1 /* 2 * Copyright (C) 2010 Citrix Ltd. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 * 7 * Contributions after 2012-01-13 are licensed under the terms of the 8 * GNU GPL, version 2 or (at your option) any later version. 9 */ 10 11 #include "qemu/osdep.h" 12 13 #include "cpu.h" 14 #include "hw/pci/pci.h" 15 #include "hw/pci/pci_host.h" 16 #include "hw/i386/pc.h" 17 #include "hw/southbridge/piix.h" 18 #include "hw/irq.h" 19 #include "hw/hw.h" 20 #include "hw/i386/apic-msidef.h" 21 #include "hw/xen/xen_common.h" 22 #include "hw/xen/xen-legacy-backend.h" 23 #include "hw/xen/xen-bus.h" 24 #include "qapi/error.h" 25 #include "qapi/qapi-commands-misc.h" 26 #include "qemu/error-report.h" 27 #include "qemu/main-loop.h" 28 #include "qemu/range.h" 29 #include "sysemu/runstate.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/xen-mapcache.h" 32 #include "trace.h" 33 #include "exec/address-spaces.h" 34 35 #include <xen/hvm/ioreq.h> 36 #include <xen/hvm/e820.h> 37 38 //#define DEBUG_XEN_HVM 39 40 #ifdef DEBUG_XEN_HVM 41 #define DPRINTF(fmt, ...) \ 42 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) 43 #else 44 #define DPRINTF(fmt, ...) \ 45 do { } while (0) 46 #endif 47 48 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; 49 static MemoryRegion *framebuffer; 50 static bool xen_in_migration; 51 52 /* Compatibility with older version */ 53 54 /* This allows QEMU to build on a system that has Xen 4.5 or earlier 55 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h 56 * needs to be included before this block and hw/xen/xen_common.h needs to 57 * be included before xen/hvm/ioreq.h 58 */ 59 #ifndef IOREQ_TYPE_VMWARE_PORT 60 #define IOREQ_TYPE_VMWARE_PORT 3 61 struct vmware_regs { 62 uint32_t esi; 63 uint32_t edi; 64 uint32_t ebx; 65 uint32_t ecx; 66 uint32_t edx; 67 }; 68 typedef struct vmware_regs vmware_regs_t; 69 70 struct shared_vmport_iopage { 71 struct vmware_regs vcpu_vmport_regs[1]; 72 }; 73 typedef struct shared_vmport_iopage shared_vmport_iopage_t; 74 #endif 75 76 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) 77 { 78 return shared_page->vcpu_ioreq[i].vp_eport; 79 } 80 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) 81 { 82 return &shared_page->vcpu_ioreq[vcpu]; 83 } 84 85 #define BUFFER_IO_MAX_DELAY 100 86 87 typedef struct XenPhysmap { 88 hwaddr start_addr; 89 ram_addr_t size; 90 const char *name; 91 hwaddr phys_offset; 92 93 QLIST_ENTRY(XenPhysmap) list; 94 } XenPhysmap; 95 96 static QLIST_HEAD(, XenPhysmap) xen_physmap; 97 98 typedef struct XenPciDevice { 99 PCIDevice *pci_dev; 100 uint32_t sbdf; 101 QLIST_ENTRY(XenPciDevice) entry; 102 } XenPciDevice; 103 104 typedef struct XenIOState { 105 ioservid_t ioservid; 106 shared_iopage_t *shared_page; 107 shared_vmport_iopage_t *shared_vmport_page; 108 buffered_iopage_t *buffered_io_page; 109 QEMUTimer *buffered_io_timer; 110 CPUState **cpu_by_vcpu_id; 111 /* the evtchn port for polling the notification, */ 112 evtchn_port_t *ioreq_local_port; 113 /* evtchn remote and local ports for buffered io */ 114 evtchn_port_t bufioreq_remote_port; 115 evtchn_port_t bufioreq_local_port; 116 /* the evtchn fd for polling */ 117 xenevtchn_handle *xce_handle; 118 /* which vcpu we are serving */ 119 int send_vcpu; 120 121 struct xs_handle *xenstore; 122 MemoryListener memory_listener; 123 MemoryListener io_listener; 124 QLIST_HEAD(, XenPciDevice) dev_list; 125 DeviceListener device_listener; 126 hwaddr free_phys_offset; 127 const XenPhysmap *log_for_dirtybit; 128 /* Buffer used by xen_sync_dirty_bitmap */ 129 unsigned long *dirty_bitmap; 130 131 Notifier exit; 132 Notifier suspend; 133 Notifier wakeup; 134 } XenIOState; 135 136 /* Xen specific function for piix pci */ 137 138 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) 139 { 140 return irq_num + ((pci_dev->devfn >> 3) << 2); 141 } 142 143 void xen_piix3_set_irq(void *opaque, int irq_num, int level) 144 { 145 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2, 146 irq_num & 3, level); 147 } 148 149 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) 150 { 151 int i; 152 153 /* Scan for updates to PCI link routes (0x60-0x63). */ 154 for (i = 0; i < len; i++) { 155 uint8_t v = (val >> (8 * i)) & 0xff; 156 if (v & 0x80) { 157 v = 0; 158 } 159 v &= 0xf; 160 if (((address + i) >= PIIX_PIRQCA) && ((address + i) <= PIIX_PIRQCD)) { 161 xen_set_pci_link_route(xen_domid, address + i - PIIX_PIRQCA, v); 162 } 163 } 164 } 165 166 int xen_is_pirq_msi(uint32_t msi_data) 167 { 168 /* If vector is 0, the msi is remapped into a pirq, passed as 169 * dest_id. 170 */ 171 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0; 172 } 173 174 void xen_hvm_inject_msi(uint64_t addr, uint32_t data) 175 { 176 xen_inject_msi(xen_domid, addr, data); 177 } 178 179 static void xen_suspend_notifier(Notifier *notifier, void *data) 180 { 181 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); 182 } 183 184 /* Xen Interrupt Controller */ 185 186 static void xen_set_irq(void *opaque, int irq, int level) 187 { 188 xen_set_isa_irq_level(xen_domid, irq, level); 189 } 190 191 qemu_irq *xen_interrupt_controller_init(void) 192 { 193 return qemu_allocate_irqs(xen_set_irq, NULL, 16); 194 } 195 196 /* Memory Ops */ 197 198 static void xen_ram_init(PCMachineState *pcms, 199 ram_addr_t ram_size, MemoryRegion **ram_memory_p) 200 { 201 X86MachineState *x86ms = X86_MACHINE(pcms); 202 MemoryRegion *sysmem = get_system_memory(); 203 ram_addr_t block_len; 204 uint64_t user_lowmem = 205 object_property_get_uint(qdev_get_machine(), 206 X86_MACHINE_MAX_RAM_BELOW_4G, 207 &error_abort); 208 209 /* Handle the machine opt max-ram-below-4g. It is basically doing 210 * min(xen limit, user limit). 