xref: /openbmc/qemu/hw/i386/xen/xen-hvm.c (revision 5b723a5d8df44b69b8ba350e643059c8fd889315)
1  /*
2   * Copyright (C) 2010       Citrix Ltd.
3   *
4   * This work is licensed under the terms of the GNU GPL, version 2.  See
5   * the COPYING file in the top-level directory.
6   *
7   * Contributions after 2012-01-13 are licensed under the terms of the
8   * GNU GPL, version 2 or (at your option) any later version.
9   */
10  
11  #include "qemu/osdep.h"
12  #include "qemu/units.h"
13  
14  #include "cpu.h"
15  #include "hw/pci/pci.h"
16  #include "hw/pci/pci_host.h"
17  #include "hw/i386/pc.h"
18  #include "hw/southbridge/piix.h"
19  #include "hw/irq.h"
20  #include "hw/hw.h"
21  #include "hw/i386/apic-msidef.h"
22  #include "hw/xen/xen_common.h"
23  #include "hw/xen/xen-legacy-backend.h"
24  #include "hw/xen/xen-bus.h"
25  #include "hw/xen/xen-x86.h"
26  #include "qapi/error.h"
27  #include "qapi/qapi-commands-migration.h"
28  #include "qemu/error-report.h"
29  #include "qemu/main-loop.h"
30  #include "qemu/range.h"
31  #include "sysemu/runstate.h"
32  #include "sysemu/sysemu.h"
33  #include "sysemu/xen.h"
34  #include "sysemu/xen-mapcache.h"
35  #include "trace.h"
36  #include "exec/address-spaces.h"
37  
38  #include <xen/hvm/ioreq.h>
39  #include <xen/hvm/e820.h>
40  
41  //#define DEBUG_XEN_HVM
42  
43  #ifdef DEBUG_XEN_HVM
44  #define DPRINTF(fmt, ...) \
45      do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
46  #else
47  #define DPRINTF(fmt, ...) \
48      do { } while (0)
49  #endif
50  
51  static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
52  static MemoryRegion *framebuffer;
53  static bool xen_in_migration;
54  
55  /* Compatibility with older version */
56  
57  /* This allows QEMU to build on a system that has Xen 4.5 or earlier
58   * installed.  This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
59   * needs to be included before this block and hw/xen/xen_common.h needs to
60   * be included before xen/hvm/ioreq.h
61   */
62  #ifndef IOREQ_TYPE_VMWARE_PORT
63  #define IOREQ_TYPE_VMWARE_PORT  3
64  struct vmware_regs {
65      uint32_t esi;
66      uint32_t edi;
67      uint32_t ebx;
68      uint32_t ecx;
69      uint32_t edx;
70  };
71  typedef struct vmware_regs vmware_regs_t;
72  
73  struct shared_vmport_iopage {
74      struct vmware_regs vcpu_vmport_regs[1];
75  };
76  typedef struct shared_vmport_iopage shared_vmport_iopage_t;
77  #endif
78  
79  static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
80  {
81      return shared_page->vcpu_ioreq[i].vp_eport;
82  }
83  static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
84  {
85      return &shared_page->vcpu_ioreq[vcpu];
86  }
87  
88  #define BUFFER_IO_MAX_DELAY  100
89  
90  typedef struct XenPhysmap {
91      hwaddr start_addr;
92      ram_addr_t size;
93      const char *name;
94      hwaddr phys_offset;
95  
96      QLIST_ENTRY(XenPhysmap) list;
97  } XenPhysmap;
98  
99  static QLIST_HEAD(, XenPhysmap) xen_physmap;
100  
101  typedef struct XenPciDevice {
102      PCIDevice *pci_dev;
103      uint32_t sbdf;
104      QLIST_ENTRY(XenPciDevice) entry;
105  } XenPciDevice;
106  
107  typedef struct XenIOState {
108      ioservid_t ioservid;
109      shared_iopage_t *shared_page;
110      shared_vmport_iopage_t *shared_vmport_page;
111      buffered_iopage_t *buffered_io_page;
112      QEMUTimer *buffered_io_timer;
113      CPUState **cpu_by_vcpu_id;
114      /* the evtchn port for polling the notification, */
115      evtchn_port_t *ioreq_local_port;
116      /* evtchn remote and local ports for buffered io */
117      evtchn_port_t bufioreq_remote_port;
118      evtchn_port_t bufioreq_local_port;
119      /* the evtchn fd for polling */
120      xenevtchn_handle *xce_handle;
121      /* which vcpu we are serving */
122      int send_vcpu;
123  
124      struct xs_handle *xenstore;
125      MemoryListener memory_listener;
126      MemoryListener io_listener;
127      QLIST_HEAD(, XenPciDevice) dev_list;
128      DeviceListener device_listener;
129      hwaddr free_phys_offset;
130      const XenPhysmap *log_for_dirtybit;
131      /* Buffer used by xen_sync_dirty_bitmap */
132      unsigned long *dirty_bitmap;
133  
134      Notifier exit;
135      Notifier suspend;
136      Notifier wakeup;
137  } XenIOState;
138  
139  /* Xen specific function for piix pci */
140  
141  int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
142  {
143      return irq_num + ((pci_dev->devfn >> 3) << 2);
144  }
145  
146  void xen_piix3_set_irq(void *opaque, int irq_num, int level)
147  {
148      xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2,
149                             irq_num & 3, level);
150  }
151  
152  void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
153  {
154      int i;
155  
156      /* Scan for updates to PCI link routes (0x60-0x63). */
157      for (i = 0; i < len; i++) {
158          uint8_t v = (val >> (8 * i)) & 0xff;
159          if (v & 0x80) {
160              v = 0;
161          }
162          v &= 0xf;
163          if (((address + i) >= PIIX_PIRQCA) && ((address + i) <= PIIX_PIRQCD)) {
164              xen_set_pci_link_route(xen_domid, address + i - PIIX_PIRQCA, v);
165          }
166      }
167  }
168  
169  int xen_is_pirq_msi(uint32_t msi_data)
170  {
171      /* If vector is 0, the msi is remapped into a pirq, passed as
172       * dest_id.
