfn, start_gpfn, strerror(saved_errno)); 417 errno = saved_errno; 418 return -1; 419 } 420 421 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid, 422 start_addr >> TARGET_PAGE_BITS, 423 (start_addr + size - 1) >> TARGET_PAGE_BITS, 424 XEN_DOMCTL_MEM_CACHEATTR_WB); 425 if (rc) { 426 error_report("pin_memory_cacheattr failed: %s", strerror(errno)); 427 } 428 return xen_save_physmap(state, physmap); 429 } 430 431 static int xen_remove_from_physmap(XenIOState *state, 432 hwaddr start_addr, 433 ram_addr_t size) 434 { 435 int rc = 0; 436 XenPhysmap *physmap = NULL; 437 hwaddr phys_offset = 0; 438 439 physmap = get_physmapping(start_addr, size); 440 if (physmap == NULL) { 441 return -1; 442 } 443 444 phys_offset = physmap->phys_offset; 445 size = physmap->size; 446 447 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " 448 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); 449 450 size >>= TARGET_PAGE_BITS; 451 start_addr >>= TARGET_PAGE_BITS; 452 phys_offset >>= TARGET_PAGE_BITS; 453 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr, 454 phys_offset); 455 if (rc) { 456 int saved_errno = errno; 457 458 error_report("relocate_memory "RAM_ADDR_FMT" pages" 459 " from GFN %"HWADDR_PRIx 460 " to GFN %"HWADDR_PRIx" failed: %s", 461 size, start_addr, phys_offset, strerror(saved_errno)); 462 errno = saved_errno; 463 return -1; 464 } 465 466 QLIST_REMOVE(physmap, list); 467 if (state->log_for_dirtybit == physmap) { 468 state->log_for_dirtybit = NULL; 469 g_free(state->dirty_bitmap); 470 state->dirty_bitmap = NULL; 471 } 472 g_free(physmap); 473 474 return 0; 475 } 476 477 static void xen_set_memory(struct MemoryListener *listener, 478 MemoryRegionSection *section, 479 bool add) 480 { 481 XenIOState *state = container_of(listener, XenIOState, memory_listener); 482 hwaddr start_addr = section->offset_within_address_space; 483 ram_addr_t size = int128_get64(section->size); 484 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); 485 hvmmem_type_t mem_type; 486 487 if (section->mr == &ram_memory) { 488 return; 489 } else { 490 if (add) { 491 xen_map_memory_section(xen_domid, state->ioservid, 492 section); 493 } else { 494 xen_unmap_memory_section(xen_domid, state->ioservid, 495 section); 496 } 497 } 498 499 if (!memory_region_is_ram(section->mr)) { 500 return; 501 } 502 503 if (log_dirty != add) { 504 return; 505 } 506 507 trace_xen_client_set_memory(start_addr, size, log_dirty); 508 509 start_addr &= TARGET_PAGE_MASK; 510 size = TARGET_PAGE_ALIGN(size); 511 512 if (add) { 513 if (!memory_region_is_rom(section->mr)) { 514 xen_add_to_physmap(state, start_addr, size, 515 section->mr, section->offset_within_region); 516 } else { 517 mem_type = HVMMEM_ram_ro; 518 if (xen_set_mem_type(xen_domid, mem_type, 519 start_addr >> TARGET_PAGE_BITS, 520 size >> TARGET_PAGE_BITS)) { 521 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n", 522 start_addr); 523 } 524 } 525 } else { 526 if (xen_remove_from_physmap(state, start_addr, size) < 0) { 527 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); 528 } 529 } 530 } 531 532 static void xen_region_add(MemoryListener *listener, 533 MemoryRegionSection *section) 534 { 535 memory_region_ref(section->mr); 536 xen_set_memory(listener, section, true); 537 } 538 539 static void xen_region_del(MemoryListener *listener, 540 MemoryRegionSection *section) 541 { 542 xen_set_memory(listener, section, false); 543 memory_region_unref(section->mr); 544 } 545 546 static void xen_io_add(MemoryListener *listener, 547 MemoryRegionSection *section) 548 { 549 XenIOState *state = container_of(listener, XenIOState, io_listener); 550 MemoryRegion *mr = section->mr; 551 552 if (mr->ops == &unassigned_io_ops) { 553 return; 554 } 555 556 memory_region_ref(mr); 557 558 xen_map_io_section(xen_domid, state->ioservid, section); 559 } 560 561 static void xen_io_del(MemoryListener *listener, 562 MemoryRegionSection *section) 563 { 564 XenIOState *state = container_of(listener, XenIOState, io_listener); 565 MemoryRegion *mr = section->mr; 566 567 if (mr->ops == &unassigned_io_ops) { 568 return; 569 } 570 571 