211 */ 212 if (!user_lowmem) { 213 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */ 214 } 215 if (HVM_BELOW_4G_RAM_END <= user_lowmem) { 216 user_lowmem = HVM_BELOW_4G_RAM_END; 217 } 218 219 if (ram_size >= user_lowmem) { 220 x86ms->above_4g_mem_size = ram_size - user_lowmem; 221 x86ms->below_4g_mem_size = user_lowmem; 222 } else { 223 x86ms->above_4g_mem_size = 0; 224 x86ms->below_4g_mem_size = ram_size; 225 } 226 if (!x86ms->above_4g_mem_size) { 227 block_len = ram_size; 228 } else { 229 /* 230 * Xen does not allocate the memory continuously, it keeps a 231 * hole of the size computed above or passed in. 232 */ 233 block_len = (1ULL << 32) + x86ms->above_4g_mem_size; 234 } 235 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, 236 &error_fatal); 237 *ram_memory_p = &ram_memory; 238 239 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", 240 &ram_memory, 0, 0xa0000); 241 memory_region_add_subregion(sysmem, 0, &ram_640k); 242 /* Skip of the VGA IO memory space, it will be registered later by the VGA 243 * emulated device. 244 * 245 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load 246 * the Options ROM, so it is registered here as RAM. 247 */ 248 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", 249 &ram_memory, 0xc0000, 250 x86ms->below_4g_mem_size - 0xc0000); 251 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); 252 if (x86ms->above_4g_mem_size > 0) { 253 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", 254 &ram_memory, 0x100000000ULL, 255 x86ms->above_4g_mem_size); 256 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); 257 } 258 } 259 260 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, 261 Error **errp) 262 { 263 unsigned long nr_pfn; 264 xen_pfn_t *pfn_list; 265 int i; 266 267 if (runstate_check(RUN_STATE_INMIGRATE)) { 268 /* RAM already populated in Xen */ 269 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT 270 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", 271 __func__, size, ram_addr); 272 return; 273 } 274 275 if (mr == &ram_memory) { 276 return; 277 } 278 279 trace_xen_ram_alloc(ram_addr, size); 280 281 nr_pfn = size >> TARGET_PAGE_BITS; 282 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); 283 284 for (i = 0; i < nr_pfn; i++) { 285 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; 286 } 287 288 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { 289 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, 290 ram_addr); 291 } 292 293 g_free(pfn_list); 294 } 295 296 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size) 297 { 298 XenPhysmap *physmap = NULL; 299 300 start_addr &= TARGET_PAGE_MASK; 301 302 QLIST_FOREACH(physmap, &xen_physmap, list) { 303 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { 304 return physmap; 305 } 306 } 307 return NULL; 308 } 309 310 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size) 311 { 312 hwaddr addr = phys_offset & TARGET_PAGE_MASK; 313 XenPhysmap *physmap = NULL; 314 315 QLIST_FOREACH(physmap, &xen_physmap, list) { 316 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { 317 return physmap->start_addr + (phys_offset - physmap->phys_offset); 318 } 319 } 320 321 return phys_offset; 322 } 323 324 #ifdef XEN_COMPAT_PHYSMAP 325 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 326 { 327 char path[80], value[17]; 328 329 snprintf(path, sizeof(path), 330 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", 331 xen_domid, (uint64_t)physmap->phys_offset); 332 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr); 333 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 334 return -1; 335 } 336 snprintf(path, sizeof(path), 337 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", 338 xen_domid, (uint64_t)physmap->phys_offset); 339 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size); 340 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 341 return -1; 342 } 343 if (physmap->name) { 344 snprintf(path, sizeof(path), 345 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", 346 xen_domid, (uint64_t)physmap->phys_offset); 347 if (!xs_write(state->xenstore, 0, path, 348 physmap->name, strlen(physmap->name))) { 349 return -1; 350 } 351 } 352 return 0; 353 } 354 #else 355 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 356 { 357 return 0; 358 } 359 #endif 360 361 static int xen_add_to_physmap(XenIOState *state, 362 hwaddr start_addr, 363 ram_addr_t size, 364 MemoryRegion *mr, 365 hwaddr offset_within_region) 366 { 367 unsigned long nr_pages; 368 int rc = 0; 369 XenPhysmap *physmap = NULL; 370 hwaddr pfn, start_gpfn; 371 hwaddr phys_offset = memory_region_get_ram_addr(mr); 372 const char *mr_name; 373 374 if (get_physmapping(start_addr, size)) { 375 return 0; 376 } 377 if (size <= 0) { 378 return -1; 379 } 380 381 /* Xen can only handle a single dirty log region for now and we want 382 * the linear framebuffer to be that region. 