173       */
174      return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
175  }
176  
177  void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
178  {
179      xen_inject_msi(xen_domid, addr, data);
180  }
181  
182  static void xen_suspend_notifier(Notifier *notifier, void *data)
183  {
184      xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
185  }
186  
187  /* Xen Interrupt Controller */
188  
189  static void xen_set_irq(void *opaque, int irq, int level)
190  {
191      xen_set_isa_irq_level(xen_domid, irq, level);
192  }
193  
194  qemu_irq *xen_interrupt_controller_init(void)
195  {
196      return qemu_allocate_irqs(xen_set_irq, NULL, 16);
197  }
198  
199  /* Memory Ops */
200  
201  static void xen_ram_init(PCMachineState *pcms,
202                           ram_addr_t ram_size, MemoryRegion **ram_memory_p)
203  {
204      X86MachineState *x86ms = X86_MACHINE(pcms);
205      MemoryRegion *sysmem = get_system_memory();
206      ram_addr_t block_len;
207      uint64_t user_lowmem =
208          object_property_get_uint(qdev_get_machine(),
209                                   PC_MACHINE_MAX_RAM_BELOW_4G,
210                                   &error_abort);
211  
212      /* Handle the machine opt max-ram-below-4g.  It is basically doing
213       * min(xen limit, user limit).
214       */
215      if (!user_lowmem) {
216          user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
217      }
218      if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
219          user_lowmem = HVM_BELOW_4G_RAM_END;
220      }
221  
222      if (ram_size >= user_lowmem) {
223          x86ms->above_4g_mem_size = ram_size - user_lowmem;
224          x86ms->below_4g_mem_size = user_lowmem;
225      } else {
226          x86ms->above_4g_mem_size = 0;
227          x86ms->below_4g_mem_size = ram_size;
228      }
229      if (!x86ms->above_4g_mem_size) {
230          block_len = ram_size;
231      } else {
232          /*
233           * Xen does not allocate the memory continuously, it keeps a
234           * hole of the size computed above or passed in.
235           */
236          block_len = (4 * GiB) + x86ms->above_4g_mem_size;
237      }
238      memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
239                             &error_fatal);
240      *ram_memory_p = &ram_memory;
241  
242      memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
243                               &ram_memory, 0, 0xa0000);
244      memory_region_add_subregion(sysmem, 0, &ram_640k);
245      /* Skip of the VGA IO memory space, it will be registered later by the VGA
246       * emulated device.
247       *
248       * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
249       * the Options ROM, so it is registered here as RAM.
250       */
251      memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
252                               &ram_memory, 0xc0000,
253                               x86ms->below_4g_mem_size - 0xc0000);
254      memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
255      if (x86ms->above_4g_mem_size > 0) {
256          memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
257                                   &ram_memory, 0x100000000ULL,
258                                   x86ms->above_4g_mem_size);
259          memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
260      }
261  }
262  
263  void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
264                     Error **errp)
265  {
266      unsigned long nr_pfn;
267      xen_pfn_t *pfn_list;
268      int i;
269  
270      if (runstate_check(RUN_STATE_INMIGRATE)) {
271          /* RAM already populated in Xen */
272          fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
273                  " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
274                  __func__, size, ram_addr);
275          return;
276      }
277  
278      if (mr == &ram_memory) {
279          return;
280      }
281  
282      trace_xen_ram_alloc(ram_addr, size);
283  
284      nr_pfn = size >> TARGET_PAGE_BITS;
285      pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
286  
287      for (i = 0; i < nr_pfn; i++) {
288          pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
289      }
290  
291      if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
292          error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
293                     ram_addr);
294      }
295  
296      g_free(pfn_list);
297  }
298  
299  static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size)
300  {
301      XenPhysmap *physmap = NULL;
302  
303      start_addr &= TARGET_PAGE_MASK;
304  
305      QLIST_FOREACH(physmap, &xen_physmap, list) {
306          if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
307              return physmap;
308          }
309      }
310      return NULL;
311  }
312  
313  static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size)
314  {
315      hwaddr addr = phys_offset & TARGET_PAGE_MASK;
316      XenPhysmap *physmap = NULL;
317  
318      QLIST_FOREACH(physmap, &xen_physmap, list) {
319          if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
320              return physmap->start_addr + (phys_offset - physmap->phys_offset);
321          }
322      }
323  
324      return phys_offset;
325  }
326  
327  #ifdef XEN_COMPAT_PHYSMAP
328  static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
329  {
330      char path[80], value[17];
331  
332      snprintf(path, sizeof(path),
333              "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
334              xen_domid, (uint64_t)physmap->phys_offset);
335      snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr);
336      if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
337          return -1;
338      }
339      snprintf(path, sizeof(path),
340              "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
341              xen_domid, (uint64_t)physmap->phys_offset);
342      snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size);
343      if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
344          return -1;
345      }
346      if (physmap->name) {
347          snprintf(path, sizeof(path),
348                  "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
349                  xen_domid, (uint64_t)physmap->phys_offset);
350          if (!xs_write(state->xenstore, 0, path,
351                        physmap->name, strlen(physmap->name))) {
352              return -1;
353          }
354      }
355      return 0;
356  }
357  #else
358  static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
359  {
360      return 0;
361  }
362  #endif
363  
364  static int xen_add_to_physmap(XenIOState *state,
365                                hwaddr start_addr,
366                                ram_addr_t size,
367                                MemoryRegion *mr,
368                                hwaddr offset_within_region)
369  {
370      unsigned long nr_pages;
371      int rc = 0;
372      XenPhysmap *physmap = NULL;
373      hwaddr pfn, start_gpfn;
374      hwaddr phys_offset = memory_region_get_ram_addr(mr);
375      const char *mr_name;
376  
377      if (get_physmapping(start_addr, size)) {
378          return 0;
379      }
380      if (size <= 0) {
381          return -1;
382      }
383  
384      /* Xen can only handle a single dirty log region for now and we want
385       * the linear framebuffer to be that region.