xen_unmap_io_section(xen_domid, state->ioservid, section); 572 573 memory_region_unref(mr); 574 } 575 576 static void xen_device_realize(DeviceListener *listener, 577 DeviceState *dev) 578 { 579 XenIOState *state = container_of(listener, XenIOState, device_listener); 580 581 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 582 PCIDevice *pci_dev = PCI_DEVICE(dev); 583 XenPciDevice *xendev = g_new(XenPciDevice, 1); 584 585 xendev->pci_dev = pci_dev; 586 xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev), 587 pci_dev->devfn); 588 QLIST_INSERT_HEAD(&state->dev_list, xendev, entry); 589 590 xen_map_pcidev(xen_domid, state->ioservid, pci_dev); 591 } 592 } 593 594 static void xen_device_unrealize(DeviceListener *listener, 595 DeviceState *dev) 596 { 597 XenIOState *state = container_of(listener, XenIOState, device_listener); 598 599 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 600 PCIDevice *pci_dev = PCI_DEVICE(dev); 601 XenPciDevice *xendev, *next; 602 603 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev); 604 605 QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) { 606 if (xendev->pci_dev == pci_dev) { 607 QLIST_REMOVE(xendev, entry); 608 g_free(xendev); 609 break; 610 } 611 } 612 } 613 } 614 615 static void xen_sync_dirty_bitmap(XenIOState *state, 616 hwaddr start_addr, 617 ram_addr_t size) 618 { 619 hwaddr npages = size >> TARGET_PAGE_BITS; 620 const int width = sizeof(unsigned long) * 8; 621 size_t bitmap_size = DIV_ROUND_UP(npages, width); 622 int rc, i, j; 623 const XenPhysmap *physmap = NULL; 624 625 physmap = get_physmapping(start_addr, size); 626 if (physmap == NULL) { 627 /* not handled */ 628 return; 629 } 630 631 if (state->log_for_dirtybit == NULL) { 632 state->log_for_dirtybit = physmap; 633 state->dirty_bitmap = g_new(unsigned long, bitmap_size); 634 } else if (state->log_for_dirtybit != physmap) { 635 /* Only one range for dirty bitmap can be tracked. */ 636 return; 637 } 638 639 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS, 640 npages, state->dirty_bitmap); 641 if (rc < 0) { 642 #ifndef ENODATA 643 #define ENODATA ENOENT 644 #endif 645 if (errno == ENODATA) { 646 memory_region_set_dirty(framebuffer, 0, size); 647 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx 648 ", 0x" TARGET_FMT_plx "): %s\n", 649 start_addr, start_addr + size, strerror(errno)); 650 } 651 return; 652 } 653 654 for (i = 0; i < bitmap_size; i++) { 655 unsigned long map = state->dirty_bitmap[i]; 656 while (map != 0) { 657 j = ctzl(map); 658 map &= ~(1ul << j); 659 memory_region_set_dirty(framebuffer, 660 (i * width + j) * TARGET_PAGE_SIZE, 661 TARGET_PAGE_SIZE); 662 }; 663 } 664 } 665 666 static void xen_log_start(MemoryListener *listener, 667 MemoryRegionSection *section, 668 int old, int new) 669 { 670 XenIOState *state = container_of(listener, XenIOState, memory_listener); 671 672 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { 673 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 674 int128_get64(section->size)); 675 } 676 } 677 678 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, 679 int old, int new) 680 { 681 XenIOState *state = container_of(listener, XenIOState, memory_listener); 682 683 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { 684 state->log_for_dirtybit = NULL; 685 g_free(state->dirty_bitmap); 686 state->dirty_bitmap = NULL; 687 /* Disable dirty bit tracking */ 688 xen_track_dirty_vram(xen_domid, 0, 0, NULL); 689 } 690 } 691 692 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) 693 { 694 XenIOState *state = container_of(listener, XenIOState, memory_listener); 695 696 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 697 int128_get64(section->size)); 698 } 699 700 static void xen_log_global_start(MemoryListener *listener) 701 { 702 if (xen_enabled()) { 703 xen_in_migration = true; 704 } 705 } 706 707 static void xen_log_global_stop(MemoryListener *listener) 708 { 709 xen_in_migration = false; 710 } 711 712 static MemoryListener xen_memory_listener = { 713 .region_add = xen_region_add, 714 .region_del = xen_region_del, 715 .log_start = xen_log_start, 716 .log_stop = xen_log_stop, 