383 * Avoid tracking any regions that is not videoram and avoid tracking 384 * the legacy vga region. */ 385 if (mr == framebuffer && start_addr > 0xbffff) { 386 goto go_physmap; 387 } 388 return -1; 389 390 go_physmap: 391 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", 392 start_addr, start_addr + size); 393 394 mr_name = memory_region_name(mr); 395 396 physmap = g_malloc(sizeof(XenPhysmap)); 397 398 physmap->start_addr = start_addr; 399 physmap->size = size; 400 physmap->name = mr_name; 401 physmap->phys_offset = phys_offset; 402 403 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 404 405 if (runstate_check(RUN_STATE_INMIGRATE)) { 406 /* Now when we have a physmap entry we can replace a dummy mapping with 407 * a real one of guest foreign memory. */ 408 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size); 409 assert(p && p == memory_region_get_ram_ptr(mr)); 410 411 return 0; 412 } 413 414 pfn = phys_offset >> TARGET_PAGE_BITS; 415 start_gpfn = start_addr >> TARGET_PAGE_BITS; 416 nr_pages = size >> TARGET_PAGE_BITS; 417 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn, 418 start_gpfn); 419 if (rc) { 420 int saved_errno = errno; 421 422 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx 423 " to GFN %"HWADDR_PRIx" failed: %s", 424 nr_pages, pfn, start_gpfn, strerror(saved_errno)); 425 errno = saved_errno; 426 return -1; 427 } 428 429 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid, 430 start_addr >> TARGET_PAGE_BITS, 431 (start_addr + size - 1) >> TARGET_PAGE_BITS, 432 XEN_DOMCTL_MEM_CACHEATTR_WB); 433 if (rc) { 434 error_report("pin_memory_cacheattr failed: %s", strerror(errno)); 435 } 436 return xen_save_physmap(state, physmap); 437 } 438 439 static int xen_remove_from_physmap(XenIOState *state, 440 hwaddr start_addr, 441 ram_addr_t size) 442 { 443 int rc = 0; 444 XenPhysmap *physmap = NULL; 445 hwaddr phys_offset = 0; 446 447 physmap = get_physmapping(start_addr, size); 448 if (physmap == NULL) { 449 return -1; 450 } 451 452 phys_offset = physmap->phys_offset; 453 size = physmap->size; 454 455 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " 456 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); 457 458 size >>= TARGET_PAGE_BITS; 459 start_addr >>= TARGET_PAGE_BITS; 460 phys_offset >>= TARGET_PAGE_BITS; 461 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr, 462 phys_offset); 463 if (rc) { 464 int saved_errno = errno; 465 466 error_report("relocate_memory "RAM_ADDR_FMT" pages" 467 " from GFN %"HWADDR_PRIx 468 " to GFN %"HWADDR_PRIx" failed: %s", 469 size, start_addr, phys_offset, strerror(saved_errno)); 470 errno = saved_errno; 471 return -1; 472 } 473 474 QLIST_REMOVE(physmap, list); 475 if (state->log_for_dirtybit == physmap) { 476 state->log_for_dirtybit = NULL; 477 g_free(state->dirty_bitmap); 478 state->dirty_bitmap = NULL; 479 } 480 g_free(physmap); 481 482 return 0; 483 } 484 485 static void xen_set_memory(struct MemoryListener *listener, 486 MemoryRegionSection *section, 487 bool add) 488 { 489 XenIOState *state = container_of(listener, XenIOState, memory_listener); 490 hwaddr start_addr = section->offset_within_address_space; 491 ram_addr_t size = int128_get64(section->size); 492 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); 493 hvmmem_type_t mem_type; 494 495 if (section->mr == &ram_memory) { 496 return; 497 } else { 498 if (add) { 499 xen_map_memory_section(xen_domid, state->ioservid, 500 section); 501 } else { 502 xen_unmap_memory_section(xen_domid, state->ioservid, 503 section); 504 } 505 } 506 507 if (!memory_region_is_ram(section->mr)) { 508 return; 509 } 510 511 if (log_dirty != add) { 512 return; 513 } 514 515 trace_xen_client_set_memory(start_addr, size, log_dirty); 516 517 start_addr &= TARGET_PAGE_MASK; 518 size = TARGET_PAGE_ALIGN(size); 519 520 if (add) { 521 if (!memory_region_is_rom(section->mr)) { 522 xen_add_to_physmap(state, start_addr, size, 523 section->mr, section->offset_within_region); 524 } else { 525 mem_type = HVMMEM_ram_ro; 526 if (xen_set_mem_type(xen_domid, mem_type, 527 start_addr >> TARGET_PAGE_BITS, 528 size >> TARGET_PAGE_BITS)) { 529 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n", 530 start_addr); 531 } 532 } 533 } else { 534 if (xen_remove_from_physmap(state, start_addr, size) < 0) { 535 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); 536 } 537 } 538 } 539 540 static void xen_region_add(MemoryListener *listener, 541 MemoryRegionSection *section) 542 { 543 memory_region_ref(section->mr); 544 xen_set_memory(listener, section, true); 545 } 546 547 static void xen_region_del(MemoryListener *listener, 548 MemoryRegionSection *section) 549 { 550 xen_set_memory(listener, section, false); 551 memory_region_unref(section->mr); 552 } 553 554 static void xen_io_add(MemoryListener *listener, 555 MemoryRegionSection *section) 556 { 557 XenIOState *state = container_of(listener, XenIOState, io_listener); 558 MemoryRegion *mr = section->mr; 559 560 if (mr->ops == &unassigned_io_ops) { 561 return; 562 } 563 564 memory_region_ref(mr); 565 566 xen_map_io_section(xen_domid, state->ioservid, section); 567 } 568 569 static void xen_io_del(MemoryListener *listener, 570 MemoryRegionSection *section) 571 { 572 XenIOState *state = container_of(listener, XenIOState, io_listener); 573 MemoryRegion *mr = section->mr; 574 575 if (mr->ops == &unassigned_io_ops) { 576 return; 577 } 578 579 xen_unmap_io_section(xen_domid, state->ioservid, section); 580 581 memory_region_unref(mr); 582 } 583 584 static void xen_device_realize(DeviceListener *listener, 585 DeviceState *dev) 586 { 587 XenIOState *state = container_of(listener, XenIOState, device_listener); 588 589 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 590 PCIDevice *pci_dev = PCI_DEVICE(dev); 591 XenPciDevice *xendev = g_new(XenPciDevice, 1); 592 593 