386       * Avoid tracking any regions that is not videoram and avoid tracking
387       * the legacy vga region. */
388      if (mr == framebuffer && start_addr > 0xbffff) {
389          goto go_physmap;
390      }
391      return -1;
392  
393  go_physmap:
394      DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
395              start_addr, start_addr + size);
396  
397      mr_name = memory_region_name(mr);
398  
399      physmap = g_malloc(sizeof(XenPhysmap));
400  
401      physmap->start_addr = start_addr;
402      physmap->size = size;
403      physmap->name = mr_name;
404      physmap->phys_offset = phys_offset;
405  
406      QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
407  
408      if (runstate_check(RUN_STATE_INMIGRATE)) {
409          /* Now when we have a physmap entry we can replace a dummy mapping with
410           * a real one of guest foreign memory. */
411          uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size);
412          assert(p && p == memory_region_get_ram_ptr(mr));
413  
414          return 0;
415      }
416  
417      pfn = phys_offset >> TARGET_PAGE_BITS;
418      start_gpfn = start_addr >> TARGET_PAGE_BITS;
419      nr_pages = size >> TARGET_PAGE_BITS;
420      rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn,
421                                          start_gpfn);
422      if (rc) {
423          int saved_errno = errno;
424  
425          error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx
426                       " to GFN %"HWADDR_PRIx" failed: %s",
427                       nr_pages, pfn, start_gpfn, strerror(saved_errno));
428          errno = saved_errno;
429          return -1;
430      }
431  
432      rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid,
433                                     start_addr >> TARGET_PAGE_BITS,
434                                     (start_addr + size - 1) >> TARGET_PAGE_BITS,
435                                     XEN_DOMCTL_MEM_CACHEATTR_WB);
436      if (rc) {
437          error_report("pin_memory_cacheattr failed: %s", strerror(errno));
438      }
439      return xen_save_physmap(state, physmap);
440  }
441  
442  static int xen_remove_from_physmap(XenIOState *state,
443                                     hwaddr start_addr,
444                                     ram_addr_t size)
445  {
446      int rc = 0;
447      XenPhysmap *physmap = NULL;
448      hwaddr phys_offset = 0;
449  
450      physmap = get_physmapping(start_addr, size);
451      if (physmap == NULL) {
452          return -1;
453      }
454  
455      phys_offset = physmap->phys_offset;
456      size = physmap->size;
457  
458      DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
459              "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
460  
461      size >>= TARGET_PAGE_BITS;
462      start_addr >>= TARGET_PAGE_BITS;
463      phys_offset >>= TARGET_PAGE_BITS;
464      rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr,
465                                          phys_offset);
466      if (rc) {
467          int saved_errno = errno;
468  
469          error_report("relocate_memory "RAM_ADDR_FMT" pages"
470                       " from GFN %"HWADDR_PRIx
471                       " to GFN %"HWADDR_PRIx" failed: %s",
472                       size, start_addr, phys_offset, strerror(saved_errno));
473          errno = saved_errno;
474          return -1;
475      }
476  
477      QLIST_REMOVE(physmap, list);
478      if (state->log_for_dirtybit == physmap) {
479          state->log_for_dirtybit = NULL;
480          g_free(state->dirty_bitmap);
481          state->dirty_bitmap = NULL;
482      }
483      g_free(physmap);
484  
485      return 0;
486  }
487  
488  static void xen_set_memory(struct MemoryListener *listener,
489                             MemoryRegionSection *section,
490                             bool add)
491  {
492      XenIOState *state = container_of(listener, XenIOState, memory_listener);
493      hwaddr start_addr = section->offset_within_address_space;
494      ram_addr_t size = int128_get64(section->size);
495      bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
496      hvmmem_type_t mem_type;
497  
498      if (section->mr == &ram_memory) {
499          return;
500      } else {
501          if (add) {
502              xen_map_memory_section(xen_domid, state->ioservid,
503                                     section);
504          } else {
505              xen_unmap_memory_section(xen_domid, state->ioservid,
506                                       section);
507          }
508      }
509  
510      if (!memory_region_is_ram(section->mr)) {
511          return;
512      }
513  
514      if (log_dirty != add) {
515          return;
516      }
517  
518      trace_xen_client_set_memory(start_addr, size, log_dirty);
519  
520      start_addr &= TARGET_PAGE_MASK;
521      size = TARGET_PAGE_ALIGN(size);
522  
523      if (add) {
524          if (!memory_region_is_rom(section->mr)) {
525              xen_add_to_physmap(state, start_addr, size,
526                                 section->mr, section->offset_within_region);
527          } else {
528              mem_type = HVMMEM_ram_ro;
529              if (xen_set_mem_type(xen_domid, mem_type,
530                                   start_addr >> TARGET_PAGE_BITS,
531                                   size >> TARGET_PAGE_BITS)) {
532                  DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n",
533                          start_addr);
534              }
535          }
536      } else {
537          if (xen_remove_from_physmap(state, start_addr, size) < 0) {
538              DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
539          }
540      }
541  }
542  
543  static void xen_region_add(MemoryListener *listener,
544                             MemoryRegionSection *section)
545  {
546      memory_region_ref(section->mr);
547      xen_set_memory(listener, section, true);
548  }
549  
550  static void xen_region_del(MemoryListener *listener,
551                             MemoryRegionSection *section)
552  {
553      xen_set_memory(listener, section, false);
554      memory_region_unref(section->mr);
555  }
556  
557  static void xen_io_add(MemoryListener *listener,
558                         MemoryRegionSection *section)
559  {
560      XenIOState *state = container_of(listener, XenIOState, io_listener);
561      MemoryRegion *mr = section->mr;
562  
563      if (mr->ops == &unassigned_io_ops) {
564          return;
565      }
566  
567      memory_region_ref(mr);
568  
569      xen_map_io_section(xen_domid, state->ioservid, section);
570  }
571  
572  static void xen_io_del(MemoryListener *listener,
573                         MemoryRegionSection *section)
574  {
575      XenIOState *state = container_of(listener, XenIOState, io_listener);
576      MemoryRegion *mr = section->mr;
577  
578      if (mr->ops == &unassigned_io_ops) {
579          return;
580      }
581  
582      xen_unmap_io_section(xen_domid, state->ioservid, section);
583  
584      memory_region_unref(mr);
585  }
586  
587  static void xen_device_realize(DeviceListener *listener,
588                                 DeviceState *dev)
589  {
590      XenIOState *state = container_of(listener, XenIOState, device_listener);
591  
592      if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
593          PCIDevice *pci_dev = PCI_DEVICE(dev);
594          XenPciDevice *xendev = g_new(XenPciDevice, 1);
595  
596          xendev->pci_dev = pci_dev;
597          xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev),
598                                       pci_dev->devfn);
599          QLIST_INSERT_HEAD(&state->dev_list, xendev, entry);
600  
601          xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
602      }
603  }
604  