717 .log_sync = xen_log_sync, 718 .log_global_start = xen_log_global_start, 719 .log_global_stop = xen_log_global_stop, 720 .priority = 10, 721 }; 722 723 static MemoryListener xen_io_listener = { 724 .region_add = xen_io_add, 725 .region_del = xen_io_del, 726 .priority = 10, 727 }; 728 729 static DeviceListener xen_device_listener = { 730 .realize = xen_device_realize, 731 .unrealize = xen_device_unrealize, 732 }; 733 734 /* get the ioreq packets from share mem */ 735 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) 736 { 737 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); 738 739 if (req->state != STATE_IOREQ_READY) { 740 DPRINTF("I/O request not ready: " 741 "%x, ptr: %x, port: %"PRIx64", " 742 "data: %"PRIx64", count: %u, size: %u\n", 743 req->state, req->data_is_ptr, req->addr, 744 req->data, req->count, req->size); 745 return NULL; 746 } 747 748 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ 749 750 req->state = STATE_IOREQ_INPROCESS; 751 return req; 752 } 753 754 /* use poll to get the port notification */ 755 /* ioreq_vec--out,the */ 756 /* retval--the number of ioreq packet */ 757 static ioreq_t *cpu_get_ioreq(XenIOState *state) 758 { 759 int i; 760 evtchn_port_t port; 761 762 port = xenevtchn_pending(state->xce_handle); 763 if (port == state->bufioreq_local_port) { 764 timer_mod(state->buffered_io_timer, 765 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 766 return NULL; 767 } 768 769 if (port != -1) { 770 for (i = 0; i < max_cpus; i++) { 771 if (state->ioreq_local_port[i] == port) { 772 break; 773 } 774 } 775 776 if (i == max_cpus) { 777 hw_error("Fatal error while trying to get io event!\n"); 778 } 779 780 /* unmask the wanted port again */ 781 xenevtchn_unmask(state->xce_handle, port); 782 783 /* get the io packet from shared memory */ 784 state->send_vcpu = i; 785 return cpu_get_ioreq_from_shared_memory(state, i); 786 } 787 788 /* read error or read nothing */ 789 return NULL; 790 } 791 792 static uint32_t do_inp(uint32_t addr, unsigned long size) 793 { 794 switch (size) { 795 case 1: 796 return cpu_inb(addr); 797 case 2: 798 return cpu_inw(addr); 799 case 4: 800 return cpu_inl(addr); 801 default: 802 hw_error("inp: bad size: %04x %lx", addr, size); 803 } 804 } 805 806 static void do_outp(uint32_t addr, 807 unsigned long size, uint32_t val) 808 { 809 switch (size) { 810 case 1: 811 return cpu_outb(addr, val); 812 case 2: 813 return cpu_outw(addr, val); 814 case 4: 815 return cpu_outl(addr, val); 816 default: 817 hw_error("outp: bad size: %04x %lx", addr, size); 818 } 819 } 820 821 /* 822 * Helper functions which read/write an object from/to physical guest 823 * memory, as part of the implementation of an ioreq. 824 * 825 * Equivalent to 826 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, 827 * val, req->size, 0/1) 828 * except without the integer overflow problems. 829 */ 830 static void rw_phys_req_item(hwaddr addr, 831 ioreq_t *req, uint32_t i, void *val, int rw) 832 { 833 /* Do everything unsigned so overflow just results in a truncated result 834 * and accesses to undesired parts of guest memory, which is up 835 * to the guest */ 836 hwaddr offset = (hwaddr)req->size * i; 837 if (req->df) { 838 addr -= offset; 839 } else { 840 addr += offset; 841 } 842 cpu_physical_memory_rw(addr, val, req->size, rw); 843 } 844 845 static inline void read_phys_req_item(hwaddr addr, 846 ioreq_t *req, uint32_t i, void *val) 847 { 848 rw_phys_req_item(addr, req, i, val, 0); 849 } 850 static inline void write_phys_req_item(hwaddr addr, 851 ioreq_t *req, uint32_t i, void *val) 852 { 853 rw_phys_req_item(addr, req, i, val, 1); 854 } 855 856 857 static void cpu_ioreq_pio(ioreq_t *req) 858 { 859 uint32_t i; 860 861 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, 862 req->data, req->count, req->size); 863 864 if (req->size > sizeof(uint32_t)) { 865 hw_error("PIO: bad size (%u)", req->size); 866 } 867 868 if (req->dir == IOREQ_READ) { 869 if (!req->data_is_ptr) { 870 req->data = do_inp(req->addr, req->size); 871 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, 872 req->size); 873 } else { 874 uint32_t tmp; 875 876 for (i = 0; i < req->count; i++) { 877 tmp = do_inp(req->addr, req->size); 878 write_phys_req_item(req->data, req, i, &tmp); 879 } 880 } 881 } else if (req->dir == IOREQ_WRITE) { 882 if (!req->data_is_ptr) { 883 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, 884 req->size); 885 do_outp(req->addr, req->size, req->data); 886 } else { 887 for (i = 0; i < req->count; i++) { 888 uint32_t tmp = 0; 889 890 read_phys_req_item(req->data, req, i, &tmp); 891 do_outp(req->addr, req->size, tmp); 892 } 893 } 894 } 895 } 896 897 static void cpu_ioreq_move(ioreq_t *req) 898 { 899 uint32_t i; 900 901 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, 902 req->data, req->count, req->size); 903 904 if (req->size > sizeof(req->data)) { 905 hw_error("MMIO: bad size (%u)", req->size); 906 } 907 908 if (!req->data_is_ptr) { 909 if (req->dir == IOREQ_READ) { 910 for (i = 0; i < req->count; i++) { 911 read_phys_req_item(req->addr, req, i, &req->data); 912 } 913 } else if (req->dir == IOREQ_WRITE) { 914 for (i = 0; i < req->count; i++) { 915 write_phys_req_item(req->addr, req, i, &req->data); 916 } 917 } 918 } else { 919 uint64_t tmp; 920 921 if (req->dir == IOREQ_READ) { 922 for (i = 0; i < req->count; i++) { 923 read_phys_req_item(req->addr, req, i, &tmp); 924 write_phys_req_item(req->data, req, i, &tmp); 925 } 926 } else if (req->dir == IOREQ_WRITE) { 927 for (i = 0; i < req->count; i++) { 928 read_phys_req_item(req->data, req, i, &tmp); 929 write_phys_req_item(req->addr, req, i, &tmp); 930 } 931 } 932 } 933 } 934 935 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req) 936 { 937 uint32_t sbdf = req->addr >> 32; 938 uint32_t reg = req->addr; 939 XenPciDevice *xendev; 940 941 if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) && 942 req->size != sizeof(uint32_t)) { 943 hw_error("PCI config access: bad size (%u)", req->size); 944 } 945 946 if (req->count != 1) { 947 hw_error("PCI config access: bad count (%u)", req->count); 948 } 949 950 QLIST_FOREACH(xendev, &state->dev_list, entry) { 951 if (xendev->sbdf != sbdf) { 952 continue; 953 } 954 955 if (!req->data_is_ptr) { 956 if (req->dir == IOREQ_READ) { 957 req->data = pci_host_config_read_common( 958 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 959 req->size); 960 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 961 req->size, req->data); 962 } else if (req->dir == IOREQ_WRITE) { 963 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 964 req->size, req->data); 965 pci_host_config_write_common( 966 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 967 req->data, req->size); 968 } 969 } else { 970 uint32_t tmp; 971 972 if (req->dir == IOREQ_READ) { 973 tmp = pci_host_config_read_common( 974 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 975 req->size); 976 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 977 req->size, tmp); 978 write_phys_req_item(req->data, req, 0, &tmp); 979 } else if (req->dir == IOREQ_WRITE) { 980 read_phys_req_item(req->data, req, 0, &tmp); 981 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 982 req->size, tmp); 983 pci_host_config_write_common( 984 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 985 tmp, req->size); 986 } 987 } 988 } 989 } 990 991 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) 992 { 993 X86CPU *cpu; 994 CPUX86State *env; 995 996 cpu = X86_CPU(current_cpu); 997 env = &cpu->env; 998 env->regs[R_EAX] = req->data; 999 env->regs[R_EBX] = vmport_regs->ebx; 1000 env->regs[R_ECX] = vmport_regs->ecx; 1001 env->regs[R_EDX] = vmport_regs->edx; 1002 env->regs[R_ESI] = vmport_regs->esi; 1003 env->regs[R_EDI] = vmport_regs->edi; 1004 } 1005 1006 static void regs_from_cpu(vmware_regs_t *vmport_regs) 1007 { 1008 X86CPU *cpu = X86_CPU(current_cpu); 1009 CPUX86State *env = &cpu->env; 1010 1011 vmport_regs->ebx = env->regs[R_EBX]; 1012 vmport_regs->ecx = env->regs[R_ECX]; 1013 vmport_regs->edx = env->regs[R_EDX]; 1014 vmport_regs->esi = env->regs[R_ESI]; 1015 vmport_regs->edi = env->regs[R_EDI]; 1016 } 1017 1018 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) 1019 { 1020 vmware_regs_t *vmport_regs; 1021 1022 assert(state->shared_vmport_page); 1023 vmport_regs = 1024 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; 1025 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); 1026 1027 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; 1028 regs_to_cpu(vmport_regs, req); 1029 cpu_ioreq_pio(req); 1030 regs_from_cpu(vmport_regs); 1031 current_cpu = NULL; 1032 } 1033 1034 static void handle_ioreq(XenIOState *state, ioreq_t *req) 1035 { 1036 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, 1037 req->addr, req->data, req->count, req->size); 1038 1039 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && 1040 (req->size < sizeof (target_ulong))) { 1041 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; 1042 } 1043 1044 if (req->dir == IOREQ_WRITE) 1045 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, 1046 req->addr, req->data, req->count, req->size); 1047 1048 switch (req->type) { 1049 case IOREQ_TYPE_PIO: 1050 cpu_ioreq_pio(req); 1051 break; 1052 case IOREQ_TYPE_COPY: 1053 cpu_ioreq_move(req); 1054 break; 1055 case IOREQ_TYPE_VMWARE_PORT: 1056 handle_vmport_ioreq(state, req); 1057 break; 1058 case IOREQ_TYPE_TIMEOFFSET: 1059 break; 1060 case IOREQ_TYPE_INVALIDATE: 1061 xen_invalidate_map_cache(); 1062 break; 1063 case IOREQ_TYPE_PCI_CONFIG: 1064 cpu_ioreq_config(state, req); 1065 break; 1066 default: 1067 hw_error("Invalid ioreq type 0x%x\n", req->type); 1068 } 1069 if (req->dir == IOREQ_READ) { 1070 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, 1071 req->addr, req->data, req->count, req->size); 1072 } 1073 } 1074 1075 static int handle_buffered_iopage(XenIOState *state) 1076 { 1077 buffered_iopage_t *buf_page = state->buffered_io_page; 1078 buf_ioreq_t *buf_req = NULL; 1079 ioreq_t req; 1080 int qw; 1081 1082 if (!buf_page) { 1083 return 0; 1084 } 1085 1086 memset(&req, 0x00, sizeof(req)); 1087 req.state = STATE_IOREQ_READY; 1088 req.count = 1; 1089 req.dir = IOREQ_WRITE; 1090 1091 for (;;) { 1092 uint32_t rdptr = buf_page->read_pointer, wrptr; 1093 1094 xen_rmb(); 1095 wrptr = buf_page->write_pointer; 1096 xen_rmb(); 1097 if (rdptr != buf_page->read_pointer) { 1098 continue; 1099 } 1100 if (rdptr == wrptr) { 1101 break; 1102 } 1103 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; 1104 req.size = 1U << buf_req->size; 1105 req.addr = buf_req->addr; 1106 req.data = buf_req->data; 1107 req.type = buf_req->type; 1108 xen_rmb(); 1109 qw = (req.size == 8); 1110 if (qw) { 1111 if (rdptr + 1 == wrptr) { 1112 hw_error("Incomplete quad word buffered ioreq"); 1113 } 1114 buf_req = &buf_page->buf_ioreq[(rdptr + 1) % 1115 IOREQ_BUFFER_SLOT_NUM]; 1116 req.data |= ((uint64_t)buf_req->data) << 32; 1117 xen_rmb(); 1118 } 1119 1120 handle_ioreq(state, &req); 1121 1122 /* Only req.data may get updated by handle_ioreq(), albeit even that 1123 * should not happen as such data would never make it to the guest (we 1124 * can only usefully see writes here after all). 1125 */ 1126 assert(req.state == STATE_IOREQ_READY); 1127 assert(req.count == 1); 1128 assert(req.dir == IOREQ_WRITE); 1129 assert(!req.data_is_ptr); 1130 1131 atomic_add(&buf_page->read_pointer, qw + 1); 1132 } 1133 1134 return req.count; 1135 } 1136 1137 static void handle_buffered_io(void *opaque) 1138 { 1139 XenIOState *state = opaque; 1140 1141 if (handle_buffered_iopage(state)) { 1142 timer_mod(state->buffered_io_timer, 1143 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 1144 } else { 1145 timer_del(state->buffered_io_timer); 1146 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port); 1147 } 1148 } 1149 1150 static void cpu_handle_ioreq(void *opaque) 1151 { 1152 XenIOState *state = opaque; 1153 ioreq_t *req = cpu_get_ioreq(state); 1154 1155 handle_buffered_iopage(state); 1156 if (req) { 1157 ioreq_t copy = *req; 1158 1159 xen_rmb(); 1160 handle_ioreq(state, ©); 1161 req->data = copy.data; 1162 1163 if (req->state != STATE_IOREQ_INPROCESS) { 1164 fprintf(stderr, "Badness in I/O request ... not in service?!: " 1165 "%x, ptr: %x, port: %"PRIx64", " 1166 "data: %"PRIx64", count: %u, size: %u, type: %u\n", 1167 req->state, req->data_is_ptr, req->addr, 1168 req->data, req->count, req->size, req->type); 1169 destroy_hvm_domain(false); 1170 return; 1171 } 1172 1173 xen_wmb(); /* Update ioreq contents /then/ update state. */ 1174 1175 /* 1176 * We do this before we send the response so that the tools 1177 * have the opportunity to pick up on the reset before the 1178 * guest resumes and does a hlt with interrupts disabled which 1179 * causes Xen to powerdown the domain. 