xendev->pci_dev = pci_dev; 594 xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev), 595 pci_dev->devfn); 596 QLIST_INSERT_HEAD(&state->dev_list, xendev, entry); 597 598 xen_map_pcidev(xen_domid, state->ioservid, pci_dev); 599 } 600 } 601 602 static void xen_device_unrealize(DeviceListener *listener, 603 DeviceState *dev) 604 { 605 XenIOState *state = container_of(listener, XenIOState, device_listener); 606 607 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 608 PCIDevice *pci_dev = PCI_DEVICE(dev); 609 XenPciDevice *xendev, *next; 610 611 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev); 612 613 QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) { 614 if (xendev->pci_dev == pci_dev) { 615 QLIST_REMOVE(xendev, entry); 616 g_free(xendev); 617 break; 618 } 619 } 620 } 621 } 622 623 static void xen_sync_dirty_bitmap(XenIOState *state, 624 hwaddr start_addr, 625 ram_addr_t size) 626 { 627 hwaddr npages = size >> TARGET_PAGE_BITS; 628 const int width = sizeof(unsigned long) * 8; 629 size_t bitmap_size = DIV_ROUND_UP(npages, width); 630 int rc, i, j; 631 const XenPhysmap *physmap = NULL; 632 633 physmap = get_physmapping(start_addr, size); 634 if (physmap == NULL) { 635 /* not handled */ 636 return; 637 } 638 639 if (state->log_for_dirtybit == NULL) { 640 state->log_for_dirtybit = physmap; 641 state->dirty_bitmap = g_new(unsigned long, bitmap_size); 642 } else if (state->log_for_dirtybit != physmap) { 643 /* Only one range for dirty bitmap can be tracked. */ 644 return; 645 } 646 647 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS, 648 npages, state->dirty_bitmap); 649 if (rc < 0) { 650 #ifndef ENODATA 651 #define ENODATA ENOENT 652 #endif 653 if (errno == ENODATA) { 654 memory_region_set_dirty(framebuffer, 0, size); 655 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx 656 ", 0x" TARGET_FMT_plx "): %s\n", 657 start_addr, start_addr + size, strerror(errno)); 658 } 659 return; 660 } 661 662 for (i = 0; i < bitmap_size; i++) { 663 unsigned long map = state->dirty_bitmap[i]; 664 while (map != 0) { 665 j = ctzl(map); 666 map &= ~(1ul << j); 667 memory_region_set_dirty(framebuffer, 668 (i * width + j) * TARGET_PAGE_SIZE, 669 TARGET_PAGE_SIZE); 670 }; 671 } 672 } 673 674 static void xen_log_start(MemoryListener *listener, 675 MemoryRegionSection *section, 676 int old, int new) 677 { 678 XenIOState *state = container_of(listener, XenIOState, memory_listener); 679 680 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { 681 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 682 int128_get64(section->size)); 683 } 684 } 685 686 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, 687 int old, int new) 688 { 689 XenIOState *state = container_of(listener, XenIOState, memory_listener); 690 691 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { 692 state->log_for_dirtybit = NULL; 693 g_free(state->dirty_bitmap); 694 state->dirty_bitmap = NULL; 695 /* Disable dirty bit tracking */ 696 xen_track_dirty_vram(xen_domid, 0, 0, NULL); 697 } 698 } 699 700 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) 701 { 702 XenIOState *state = container_of(listener, XenIOState, memory_listener); 703 704 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 705 int128_get64(section->size)); 706 } 707 708 static void xen_log_global_start(MemoryListener *listener) 709 { 710 if (xen_enabled()) { 711 xen_in_migration = true; 712 } 713 } 714 715 static void xen_log_global_stop(MemoryListener *listener) 716 { 717 xen_in_migration = false; 718 } 719 720 static MemoryListener xen_memory_listener = { 721 .region_add = xen_region_add, 722 .region_del = xen_region_del, 723 .log_start = xen_log_start, 724 .log_stop = xen_log_stop, 725 .log_sync = xen_log_sync, 726 .log_global_start = xen_log_global_start, 727 .log_global_stop = xen_log_global_stop, 728 .priority = 10, 729 }; 730 731 static MemoryListener xen_io_listener = { 732 .region_add = xen_io_add, 733 .region_del = xen_io_del, 734 .priority = 10, 735 }; 736 737 static DeviceListener xen_device_listener = { 738 .realize = xen_device_realize, 739 .unrealize = xen_device_unrealize, 740 }; 741 742 /* get the ioreq packets from share mem */ 743 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) 744 { 745 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); 746 747 if (req->state != STATE_IOREQ_READY) { 748 DPRINTF("I/O request not ready: " 749 "%x, ptr: %x, port: %"PRIx64", " 750 "data: %"PRIx64", count: %u, size: %u\n", 751 req->state, req->data_is_ptr, req->addr, 752 req->data, req->count, req->size); 753 return NULL; 754 } 755 756 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ 757 758 req->state = STATE_IOREQ_INPROCESS; 759 return req; 760 } 761 762 /* use poll to get the port notification */ 763 /* ioreq_vec--out,the */ 764 /* retval--the number of ioreq packet */ 765 static ioreq_t *cpu_get_ioreq(XenIOState *state) 766 { 767 MachineState *ms = MACHINE(qdev_get_machine()); 768 unsigned int max_cpus = ms->smp.max_cpus; 769 int i; 770 evtchn_port_t port; 771 772 port = xenevtchn_pending(state->xce_handle); 773 if (port == state->bufioreq_local_port) { 774 timer_mod(state->buffered_io_timer, 775 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 776 return NULL; 777 } 778 779 if (port != -1) { 780 for (i = 0; i < max_cpus; i++) { 781 if (state->ioreq_local_port[i] == port) { 782 break; 783 } 784 } 785 786 if (i == max_cpus) { 787 hw_error("Fatal error while trying to get io event!