605  static void xen_device_unrealize(DeviceListener *listener,
606                                   DeviceState *dev)
607  {
608      XenIOState *state = container_of(listener, XenIOState, device_listener);
609  
610      if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
611          PCIDevice *pci_dev = PCI_DEVICE(dev);
612          XenPciDevice *xendev, *next;
613  
614          xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
615  
616          QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) {
617              if (xendev->pci_dev == pci_dev) {
618                  QLIST_REMOVE(xendev, entry);
619                  g_free(xendev);
620                  break;
621              }
622          }
623      }
624  }
625  
626  static void xen_sync_dirty_bitmap(XenIOState *state,
627                                    hwaddr start_addr,
628                                    ram_addr_t size)
629  {
630      hwaddr npages = size >> TARGET_PAGE_BITS;
631      const int width = sizeof(unsigned long) * 8;
632      size_t bitmap_size = DIV_ROUND_UP(npages, width);
633      int rc, i, j;
634      const XenPhysmap *physmap = NULL;
635  
636      physmap = get_physmapping(start_addr, size);
637      if (physmap == NULL) {
638          /* not handled */
639          return;
640      }
641  
642      if (state->log_for_dirtybit == NULL) {
643          state->log_for_dirtybit = physmap;
644          state->dirty_bitmap = g_new(unsigned long, bitmap_size);
645      } else if (state->log_for_dirtybit != physmap) {
646          /* Only one range for dirty bitmap can be tracked. */
647          return;
648      }
649  
650      rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS,
651                                npages, state->dirty_bitmap);
652      if (rc < 0) {
653  #ifndef ENODATA
654  #define ENODATA  ENOENT
655  #endif
656          if (errno == ENODATA) {
657              memory_region_set_dirty(framebuffer, 0, size);
658              DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
659                      ", 0x" TARGET_FMT_plx "): %s\n",
660                      start_addr, start_addr + size, strerror(errno));
661          }
662          return;
663      }
664  
665      for (i = 0; i < bitmap_size; i++) {
666          unsigned long map = state->dirty_bitmap[i];
667          while (map != 0) {
668              j = ctzl(map);
669              map &= ~(1ul << j);
670              memory_region_set_dirty(framebuffer,
671                                      (i * width + j) * TARGET_PAGE_SIZE,
672                                      TARGET_PAGE_SIZE);
673          };
674      }
675  }
676  
677  static void xen_log_start(MemoryListener *listener,
678                            MemoryRegionSection *section,
679                            int old, int new)
680  {
681      XenIOState *state = container_of(listener, XenIOState, memory_listener);
682  
683      if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
684          xen_sync_dirty_bitmap(state, section->offset_within_address_space,
685                                int128_get64(section->size));
686      }
687  }
688  
689  static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
690                           int old, int new)
691  {
692      XenIOState *state = container_of(listener, XenIOState, memory_listener);
693  
694      if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
695          state->log_for_dirtybit = NULL;
696          g_free(state->dirty_bitmap);
697          state->dirty_bitmap = NULL;
698          /* Disable dirty bit tracking */
699          xen_track_dirty_vram(xen_domid, 0, 0, NULL);
700      }
701  }
702  
703  static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
704  {
705      XenIOState *state = container_of(listener, XenIOState, memory_listener);
706  
707      xen_sync_dirty_bitmap(state, section->offset_within_address_space,
708                            int128_get64(section->size));
709  }
710  
711  static void xen_log_global_start(MemoryListener *listener)
712  {
713      if (xen_enabled()) {
714          xen_in_migration = true;
715      }
716  }
717  
718  static void xen_log_global_stop(MemoryListener *listener)
719  {
720      xen_in_migration = false;
721  }
722  
723  static MemoryListener xen_memory_listener = {
724      .region_add = xen_region_add,
725      .region_del = xen_region_del,
726      .log_start = xen_log_start,
727      .log_stop = xen_log_stop,
728      .log_sync = xen_log_sync,
729      .log_global_start = xen_log_global_start,
730      .log_global_stop = xen_log_global_stop,
731      .priority = 10,
732  };
733  
734  static MemoryListener xen_io_listener = {
735      .region_add = xen_io_add,
736      .region_del = xen_io_del,
737      .priority = 10,
738  };
739  
740  static DeviceListener xen_device_listener = {
741      .realize = xen_device_realize,
742      .unrealize = xen_device_unrealize,
743  };
744  
745  /* get the ioreq packets from share mem */
746  static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
747  {
748      ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
749  
750      if (req->state != STATE_IOREQ_READY) {
751          DPRINTF("I/O request not ready: "
752                  "%x, ptr: %x, port: %"PRIx64", "
753                  "data: %"PRIx64", count: %u, size: %u\n",
754                  req->state, req->data_is_ptr, req->addr,
755                  req->data, req->count, req->size);
756          return NULL;
757      }
758  
759      xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
760  
761      req->state = STATE_IOREQ_INPROCESS;
762      return req;
763  }
764  
765  /* use poll to get the port notification */
766  /* ioreq_vec--out,the */
767  /* retval--the number of ioreq packet */
768  static ioreq_t *cpu_get_ioreq(XenIOState *state)
769  {
770      MachineState *ms = MACHINE(qdev_get_machine());
771      unsigned int max_cpus = ms->smp.max_cpus;
772      int i;
773      evtchn_port_t port;
774  
775      port = xenevtchn_pending(state->xce_handle);
776      if (port == state->bufioreq_local_port) {
777          timer_mod(state->buffered_io_timer,
778                  BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
779          return NULL;
780      }
781  
782      if (port != -1) {
783          for (i = 0; i < max_cpus; i++) {
784              if (state->ioreq_local_port[i] == port) {
785                  break;
786              }
787          }
788  
789          if (i == max_cpus) {
790              hw_error("Fatal error while trying to get io event!\n");
791          }
792  
793          /* unmask the wanted port again */
794          xenevtchn_unmask(state->xce_handle, port);
795  
796          /* get the io packet from shared memory */
797          state->send_vcpu = i;
798          return cpu_get_ioreq_from_shared_memory(state, i);
799      }
800  
801      /* read error or read nothing */
802      return NULL;
803  }
804  
805  static uint32_t do_inp(uint32_t addr, unsigned long size)
806  {
807      switch (size) {
808          case 1:
809              return cpu_inb(addr);
810          case 2:
811              return cpu_inw(addr);
812          case 4:
813              return cpu_inl(addr);
814          default:
815              hw_error("inp: bad size: %04x %lx", addr, size);
816      }
817  }
818  
819  static void do_outp(uint32_t addr,
820          unsigned long size, uint32_t val)
821  {
822      switch (size) {
823          case 1:
824              return cpu_outb(addr, val);
825          case 2:
826              return cpu_outw(addr, val);
827          case 4:
828              return cpu_outl(addr, val);
829          default:
830              hw_error("outp: bad size: %04x %lx", addr, size);
831      }
832  }
833  
834  /*
835   * Helper functions which read/write an object from/to physical guest
836   * memory, as part of the implementation of an ioreq.