1180 */ 1181 if (runstate_is_running()) { 1182 ShutdownCause request; 1183 1184 if (qemu_shutdown_requested_get()) { 1185 destroy_hvm_domain(false); 1186 } 1187 request = qemu_reset_requested_get(); 1188 if (request) { 1189 qemu_system_reset(request); 1190 destroy_hvm_domain(true); 1191 } 1192 } 1193 1194 req->state = STATE_IORESP_READY; 1195 xenevtchn_notify(state->xce_handle, 1196 state->ioreq_local_port[state->send_vcpu]); 1197 } 1198 } 1199 1200 static void xen_main_loop_prepare(XenIOState *state) 1201 { 1202 int evtchn_fd = -1; 1203 1204 if (state->xce_handle != NULL) { 1205 evtchn_fd = xenevtchn_fd(state->xce_handle); 1206 } 1207 1208 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, 1209 state); 1210 1211 if (evtchn_fd != -1) { 1212 CPUState *cpu_state; 1213 1214 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); 1215 CPU_FOREACH(cpu_state) { 1216 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", 1217 __func__, cpu_state->cpu_index, cpu_state); 1218 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; 1219 } 1220 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); 1221 } 1222 } 1223 1224 1225 static void xen_hvm_change_state_handler(void *opaque, int running, 1226 RunState rstate) 1227 { 1228 XenIOState *state = opaque; 1229 1230 if (running) { 1231 xen_main_loop_prepare(state); 1232 } 1233 1234 xen_set_ioreq_server_state(xen_domid, 1235 state->ioservid, 1236 (rstate == RUN_STATE_RUNNING)); 1237 } 1238 1239 static void xen_exit_notifier(Notifier *n, void *data) 1240 { 1241 XenIOState *state = container_of(n, XenIOState, exit); 1242 1243 xenevtchn_close(state->xce_handle); 1244 xs_daemon_close(state->xenstore); 1245 } 1246 1247 #ifdef XEN_COMPAT_PHYSMAP 1248 static void xen_read_physmap(XenIOState *state) 1249 { 1250 XenPhysmap *physmap = NULL; 1251 unsigned int len, num, i; 1252 char path[80], *value = NULL; 1253 char **entries = NULL; 1254 1255 snprintf(path, sizeof(path), 1256 "/local/domain/0/device-model/%d/physmap", xen_domid); 1257 entries = xs_directory(state->xenstore, 0, path, &num); 1258 if (entries == NULL) 1259 return; 1260 1261 for (i = 0; i < num; i++) { 1262 physmap = g_malloc(sizeof (XenPhysmap)); 1263 physmap->phys_offset = strtoull(entries[i], NULL, 16); 1264 snprintf(path, sizeof(path), 1265 "/local/domain/0/device-model/%d/physmap/%s/start_addr", 1266 xen_domid, entries[i]); 1267 value = xs_read(state->xenstore, 0, path, &len); 1268 if (value == NULL) { 1269 g_free(physmap); 1270 continue; 1271 } 1272 physmap->start_addr = strtoull(value, NULL, 16); 1273 free(value); 1274 1275 snprintf(path, sizeof(path), 1276 "/local/domain/0/device-model/%d/physmap/%s/size", 1277 xen_domid, entries[i]); 1278 value = xs_read(state->xenstore, 0, path, &len); 1279 if (value == NULL) { 1280 g_free(physmap); 1281 continue; 1282 } 1283 physmap->size = strtoull(value, NULL, 16); 1284 free(value); 1285 1286 snprintf(path, sizeof(path), 1287 "/local/domain/0/device-model/%d/physmap/%s/name", 1288 xen_domid, entries[i]); 1289 physmap->name = xs_read(state->xenstore, 0, path, &len); 1290 1291 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 1292 } 1293 free(entries); 1294 } 1295 #else 1296 static void xen_read_physmap(XenIOState *state) 1297 { 1298 } 1299 #endif 1300 1301 static void xen_wakeup_notifier(Notifier *notifier, void *data) 1302 { 1303 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); 1304 } 1305 1306 static int xen_map_ioreq_server(XenIOState *state) 1307 { 1308 void *addr = NULL; 1309 xenforeignmemory_resource_handle *fres; 1310 xen_pfn_t ioreq_pfn; 1311 xen_pfn_t bufioreq_pfn; 1312 evtchn_port_t bufioreq_evtchn; 1313 int rc; 1314 1315 /* 1316 * Attempt to map using the resource API and fall back to normal 1317 * foreign mapping if this is not supported. 