\n"); 788 } 789 790 /* unmask the wanted port again */ 791 xenevtchn_unmask(state->xce_handle, port); 792 793 /* get the io packet from shared memory */ 794 state->send_vcpu = i; 795 return cpu_get_ioreq_from_shared_memory(state, i); 796 } 797 798 /* read error or read nothing */ 799 return NULL; 800 } 801 802 static uint32_t do_inp(uint32_t addr, unsigned long size) 803 { 804 switch (size) { 805 case 1: 806 return cpu_inb(addr); 807 case 2: 808 return cpu_inw(addr); 809 case 4: 810 return cpu_inl(addr); 811 default: 812 hw_error("inp: bad size: %04x %lx", addr, size); 813 } 814 } 815 816 static void do_outp(uint32_t addr, 817 unsigned long size, uint32_t val) 818 { 819 switch (size) { 820 case 1: 821 return cpu_outb(addr, val); 822 case 2: 823 return cpu_outw(addr, val); 824 case 4: 825 return cpu_outl(addr, val); 826 default: 827 hw_error("outp: bad size: %04x %lx", addr, size); 828 } 829 } 830 831 /* 832 * Helper functions which read/write an object from/to physical guest 833 * memory, as part of the implementation of an ioreq. 834 * 835 * Equivalent to 836 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, 837 * val, req->size, 0/1) 838 * except without the integer overflow problems. 839 */ 840 static void rw_phys_req_item(hwaddr addr, 841 ioreq_t *req, uint32_t i, void *val, int rw) 842 { 843 /* Do everything unsigned so overflow just results in a truncated result 844 * and accesses to undesired parts of guest memory, which is up 845 * to the guest */ 846 hwaddr offset = (hwaddr)req->size * i; 847 if (req->df) { 848 addr -= offset; 849 } else { 850 addr += offset; 851 } 852 cpu_physical_memory_rw(addr, val, req->size, rw); 853 } 854 855 static inline void read_phys_req_item(hwaddr addr, 856 ioreq_t *req, uint32_t i, void *val) 857 { 858 rw_phys_req_item(addr, req, i, val, 0); 859 } 860 static inline void write_phys_req_item(hwaddr addr, 861 ioreq_t *req, uint32_t i, void *val) 862 { 863 rw_phys_req_item(addr, req, i, val, 1); 864 } 865 866 867 static void cpu_ioreq_pio(ioreq_t *req) 868 { 869 uint32_t i; 870 871 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, 872 req->data, req->count, req->size); 873 874 if (req->size > sizeof(uint32_t)) { 875 hw_error("PIO: bad size (%u)", req->size); 876 } 877 878 if (req->dir == IOREQ_READ) { 879 if (!req->data_is_ptr) { 880 req->data = do_inp(req->addr, req->size); 881 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, 882 req->size); 883 } else { 884 uint32_t tmp; 885 886 for (i = 0; i < req->count; i++) { 887 tmp = do_inp(req->addr, req->size); 888 write_phys_req_item(req->data, req, i, &tmp); 889 } 890 } 891 } else if (req->dir == IOREQ_WRITE) { 892 if (!req->data_is_ptr) { 893 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, 894 req->size); 895 do_outp(req->addr, req->size, req->data); 896 } else { 897 for (i = 0; i < req->count; i++) { 898 uint32_t tmp = 0; 899 900 read_phys_req_item(req->data, req, i, &tmp); 901 do_outp(req->addr, req->size, tmp); 902 } 903 } 904 } 905 } 906 907 static void cpu_ioreq_move(ioreq_t *req) 908 { 909 uint32_t i; 910 911 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, 912 req->data, req->count, req->size); 913 914 if (req->size > sizeof(req->data)) { 915 hw_error("MMIO: bad size (%u)", req->size); 916 } 917 918 if (!req->data_is_ptr) { 919 if (req->dir == IOREQ_READ) { 920 for (i = 0; i < req->count; i++) { 921 read_phys_req_item(req->addr, req, i, &req->data); 922 } 923 } else if (req->dir == IOREQ_WRITE) { 924 for (i = 0; i < req->count; i++) { 925 write_phys_req_item(req->addr, req, i, &req->data); 926 } 927 } 928 } else { 929 uint64_t tmp; 930 931 if (req->dir == IOREQ_READ) { 932 for (i = 0; i < req->count; i++) { 933 read_phys_req_item(req->addr, req, i, &tmp); 934 write_phys_req_item(req->data, req, i, &tmp); 935 } 936 } else if (req->dir == IOREQ_WRITE) { 937 for (i = 0; i < req->count; i++) { 938 read_phys_req_item(req->data, req, i, &tmp); 939 write_phys_req_item(req->addr, req, i, &tmp); 940 } 941 } 942 } 943 } 944 945 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req) 946 { 947 uint32_t sbdf = req->addr >> 32; 948 uint32_t reg = req->addr; 949 XenPciDevice *xendev; 950 951 if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) && 952 req->size != sizeof(uint32_t)) { 953 hw_error("PCI config access: bad size (%u)", req->size); 954 } 955 956 if (req->count != 1) { 957 hw_error("PCI config access: bad count (%u)", req->count); 958 } 959 960 QLIST_FOREACH(xendev, &state->dev_list, entry) { 961 if (xendev->sbdf != sbdf) { 962 continue; 963 } 964 965 if (!req->data_is_ptr) { 966 if (req->dir == IOREQ_READ) { 967 req->data = pci_host_config_read_common( 968 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 969 req->size); 970 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 971 req->size, req->data); 972 } else if (req->dir == IOREQ_WRITE) { 973 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 974 req->size, req->data); 975 pci_host_config_write_common( 976 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 977 req->data, req->size); 978 } 979 } else { 980 uint32_t tmp; 981 982 if (req->dir == IOREQ_READ) { 983 tmp = pci_host_config_read_common( 984 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 985 req->size); 986 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 987 req->size, tmp); 988 write_phys_req_item(req->data, req, 0, &tmp); 989 } else if (req->dir == IOREQ_WRITE) { 990 read_phys_req_item(req->data, req, 