837   *
838   * Equivalent to
839   *   cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
840   *                          val, req->size, 0/1)
841   * except without the integer overflow problems.
842   */
843  static void rw_phys_req_item(hwaddr addr,
844                               ioreq_t *req, uint32_t i, void *val, int rw)
845  {
846      /* Do everything unsigned so overflow just results in a truncated result
847       * and accesses to undesired parts of guest memory, which is up
848       * to the guest */
849      hwaddr offset = (hwaddr)req->size * i;
850      if (req->df) {
851          addr -= offset;
852      } else {
853          addr += offset;
854      }
855      cpu_physical_memory_rw(addr, val, req->size, rw);
856  }
857  
858  static inline void read_phys_req_item(hwaddr addr,
859                                        ioreq_t *req, uint32_t i, void *val)
860  {
861      rw_phys_req_item(addr, req, i, val, 0);
862  }
863  static inline void write_phys_req_item(hwaddr addr,
864                                         ioreq_t *req, uint32_t i, void *val)
865  {
866      rw_phys_req_item(addr, req, i, val, 1);
867  }
868  
869  
870  static void cpu_ioreq_pio(ioreq_t *req)
871  {
872      uint32_t i;
873  
874      trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
875                           req->data, req->count, req->size);
876  
877      if (req->size > sizeof(uint32_t)) {
878          hw_error("PIO: bad size (%u)", req->size);
879      }
880  
881      if (req->dir == IOREQ_READ) {
882          if (!req->data_is_ptr) {
883              req->data = do_inp(req->addr, req->size);
884              trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
885                                           req->size);
886          } else {
887              uint32_t tmp;
888  
889              for (i = 0; i < req->count; i++) {
890                  tmp = do_inp(req->addr, req->size);
891                  write_phys_req_item(req->data, req, i, &tmp);
892              }
893          }
894      } else if (req->dir == IOREQ_WRITE) {
895          if (!req->data_is_ptr) {
896              trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
897                                            req->size);
898              do_outp(req->addr, req->size, req->data);
899          } else {
900              for (i = 0; i < req->count; i++) {
901                  uint32_t tmp = 0;
902  
903                  read_phys_req_item(req->data, req, i, &tmp);
904                  do_outp(req->addr, req->size, tmp);
905              }
906          }
907      }
908  }
909  
910  static void cpu_ioreq_move(ioreq_t *req)
911  {
912      uint32_t i;
913  
914      trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
915                           req->data, req->count, req->size);
916  
917      if (req->size > sizeof(req->data)) {
918          hw_error("MMIO: bad size (%u)", req->size);
919      }
920  
921      if (!req->data_is_ptr) {
922          if (req->dir == IOREQ_READ) {
923              for (i = 0; i < req->count; i++) {
924                  read_phys_req_item(req->addr, req, i, &req->data);
925              }
926          } else if (req->dir == IOREQ_WRITE) {
927              for (i = 0; i < req->count; i++) {
928                  write_phys_req_item(req->addr, req, i, &req->data);
929              }
930          }
931      } else {
932          uint64_t tmp;
933  
934          if (req->dir == IOREQ_READ) {
935              for (i = 0; i < req->count; i++) {
936                  read_phys_req_item(req->addr, req, i, &tmp);
937                  write_phys_req_item(req->data, req, i, &tmp);
938              }
939          } else if (req->dir == IOREQ_WRITE) {
940              for (i = 0; i < req->count; i++) {
941                  read_phys_req_item(req->data, req, i, &tmp);
942                  write_phys_req_item(req->addr, req, i, &tmp);
943              }
944          }
945      }
946  }
947  
948  static void cpu_ioreq_config(XenIOState *state, ioreq_t *req)
949  {
950      uint32_t sbdf = req->addr >> 32;
951      uint32_t reg = req->addr;
952      XenPciDevice *xendev;
953  
954      if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) &&
955          req->size != sizeof(uint32_t)) {
956          hw_error("PCI config access: bad size (%u)", req->size);
957      }
958  
959      if (req->count != 1) {
960          hw_error("PCI config access: bad count (%u)", req->count);
961      }
962  
963      QLIST_FOREACH(xendev, &state->dev_list, entry) {
964          if (xendev->sbdf != sbdf) {
965              continue;
966          }
967  
968          if (!req->data_is_ptr) {
969              if (req->dir == IOREQ_READ) {
970                  req->data = pci_host_config_read_common(
971                      xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
972                      req->size);
973                  trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
974                                              req->size, req->data);
975              } else if (req->dir == IOREQ_WRITE) {
976                  trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
977                                               req->size, req->data);
978                  pci_host_config_write_common(
979                      xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
980                      req->data, req->size);
981              }
982          } else {
983              uint32_t tmp;
984  
985              if (req->dir == IOREQ_READ) {
986                  tmp = pci_host_config_read_common(
987                      xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
988                      req->size);
989                  trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
990                                              req->size, tmp);
991                  write_phys_req_item(req->data, req, 0, &tmp);
992              } else if (req->dir == IOREQ_WRITE) {
993                  read_phys_req_item(req->data, req, 0, &tmp);
994                  trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
995                                               req->size, tmp);
996                  pci_host_config_write_common(
997                      xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
998                      tmp, req->size);
999              }
1000          }
1001      }
1002  }
1003  
1004  static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
1005  {
1006      X86CPU *cpu;
1007      CPUX86State *env;
1008  
1009      cpu = X86_CPU(current_cpu);
1010      env = &cpu->env;