1318 */ 1319 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0); 1320 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1); 1321 fres = xenforeignmemory_map_resource(xen_fmem, xen_domid, 1322 XENMEM_resource_ioreq_server, 1323 state->ioservid, 0, 2, 1324 &addr, 1325 PROT_READ | PROT_WRITE, 0); 1326 if (fres != NULL) { 1327 trace_xen_map_resource_ioreq(state->ioservid, addr); 1328 state->buffered_io_page = addr; 1329 state->shared_page = addr + TARGET_PAGE_SIZE; 1330 } else if (errno != EOPNOTSUPP) { 1331 error_report("failed to map ioreq server resources: error %d handle=%p", 1332 errno, xen_xc); 1333 return -1; 1334 } 1335 1336 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid, 1337 (state->shared_page == NULL) ? 1338 &ioreq_pfn : NULL, 1339 (state->buffered_io_page == NULL) ? 1340 &bufioreq_pfn : NULL, 1341 &bufioreq_evtchn); 1342 if (rc < 0) { 1343 error_report("failed to get ioreq server info: error %d handle=%p", 1344 errno, xen_xc); 1345 return rc; 1346 } 1347 1348 if (state->shared_page == NULL) { 1349 DPRINTF("shared page at pfn %lx\n", ioreq_pfn); 1350 1351 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, 1352 PROT_READ | PROT_WRITE, 1353 1, &ioreq_pfn, NULL); 1354 if (state->shared_page == NULL) { 1355 error_report("map shared IO page returned error %d handle=%p", 1356 errno, xen_xc); 1357 } 1358 } 1359 1360 if (state->buffered_io_page == NULL) { 1361 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); 1362 1363 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, 1364 PROT_READ | PROT_WRITE, 1365 1, &bufioreq_pfn, 1366 NULL); 1367 if (state->buffered_io_page == NULL) { 1368 error_report("map buffered IO page returned error %d", errno); 1369 return -1; 1370 } 1371 } 1372 1373 if (state->shared_page == NULL || state->buffered_io_page == NULL) { 1374 return -1; 1375 } 1376 1377 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); 1378 1379 state->bufioreq_remote_port = bufioreq_evtchn; 1380 1381 return 0; 1382 } 1383 1384 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory) 1385 { 1386 int i, rc; 1387 xen_pfn_t ioreq_pfn; 1388 XenIOState *state; 1389 1390 state = g_malloc0(sizeof (XenIOState)); 1391 1392 state->xce_handle = xenevtchn_open(NULL, 0); 1393 if (state->xce_handle == NULL) { 1394 perror("xen: event channel open"); 1395 goto err; 1396 } 1397 1398 state->xenstore = xs_daemon_open(); 1399 if (state->xenstore == NULL) { 1400 perror("xen: xenstore open"); 1401 goto err; 1402 } 1403 1404 xen_create_ioreq_server(xen_domid, &state->ioservid); 1405 1406 state->exit.notify = xen_exit_notifier; 1407 qemu_add_exit_notifier(&state->exit); 1408 1409 state->suspend.notify = xen_suspend_notifier; 1410 qemu_register_suspend_notifier(&state->suspend); 1411 1412 state->wakeup.notify = xen_wakeup_notifier; 1413 qemu_register_wakeup_notifier(&state->wakeup); 1414 1415 /* 1416 * Register wake-up support in QMP query-current-machine API 1417 */ 1418 qemu_register_wakeup_support(); 1419 1420 rc = xen_map_ioreq_server(state); 1421 if (rc < 0) { 1422 goto err; 1423 } 1424 1425 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); 1426 if (!rc) { 1427 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); 1428 state->shared_vmport_page = 1429 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1430 1, &ioreq_pfn, NULL); 1431 if (state->shared_vmport_page == NULL) { 1432 error_report("map shared vmport IO page returned error %d handle=%p", 1433 errno, xen_xc); 1434 goto err; 1435 } 1436 } else if (rc != -ENOSYS) { 1437 error_report("get vmport regs pfn returned error %d, rc=%d", 1438 errno, rc); 1439 goto err; 1440 } 1441 1442 /* Note: cpus is empty at this point in init */ 1443 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *)); 1444 1445 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true); 1446 if (rc < 0) { 1447 error_report("failed to enable ioreq server info: error %d handle=%p", 1448 errno, xen_xc); 1449 goto err; 1450 } 1451 1452 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t)); 