0, &tmp); 991 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 992 req->size, tmp); 993 pci_host_config_write_common( 994 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 995 tmp, req->size); 996 } 997 } 998 } 999 } 1000 1001 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) 1002 { 1003 X86CPU *cpu; 1004 CPUX86State *env; 1005 1006 cpu = X86_CPU(current_cpu); 1007 env = &cpu->env; 1008 env->regs[R_EAX] = req->data; 1009 env->regs[R_EBX] = vmport_regs->ebx; 1010 env->regs[R_ECX] = vmport_regs->ecx; 1011 env->regs[R_EDX] = vmport_regs->edx; 1012 env->regs[R_ESI] = vmport_regs->esi; 1013 env->regs[R_EDI] = vmport_regs->edi; 1014 } 1015 1016 static void regs_from_cpu(vmware_regs_t *vmport_regs) 1017 { 1018 X86CPU *cpu = X86_CPU(current_cpu); 1019 CPUX86State *env = &cpu->env; 1020 1021 vmport_regs->ebx = env->regs[R_EBX]; 1022 vmport_regs->ecx = env->regs[R_ECX]; 1023 vmport_regs->edx = env->regs[R_EDX]; 1024 vmport_regs->esi = env->regs[R_ESI]; 1025 vmport_regs->edi = env->regs[R_EDI]; 1026 } 1027 1028 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) 1029 { 1030 vmware_regs_t *vmport_regs; 1031 1032 assert(state->shared_vmport_page); 1033 vmport_regs = 1034 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; 1035 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); 1036 1037 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; 1038 regs_to_cpu(vmport_regs, req); 1039 cpu_ioreq_pio(req); 1040 regs_from_cpu(vmport_regs); 1041 current_cpu = NULL; 1042 } 1043 1044 static void handle_ioreq(XenIOState *state, ioreq_t *req) 1045 { 1046 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, 1047 req->addr, req->data, req->count, req->size); 1048 1049 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && 1050 (req->size < sizeof (target_ulong))) { 1051 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; 1052 } 1053 1054 if (req->dir == IOREQ_WRITE) 1055 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, 1056 req->addr, req->data, req->count, req->size); 1057 1058 switch (req->type) { 1059 case IOREQ_TYPE_PIO: 1060 cpu_ioreq_pio(req); 1061 break; 1062 case IOREQ_TYPE_COPY: 1063 cpu_ioreq_move(req); 1064 break; 1065 case IOREQ_TYPE_VMWARE_PORT: 1066 handle_vmport_ioreq(state, req); 1067 break; 1068 case IOREQ_TYPE_TIMEOFFSET: 1069 break; 1070 case IOREQ_TYPE_INVALIDATE: 1071 xen_invalidate_map_cache(); 1072 break; 1073 case IOREQ_TYPE_PCI_CONFIG: 1074 cpu_ioreq_config(state, req); 1075 break; 1076 default: 1077 hw_error("Invalid ioreq type 0x%x\n", req->type); 1078 } 1079 if (req->dir == IOREQ_READ) { 1080 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, 1081 req->addr, req->data, req->count, req->size); 1082 } 1083 } 1084 1085 static int handle_buffered_iopage(XenIOState *state) 1086 { 1087 buffered_iopage_t *buf_page = state->buffered_io_page; 1088 buf_ioreq_t *buf_req = NULL; 1089 ioreq_t req; 1090 int qw; 1091 1092 if (!buf_page) { 1093 return 0; 1094 } 1095 1096 memset(&req, 0x00, sizeof(req)); 1097 req.state = STATE_IOREQ_READY; 1098 req.count = 1; 1099 req.dir = IOREQ_WRITE; 1100 1101 for (;;) { 1102 uint32_t rdptr = buf_page->read_pointer, wrptr; 1103 1104 xen_rmb(); 1105 wrptr = buf_page->write_pointer; 1106 xen_rmb(); 1107 if (rdptr != buf_page->read_pointer) { 1108 continue; 1109 } 1110 if (rdptr == wrptr) { 1111 break; 1112 } 1113 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; 1114 req.size = 1U << buf_req->size; 1115 req.addr = buf_req->addr; 1116 req.data = buf_req->data; 1117 req.type = buf_req->type; 1118 xen_rmb(); 1119 qw = (req.size == 8); 1120 if (qw) { 1121 if (rdptr + 1 == wrptr) { 1122 hw_error("Incomplete quad word buffered ioreq"); 1123 } 1124 buf_req = &buf_page->buf_ioreq[(rdptr + 1) % 1125 IOREQ_BUFFER_SLOT_NUM]; 1126 req.data |= ((uint64_t)buf_req->data) << 32; 1127 xen_rmb(); 1128 } 1129 1130 handle_ioreq(state, &req); 1131 1132 /* Only req.data may get updated by handle_ioreq(), albeit even that 1133 * should not happen as such data would never make it to the guest (we 1134 * can only usefully see writes here after all). 1135 */ 1136 assert(req.state == STATE_IOREQ_READY); 1137 assert(req.count == 1); 1138 assert(req.dir == IOREQ_WRITE); 1139 assert(!req.data_is_ptr); 1140 1141 atomic_add(&buf_page->read_pointer, qw + 1); 1142 } 1143 1144 return req.count; 1145 } 1146 1147 static void handle_buffered_io(void *opaque) 1148 { 1149 XenIOState *state = opaque; 1150 1151 if (handle_buffered_iopage(state)) { 1152 timer_mod(state->buffered_io_timer, 1153 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 1154 } else { 1155 timer_del(state->buffered_io_timer); 1156 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port); 1157 } 1158 } 1159 1160 static void cpu_handle_ioreq(void *opaque) 1161 { 1162 XenIOState *state = opaque; 1163 ioreq_t *req = cpu_get_ioreq(state); 1164 1165 handle_buffered_iopage(state); 1166 if (req) { 1167 ioreq_t copy = *req; 1168 1169 xen_rmb(); 1170 handle_ioreq(state, ©); 1171 req->data = copy.data; 1172 1173 if (req->state != STATE_IOREQ_INPROCESS) { 1174 fprintf(stderr, "Badness in I/O request ... not in service?!: " 1175 "%x, ptr: %x, port: %"PRIx64", " 1176 "data: %"PRIx64", count: %u, size: %u, type: %u\n", 1177 req->state, req->data_is_ptr, req->addr, 1178 req->data, req->count, req->size, req->type); 1179 destroy_hvm_domain(false); 1180 return; 1181 } 1182 1183 xen_wmb(); /* Update ioreq contents /then/ update state. */ 1184 1185 /* 1186 * We do this before we send the response so that the tools 1187 * have the opportunity to pick up on the reset before the 1188 * guest resumes and does a hlt with interrupts disabled which 1189 * causes Xen to powerdown the domain. 