1011      env->regs[R_EAX] = req->data;
1012      env->regs[R_EBX] = vmport_regs->ebx;
1013      env->regs[R_ECX] = vmport_regs->ecx;
1014      env->regs[R_EDX] = vmport_regs->edx;
1015      env->regs[R_ESI] = vmport_regs->esi;
1016      env->regs[R_EDI] = vmport_regs->edi;
1017  }
1018  
1019  static void regs_from_cpu(vmware_regs_t *vmport_regs)
1020  {
1021      X86CPU *cpu = X86_CPU(current_cpu);
1022      CPUX86State *env = &cpu->env;
1023  
1024      vmport_regs->ebx = env->regs[R_EBX];
1025      vmport_regs->ecx = env->regs[R_ECX];
1026      vmport_regs->edx = env->regs[R_EDX];
1027      vmport_regs->esi = env->regs[R_ESI];
1028      vmport_regs->edi = env->regs[R_EDI];
1029  }
1030  
1031  static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
1032  {
1033      vmware_regs_t *vmport_regs;
1034  
1035      assert(state->shared_vmport_page);
1036      vmport_regs =
1037          &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
1038      QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
1039  
1040      current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
1041      regs_to_cpu(vmport_regs, req);
1042      cpu_ioreq_pio(req);
1043      regs_from_cpu(vmport_regs);
1044      current_cpu = NULL;
1045  }
1046  
1047  static void handle_ioreq(XenIOState *state, ioreq_t *req)
1048  {
1049      trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
1050                         req->addr, req->data, req->count, req->size);
1051  
1052      if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
1053              (req->size < sizeof (target_ulong))) {
1054          req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
1055      }
1056  
1057      if (req->dir == IOREQ_WRITE)
1058          trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
1059                                   req->addr, req->data, req->count, req->size);
1060  
1061      switch (req->type) {
1062          case IOREQ_TYPE_PIO:
1063              cpu_ioreq_pio(req);
1064              break;
1065          case IOREQ_TYPE_COPY:
1066              cpu_ioreq_move(req);
1067              break;
1068          case IOREQ_TYPE_VMWARE_PORT:
1069              handle_vmport_ioreq(state, req);
1070              break;
1071          case IOREQ_TYPE_TIMEOFFSET:
1072              break;
1073          case IOREQ_TYPE_INVALIDATE:
1074              xen_invalidate_map_cache();
1075              break;
1076          case IOREQ_TYPE_PCI_CONFIG:
1077              cpu_ioreq_config(state, req);
1078              break;
1079          default:
1080              hw_error("Invalid ioreq type 0x%x\n", req->type);
1081      }
1082      if (req->dir == IOREQ_READ) {
1083          trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
1084                                  req->addr, req->data, req->count, req->size);
1085      }
1086  }
1087  
1088  static int handle_buffered_iopage(XenIOState *state)
1089  {
1090      buffered_iopage_t *buf_page = state->buffered_io_page;
1091      buf_ioreq_t *buf_req = NULL;
1092      ioreq_t req;
1093      int qw;
1094  
1095      if (!buf_page) {
1096          return 0;
1097      }
1098  
1099      memset(&req, 0x00, sizeof(req));
1100      req.state = STATE_IOREQ_READY;
1101      req.count = 1;
1102      req.dir = IOREQ_WRITE;
1103  
1104      for (;;) {
1105          uint32_t rdptr = buf_page->read_pointer, wrptr;
1106  
1107          xen_rmb();
1108          wrptr = buf_page->write_pointer;
1109          xen_rmb();
1110          if (rdptr != buf_page->read_pointer) {
1111              continue;
1112          }
1113          if (rdptr == wrptr) {
1114              break;
1115          }
1116          buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1117          req.size = 1U << buf_req->size;
1118          req.addr = buf_req->addr;
1119          req.data = buf_req->data;
1120          req.type = buf_req->type;
1121          xen_rmb();
1122          qw = (req.size == 8);
1123          if (qw) {
1124              if (rdptr + 1 == wrptr) {
1125                  hw_error("Incomplete quad word buffered ioreq");
1126              }
1127              buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1128                                             IOREQ_BUFFER_SLOT_NUM];
1129              req.data |= ((uint64_t)buf_req->data) << 32;
1130              xen_rmb();
1131          }
1132  
1133          handle_ioreq(state, &req);
1134  
1135          /* Only req.data may get updated by handle_ioreq(), albeit even that
1136           * should not happen as such data would never make it to the guest (we
1137           * can only usefully see writes here after all).
1138           */
1139          assert(req.state == STATE_IOREQ_READY);
1140          assert(req.count == 1);
1141          assert(req.dir == IOREQ_WRITE);
1142          assert(!req.data_is_ptr);
1143  
1144          qatomic_add(&buf_page->read_pointer, qw + 1);
1145      }
1146  
1147      return req.count;
1148  }
1149  
1150  static void handle_buffered_io(void *opaque)
1151  {
1152      XenIOState *state = opaque;
1153  
1154      if (handle_buffered_iopage(state)) {
1155          timer_mod(state->buffered_io_timer,
1156                  BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1157      } else {
1158          timer_del(state->buffered_io_timer);
1159          xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1160      }
1161  }
1162  
1163  static void cpu_handle_ioreq(void *opaque)
1164  {
1165      XenIOState *state = opaque;
1166      ioreq_t *req = cpu_get_ioreq(state);
1167  
1168      handle_buffered_iopage(state);
1169      if (req) {
1170          ioreq_t copy = *req;
1171  
1172          xen_rmb();
1173          handle_ioreq(state, &copy);
1174          req->data = copy.data;
1175  
1176          if (req->state != STATE_IOREQ_INPROCESS) {
1177              fprintf(stderr, "Badness in I/O request ... not in service?!: "
1178                      "%x, ptr: %x, port: %"PRIx64", "
1179                      "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1180                      req->state, req->data_is_ptr, req->addr,
1181                      req->data, req->count, req->size, req->type);
1182              destroy_hvm_domain(false);
1183              return;
1184          }
1185  
1186          xen_wmb(); /* Update ioreq contents /then/ update state. */
1187  
1188          /*
1189           * We do this before we send the response so that the tools
1190           * have the opportunity to pick up on the reset before the
1191           * guest resumes and does a hlt with interrupts disabled which
1192           * causes Xen to powerdown the domain.