1453 1454 /* FIXME: how about if we overflow the page here? */ 1455 for (i = 0; i < max_cpus; i++) { 1456 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1457 xen_vcpu_eport(state->shared_page, i)); 1458 if (rc == -1) { 1459 error_report("shared evtchn %d bind error %d", i, errno); 1460 goto err; 1461 } 1462 state->ioreq_local_port[i] = rc; 1463 } 1464 1465 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1466 state->bufioreq_remote_port); 1467 if (rc == -1) { 1468 error_report("buffered evtchn bind error %d", errno); 1469 goto err; 1470 } 1471 state->bufioreq_local_port = rc; 1472 1473 /* Init RAM management */ 1474 #ifdef XEN_COMPAT_PHYSMAP 1475 xen_map_cache_init(xen_phys_offset_to_gaddr, state); 1476 #else 1477 xen_map_cache_init(NULL, state); 1478 #endif 1479 xen_ram_init(pcms, ram_size, ram_memory); 1480 1481 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); 1482 1483 state->memory_listener = xen_memory_listener; 1484 memory_listener_register(&state->memory_listener, &address_space_memory); 1485 state->log_for_dirtybit = NULL; 1486 1487 state->io_listener = xen_io_listener; 1488 memory_listener_register(&state->io_listener, &address_space_io); 1489 1490 state->device_listener = xen_device_listener; 1491 QLIST_INIT(&state->dev_list); 1492 device_listener_register(&state->device_listener); 1493 1494 xen_bus_init(); 1495 1496 /* Initialize backend core & drivers */ 1497 if (xen_be_init() != 0) { 1498 error_report("xen backend core setup failed"); 1499 goto err; 1500 } 1501 xen_be_register_common(); 1502 1503 QLIST_INIT(&xen_physmap); 1504 xen_read_physmap(state); 1505 1506 /* Disable ACPI build because Xen handles it */ 1507 pcms->acpi_build_enabled = false; 1508 1509 return; 1510 1511 err: 1512 error_report("xen hardware virtual machine initialisation failed"); 1513 exit(1); 1514 } 1515 1516 void destroy_hvm_domain(bool reboot) 1517 { 1518 xc_interface *xc_handle; 1519 int sts; 1520 int rc; 1521 1522 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff; 1523 1524 if (xen_dmod) { 1525 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason); 1526 if (!rc) { 1527 return; 1528 } 1529 if (errno != ENOTTY /* old Xen */) { 1530 perror("xendevicemodel_shutdown failed"); 1531 } 1532 /* well, try the old thing then */ 1533 } 1534 1535 xc_handle = xc_interface_open(0, 0, 0); 1536 if (xc_handle == NULL) { 1537 fprintf(stderr, "Cannot acquire xenctrl handle\n"); 1538 } else { 1539 sts = xc_domain_shutdown(xc_handle, xen_domid, reason); 1540 if (sts != 0) { 1541 fprintf(stderr, "xc_domain_shutdown failed to issue %s, " 1542 "sts %d, %s\n", reboot ? "reboot" : "poweroff", 1543 sts, strerror(errno)); 1544 } else { 1545 fprintf(stderr, "Issued domain %d %s\n", xen_domid, 1546 reboot ? "reboot" : "poweroff"); 1547 } 1548 xc_interface_close(xc_handle); 1549 } 1550 } 1551 1552 void xen_register_framebuffer(MemoryRegion *mr) 1553 { 1554 framebuffer = mr; 1555 } 1556 1557 void xen_shutdown_fatal_error(const char *fmt, ...) 1558 { 1559 va_list ap; 1560 1561 va_start(ap, fmt); 1562 vfprintf(stderr, fmt, ap); 1563 va_end(ap); 1564 fprintf(stderr, "Will destroy the domain.\n"); 1565 /* destroy the domain */ 1566 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR); 1567 } 1568 1569 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length) 1570 { 1571 if (unlikely(xen_in_migration)) { 1572 int rc; 1573 ram_addr_t start_pfn, nb_pages; 1574 1575 start = xen_phys_offset_to_gaddr(start, length); 1576 1577 if (length == 0) { 1578 length = TARGET_PAGE_SIZE; 1579 } 1580 start_pfn = start >> TARGET_PAGE_BITS; 1581 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) 1582 - start_pfn; 1583 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages); 1584 if (rc) { 1585 fprintf(stderr, 1586 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", 1587 __func__, start, nb_pages, errno, strerror(errno)); 1588 } 1589 } 1590 } 1591 1592 void qmp_xen_set_global_dirty_log(bool enable, Error **errp) 1593 { 1594 if (enable) { 1595 memory_global_dirty_log_start(); 1596 } else { 1597 memory_global_dirty_log_stop(); 1598 } 1599 } 1600