1190 */ 1191 if (runstate_is_running()) { 1192 ShutdownCause request; 1193 1194 if (qemu_shutdown_requested_get()) { 1195 destroy_hvm_domain(false); 1196 } 1197 request = qemu_reset_requested_get(); 1198 if (request) { 1199 qemu_system_reset(request); 1200 destroy_hvm_domain(true); 1201 } 1202 } 1203 1204 req->state = STATE_IORESP_READY; 1205 xenevtchn_notify(state->xce_handle, 1206 state->ioreq_local_port[state->send_vcpu]); 1207 } 1208 } 1209 1210 static void xen_main_loop_prepare(XenIOState *state) 1211 { 1212 int evtchn_fd = -1; 1213 1214 if (state->xce_handle != NULL) { 1215 evtchn_fd = xenevtchn_fd(state->xce_handle); 1216 } 1217 1218 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, 1219 state); 1220 1221 if (evtchn_fd != -1) { 1222 CPUState *cpu_state; 1223 1224 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); 1225 CPU_FOREACH(cpu_state) { 1226 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", 1227 __func__, cpu_state->cpu_index, cpu_state); 1228 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; 1229 } 1230 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); 1231 } 1232 } 1233 1234 1235 static void xen_hvm_change_state_handler(void *opaque, int running, 1236 RunState rstate) 1237 { 1238 XenIOState *state = opaque; 1239 1240 if (running) { 1241 xen_main_loop_prepare(state); 1242 } 1243 1244 xen_set_ioreq_server_state(xen_domid, 1245 state->ioservid, 1246 (rstate == RUN_STATE_RUNNING)); 1247 } 1248 1249 static void xen_exit_notifier(Notifier *n, void *data) 1250 { 1251 XenIOState *state = container_of(n, XenIOState, exit); 1252 1253 xen_destroy_ioreq_server(xen_domid, state->ioservid); 1254 1255 xenevtchn_close(state->xce_handle); 1256 xs_daemon_close(state->xenstore); 1257 } 1258 1259 #ifdef XEN_COMPAT_PHYSMAP 1260 static void xen_read_physmap(XenIOState *state) 1261 { 1262 XenPhysmap *physmap = NULL; 1263 unsigned int len, num, i; 1264 char path[80], *value = NULL; 1265 char **entries = NULL; 1266 1267 snprintf(path, sizeof(path), 1268 "/local/domain/0/device-model/%d/physmap", xen_domid); 1269 entries = xs_directory(state->xenstore, 0, path, &num); 1270 if (entries == NULL) 1271 return; 1272 1273 for (i = 0; i < num; i++) { 1274 physmap = g_malloc(sizeof (XenPhysmap)); 1275 physmap->phys_offset = strtoull(entries[i], NULL, 16); 1276 snprintf(path, sizeof(path), 1277 "/local/domain/0/device-model/%d/physmap/%s/start_addr", 1278 xen_domid, entries[i]); 1279 value = xs_read(state->xenstore, 0, path, &len); 1280 if (value == NULL) { 1281 g_free(physmap); 1282 continue; 1283 } 1284 physmap->start_addr = strtoull(value, NULL, 16); 1285 free(value); 1286 1287 snprintf(path, sizeof(path), 1288 "/local/domain/0/device-model/%d/physmap/%s/size", 1289 xen_domid, entries[i]); 1290 value = xs_read(state->xenstore, 0, path, &len); 1291 if (value == NULL) { 1292 g_free(physmap); 1293 continue; 1294 } 1295 physmap->size = strtoull(value, NULL, 16); 1296 free(value); 1297 1298 snprintf(path, sizeof(path), 1299 "/local/domain/0/device-model/%d/physmap/%s/name", 1300 xen_domid, entries[i]); 1301 physmap->name = xs_read(state->xenstore, 0, path, &len); 1302 1303 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 1304 } 1305 free(entries); 1306 } 1307 #else 1308 static void xen_read_physmap(XenIOState *state) 1309 { 1310 } 1311 #endif 1312 1313 static void xen_wakeup_notifier(Notifier *notifier, void *data) 1314 { 1315 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); 1316 } 1317 1318 static int xen_map_ioreq_server(XenIOState *state) 1319 { 1320 void *addr = NULL; 1321 xenforeignmemory_resource_handle *fres; 1322 xen_pfn_t ioreq_pfn; 1323 xen_pfn_t bufioreq_pfn; 1324 evtchn_port_t bufioreq_evtchn; 1325 int rc; 1326 1327 /* 1328 * Attempt to map using the resource API and fall back to normal 1329 * foreign mapping if this is not supported. 1330 */ 1331 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0); 1332 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1); 1333 fres = xenforeignmemory_map_resource(xen_fmem, xen_domid, 1334 XENMEM_resource_ioreq_server, 1335 state->ioservid, 0, 2, 1336 &addr, 1337 PROT_READ | PROT_WRITE, 0); 1338 if (fres != NULL) { 1339 trace_xen_map_resource_ioreq(state->ioservid, addr); 1340 state->buffered_io_page = addr; 1341 state->shared_page = addr + TARGET_PAGE_SIZE; 1342 } else if (errno != EOPNOTSUPP) { 1343 error_report("failed to map ioreq server resources: error %d handle=%p", 1344 errno, xen_xc); 1345 return -1; 1346 } 1347 1348 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid, 1349 (state->shared_page == NULL) ? 1350 &ioreq_pfn : NULL, 1351 (state->buffered_io_page == NULL) ? 