1193           */
1194          if (runstate_is_running()) {
1195              ShutdownCause request;
1196  
1197              if (qemu_shutdown_requested_get()) {
1198                  destroy_hvm_domain(false);
1199              }
1200              request = qemu_reset_requested_get();
1201              if (request) {
1202                  qemu_system_reset(request);
1203                  destroy_hvm_domain(true);
1204              }
1205          }
1206  
1207          req->state = STATE_IORESP_READY;
1208          xenevtchn_notify(state->xce_handle,
1209                           state->ioreq_local_port[state->send_vcpu]);
1210      }
1211  }
1212  
1213  static void xen_main_loop_prepare(XenIOState *state)
1214  {
1215      int evtchn_fd = -1;
1216  
1217      if (state->xce_handle != NULL) {
1218          evtchn_fd = xenevtchn_fd(state->xce_handle);
1219      }
1220  
1221      state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1222                                                   state);
1223  
1224      if (evtchn_fd != -1) {
1225          CPUState *cpu_state;
1226  
1227          DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1228          CPU_FOREACH(cpu_state) {
1229              DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1230                      __func__, cpu_state->cpu_index, cpu_state);
1231              state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1232          }
1233          qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1234      }
1235  }
1236  
1237  
1238  static void xen_hvm_change_state_handler(void *opaque, int running,
1239                                           RunState rstate)
1240  {
1241      XenIOState *state = opaque;
1242  
1243      if (running) {
1244          xen_main_loop_prepare(state);
1245      }
1246  
1247      xen_set_ioreq_server_state(xen_domid,
1248                                 state->ioservid,
1249                                 (rstate == RUN_STATE_RUNNING));
1250  }
1251  
1252  static void xen_exit_notifier(Notifier *n, void *data)
1253  {
1254      XenIOState *state = container_of(n, XenIOState, exit);
1255  
1256      xen_destroy_ioreq_server(xen_domid, state->ioservid);
1257  
1258      xenevtchn_close(state->xce_handle);
1259      xs_daemon_close(state->xenstore);
1260  }
1261  
1262  #ifdef XEN_COMPAT_PHYSMAP
1263  static void xen_read_physmap(XenIOState *state)
1264  {
1265      XenPhysmap *physmap = NULL;
1266      unsigned int len, num, i;
1267      char path[80], *value = NULL;
1268      char **entries = NULL;
1269  
1270      snprintf(path, sizeof(path),
1271              "/local/domain/0/device-model/%d/physmap", xen_domid);
1272      entries = xs_directory(state->xenstore, 0, path, &num);
1273      if (entries == NULL)
1274          return;
1275  
1276      for (i = 0; i < num; i++) {
1277          physmap = g_malloc(sizeof (XenPhysmap));
1278          physmap->phys_offset = strtoull(entries[i], NULL, 16);
1279          snprintf(path, sizeof(path),
1280                  "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1281                  xen_domid, entries[i]);
1282          value = xs_read(state->xenstore, 0, path, &len);
1283          if (value == NULL) {
1284              g_free(physmap);
1285              continue;
1286          }
1287          physmap->start_addr = strtoull(value, NULL, 16);
1288          free(value);
1289  
1290          snprintf(path, sizeof(path),
1291                  "/local/domain/0/device-model/%d/physmap/%s/size",
1292                  xen_domid, entries[i]);
1293          value = xs_read(state->xenstore, 0, path, &len);
1294          if (value == NULL) {
1295              g_free(physmap);
1296              continue;
1297          }
1298          physmap->size = strtoull(value, NULL, 16);
1299          free(value);
1300  
1301          snprintf(path, sizeof(path),
1302                  "/local/domain/0/device-model/%d/physmap/%s/name",
1303                  xen_domid, entries[i]);
1304          physmap->name = xs_read(state->xenstore, 0, path, &len);
1305  
1306          QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
1307      }
1308      free(entries);
1309  }
1310  #else
1311  static void xen_read_physmap(XenIOState *state)
1312  {
1313  }
1314  #endif
1315  
1316  static void xen_wakeup_notifier(Notifier *notifier, void *data)
1317  {
1318      xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1319  }
1320  
1321  static int xen_map_ioreq_server(XenIOState *state)
1322  {
1323      void *addr = NULL;
1324      xenforeignmemory_resource_handle *fres;
1325      xen_pfn_t ioreq_pfn;
1326      xen_pfn_t bufioreq_pfn;
1327      evtchn_port_t bufioreq_evtchn;
1328      int rc;
1329  
1330      /*
1331       * Attempt to map using the resource API and fall back to normal
1332       * foreign mapping if this is not supported.
1333       */
1334      QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0);
1335      QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1);
1336      fres = xenforeignmemory_map_resource(xen_fmem, xen_domid,
1337                                           XENMEM_resource_ioreq_server,
1338                                           state->ioservid, 0, 2,
1339                                           &addr,
1340                                           PROT_READ | PROT_WRITE, 0);
1341      if (fres != NULL) {
1342          trace_xen_map_resource_ioreq(state->ioservid, addr);
1343          state->buffered_io_page = addr;
1344          state->shared_page = addr + TARGET_PAGE_SIZE;
1345      } else if (errno != EOPNOTSUPP) {
1346          error_report("failed to map ioreq server resources: error %d handle=%p",
1347                       errno, xen_xc);
1348          return -1;
1349      }
1350  
1351      rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
1352                                     (state->shared_page == NULL) ?
1353                                     &ioreq_pfn : NULL,
1354                                     (state->buffered_io_page == NULL) ?
1355                                     &bufioreq_pfn : NULL,
1356                                     &bufioreq_evtchn);
1357      if (rc < 0) {
1358          error_report("failed to get ioreq server info: error %d handle=%p",
1359                       errno, xen_xc);
1360          return rc;
1361      }
1362  
1363      if (state->shared_page == NULL) {
1364          DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1365  
1366          state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1367                                                    PROT_READ | PROT_WRITE,
1368                                                    1, &ioreq_pfn, NULL);
1369          if (state->shared_page == NULL) {
1370              error_report("map shared IO page returned error %d handle=%p",
1371                           errno, xen_xc);
1372          }
1373      }
1374  
1375      if (state->buffered_io_page == NULL) {
1376          DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1377  
1378          state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1379                                                         PROT_READ | PROT_WRITE,
1380                                                         1, &bufioreq_pfn,
1381                                                         NULL);
1382          if (state->buffered_io_page == NULL) {
1383              error_report("map buffered IO page returned error %d", errno);
1384              return -1;
1385          }
1386      }
1387  
1388      if (state->shared_page == NULL || state->buffered_io_page == NULL) {
1389          return -1;
1390      }
1391  
1392      DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1393  
1394      state->bufioreq_remote_port = bufioreq_evtchn;
1395  
1396      return 0;
1397  }
1398  
1399  void xen_hvm_init_pc(PCMachineState *pcms, MemoryRegion **ram_memory)
1400  {
1401      MachineState *ms = MACHINE(pcms);
1402      unsigned int max_cpus = ms->smp.max_cpus;
1403      int i, rc;
1404      xen_pfn_t ioreq_pfn;
1405      XenIOState *state;
1406  
1407      state = g_malloc0(sizeof (XenIOState));
1408  
1409      state->xce_handle = xenevtchn_open(NULL, 0);
1410      if (state->xce_handle == NULL) {
1411          perror("xen: event channel open");
1412          goto err;
1413      }
1414  
1415      state->xenstore = xs_daemon_open();
1416      if (state->xenstore == NULL) {
1417          perror("xen: xenstore open");
1418          goto err;
1419      }
1420  
1421      xen_create_ioreq_server(xen_domid, &state->ioservid);
1422  
1423      state->exit.notify = xen_exit_notifier;
1424      qemu_add_exit_notifier(&state->exit);
1425  
1426      state->suspend.notify = xen_suspend_notifier;
1427      qemu_register_suspend_notifier(&state->suspend);
1428  
1429      state->wakeup.notify = xen_wakeup_notifier;
1430      qemu_register_wakeup_notifier(&state->wakeup);
1431  
1432      /*
1433       * Register wake-up support in QMP query-current-machine API
1434       */
1435      qemu_register_wakeup_support();
1436  
1437      rc = xen_map_ioreq_server(state);
1438      if (rc < 0) {
1439          goto err;
1440      }
1441  
1442      rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1443      if (!rc) {
1444          DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1445          state->shared_vmport_page =
1446              xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1447                                   1, &ioreq_pfn, NULL);
1448          if (state->shared_vmport_page == NULL) {
1449              error_report("map shared vmport IO page returned error %d handle=%p",
1450                           errno, xen_xc);
1451              goto err;
1452          }
1453      } else if (rc != -ENOSYS) {
1454          error_report("get vmport regs pfn returned error %d, rc=%d",
1455                       errno, rc);
1456          goto err;
1457      }
1458  
1459      /* Note: cpus is empty at this point in init */
1460      state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1461  
1462      rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
1463      if (rc < 0) {
1464          error_report("failed to enable ioreq server info: error %d handle=%p",
1465                       errno, xen_xc);
1466          goto err;
1467      }
1468  
1469      state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1470  
1471      /* FIXME: how about if we overflow the page here? */
1472      for (i = 0; i < max_cpus; i++) {
1473          rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1474                                          xen_vcpu_eport(state->shared_page, i));
1475          if (rc == -1) {
1476              error_report("shared evtchn %d bind error %d", i, errno);
1477              goto err;
1478          }
1479          state->ioreq_local_port[i] = rc;
1480      }
1481  
1482      rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1483                                      state->bufioreq_remote_port);
1484      if (rc == -1) {
1485          error_report("buffered evtchn bind error %d", errno);
1486          goto err;
1487      }
1488      state->bufioreq_local_port = rc;
1489  
1490      /* Init RAM management */
1491  #ifdef XEN_COMPAT_PHYSMAP
1492      xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1493  #else
1494      xen_map_cache_init(NULL, state);
1495  #endif
1496      xen_ram_init(pcms, ms->ram_size, ram_memory);
1497  
1498      qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1499  
1500      state->memory_listener = xen_memory_listener;
1501      memory_listener_register(&state->memory_listener, &address_space_memory);
1502      state->log_for_dirtybit = NULL;
1503  
1504      state->io_listener = xen_io_listener;
1505      memory_listener_register(&state->io_listener, &address_space_io);
1506  
1507      state->device_listener = xen_device_listener;
1508      QLIST_INIT(&state->dev_list);
1509      device_listener_register(&state->device_listener);
1510  
1511      xen_bus_init();
1512  
1513      /* Initialize backend core & drivers */
1514      if (xen_be_init() != 0) {
1515          error_report("xen backend core setup failed");
1516          goto err;
1517      }
1518      xen_be_register_common();
1519  
1520      QLIST_INIT(&xen_physmap);
1521      xen_read_physmap(state);
1522  
1523      /* Disable ACPI build because Xen handles it */
1524      pcms->acpi_build_enabled = false;
1525  
1526      return;
1527  
1528  err:
1529      error_report("xen hardware virtual machine initialisation failed");
1530      exit(1);
1531  }
1532  
1533  void destroy_hvm_domain(bool reboot)
1534  {
1535      xc_interface *xc_handle;
1536      int sts;
1537      int rc;
1538  
1539      unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff;
1540  
1541      if (xen_dmod) {
1542          rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason);
1543          if (!rc) {
1544              return;
1545          }
1546          if (errno != ENOTTY /* old Xen */) {
1547              perror("xendevicemodel_shutdown failed");
1548          }
1549          /* well, try the old thing then */
1550      }
1551  
1552      xc_handle = xc_interface_open(0, 0, 0);
1553      if (xc_handle == NULL) {
1554          fprintf(stderr, "Cannot acquire xenctrl handle\n");
1555      } else {
1556          sts = xc_domain_shutdown(xc_handle, xen_domid, reason);
1557          if (sts != 0) {
1558              fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1559                      "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1560                      sts, strerror(errno));
1561          } else {
1562              fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1563                      reboot ? "reboot" : "poweroff");
1564          }
1565          xc_interface_close(xc_handle);
1566      }
1567  }
1568  
1569  void xen_register_framebuffer(MemoryRegion *mr)
1570  {
1571      framebuffer = mr;
1572  }
1573  
1574  void xen_shutdown_fatal_error(const char *fmt, ...)
1575  {
1576      va_list ap;
1577  
1578      va_start(ap, fmt);
1579      vfprintf(stderr, fmt, ap);
1580      va_end(ap);
1581      fprintf(stderr, "Will destroy the domain.\n");
1582      /* destroy the domain */
1583      qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR);
1584  }
1585  
1586  void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length)
1587  {
1588      if (unlikely(xen_in_migration)) {
1589          int rc;
1590          ram_addr_t start_pfn, nb_pages;
1591  
1592          start = xen_phys_offset_to_gaddr(start, length);
1593  
1594          if (length == 0) {
1595              length = TARGET_PAGE_SIZE;
1596          }
1597          start_pfn = start >> TARGET_PAGE_BITS;
1598          nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1599              - start_pfn;
1600          rc = xen_modified_memory(xen_domid, start_pfn, nb_pages);
1601          if (rc) {
1602              fprintf(stderr,
1603                      "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1604                      __func__, start, nb_pages, errno, strerror(errno));
1605          }
1606      }
1607  }
1608  
1609  void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1610  {
1611      if (enable) {
1612          memory_global_dirty_log_start();
1613      } else {
1614          memory_global_dirty_log_stop();
1615      }
1616  }
1617