1352 &bufioreq_pfn : NULL, 1353 &bufioreq_evtchn); 1354 if (rc < 0) { 1355 error_report("failed to get ioreq server info: error %d handle=%p", 1356 errno, xen_xc); 1357 return rc; 1358 } 1359 1360 if (state->shared_page == NULL) { 1361 DPRINTF("shared page at pfn %lx\n", ioreq_pfn); 1362 1363 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, 1364 PROT_READ | PROT_WRITE, 1365 1, &ioreq_pfn, NULL); 1366 if (state->shared_page == NULL) { 1367 error_report("map shared IO page returned error %d handle=%p", 1368 errno, xen_xc); 1369 } 1370 } 1371 1372 if (state->buffered_io_page == NULL) { 1373 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); 1374 1375 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, 1376 PROT_READ | PROT_WRITE, 1377 1, &bufioreq_pfn, 1378 NULL); 1379 if (state->buffered_io_page == NULL) { 1380 error_report("map buffered IO page returned error %d", errno); 1381 return -1; 1382 } 1383 } 1384 1385 if (state->shared_page == NULL || state->buffered_io_page == NULL) { 1386 return -1; 1387 } 1388 1389 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); 1390 1391 state->bufioreq_remote_port = bufioreq_evtchn; 1392 1393 return 0; 1394 } 1395 1396 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory) 1397 { 1398 MachineState *ms = MACHINE(pcms); 1399 unsigned int max_cpus = ms->smp.max_cpus; 1400 int i, rc; 1401 xen_pfn_t ioreq_pfn; 1402 XenIOState *state; 1403 1404 state = g_malloc0(sizeof (XenIOState)); 1405 1406 state->xce_handle = xenevtchn_open(NULL, 0); 1407 if (state->xce_handle == NULL) { 1408 perror("xen: event channel open"); 1409 goto err; 1410 } 1411 1412 state->xenstore = xs_daemon_open(); 1413 if (state->xenstore == NULL) { 1414 perror("xen: xenstore open"); 1415 goto err; 1416 } 1417 1418 xen_create_ioreq_server(xen_domid, &state->ioservid); 1419 1420 state->exit.notify = xen_exit_notifier; 1421 qemu_add_exit_notifier(&state->exit); 1422 1423 state->suspend.notify = xen_suspend_notifier; 1424 qemu_register_suspend_notifier(&state->suspend); 1425 1426 state->wakeup.notify = xen_wakeup_notifier; 1427 qemu_register_wakeup_notifier(&state->wakeup); 1428 1429 /* 1430 * Register wake-up support in QMP query-current-machine API 1431 */ 1432 qemu_register_wakeup_support(); 1433 1434 rc = xen_map_ioreq_server(state); 1435 if (rc < 0) { 1436 goto err; 1437 } 1438 1439 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); 1440 if (!rc) { 1441 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); 1442 state->shared_vmport_page = 1443 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1444 1, &ioreq_pfn, NULL); 1445 if (state->shared_vmport_page == NULL) { 1446 error_report("map shared vmport IO page returned error %d handle=%p", 1447 errno, xen_xc); 1448 goto err; 1449 } 1450 } else if (rc != -ENOSYS) { 1451 error_report("get vmport regs pfn returned error %d, rc=%d", 1452 errno, rc); 1453 goto err; 1454 } 1455 1456 /* Note: cpus is empty at this point in init */ 1457 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *)); 1458 1459 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true); 1460 if (rc < 0) { 1461 error_report("failed to enable ioreq server info: error %d handle=%p", 1462 errno, xen_xc); 1463 goto err; 1464 } 1465 1466 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t)); 1467 1468 /* FIXME: how about if we overflow the page here? */ 1469 for (i = 0; i < max_cpus; i++) { 1470 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1471 xen_vcpu_eport(state->shared_page, i)); 1472 if (rc == -1) { 1473 error_report("shared evtchn %d bind error %d", i, errno); 1474 goto err; 1475 } 1476 state->ioreq_local_port[i] = rc; 1477 } 1478 1479 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1480 state->bufioreq_remote_port); 1481 if (rc == -1) { 1482 error_report("buffered evtchn bind error %d", errno); 1483 goto err; 1484 } 1485 state->bufioreq_local_port = rc; 1486 1487 /* Init RAM management */ 1488 #ifdef XEN_COMPAT_PHYSMAP 1489 xen_map_cache_init(xen_phys_offset_to_gaddr, state); 1490 #else 1491 xen_map_cache_init(NULL, state); 1492 #endif 1493 xen_ram_init(pcms, ram_size, ram_memory); 1494 1495 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); 1496 1497 state->memory_listener = xen_memory_listener; 1498 memory_listener_register(&state->memory_listener, &address_space_memory); 1499 state->log_for_dirtybit = NULL; 1500 1501 state->io_listener = xen_io_listener; 1502 memory_listener_register(&state->io_listener, &address_space_io); 1503 1504 state->device_listener = xen_device_listener; 1505 QLIST_INIT(&state->dev_list); 1506 device_listener_register(&state->device_listener); 1507 1508 xen_bus_init(); 1509 1510 /* Initialize backend core & drivers */ 1511 if (xen_be_init() != 0) { 1512 error_report("xen backend core setup failed"); 1513 goto err; 1514 } 1515 xen_be_register_common(); 1516 1517 QLIST_INIT(&xen_physmap); 1518 xen_read_physmap(state); 1519 1520 /* Disable ACPI build because Xen handles it */ 1521 pcms->acpi_build_enabled = false; 1522 1523 return; 1524 1525 err: 1526 error_report("xen hardware virtual machine initialisation failed"); 1527 exit(1); 1528 } 1529 1530 void destroy_hvm_domain(bool reboot) 1531 { 1532 xc_interface *xc_handle; 1533 int sts; 1534 int rc; 1535 1536 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff; 1537 1538 if (xen_dmod) { 1539 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason); 1540 if (!rc) { 1541 return; 1542 } 1543 if (errno != ENOTTY /* old Xen */) { 1544 perror("xendevicemodel_shutdown failed"); 1545 } 1546 /* well, try the old thing then */ 1547 } 1548 1549 xc_handle = xc_interface_open(0, 0, 0); 1550 if (xc_handle == NULL) { 1551 fprintf(stderr, "Cannot acquire xenctrl handle\n"); 1552 } else { 1553 sts = xc_domain_shutdown(xc_handle, xen_domid, reason); 1554 if (sts != 0) { 1555 fprintf(stderr, "xc_domain_shutdown failed to issue %s, " 1556 "sts %d, %s\n", reboot ? "reboot" : "poweroff", 1557 sts, strerror(errno)); 1558 } else { 1559 fprintf(stderr, "Issued domain %d %s\n", xen_domid, 1560 reboot ? "reboot" : "poweroff"); 1561 } 1562 xc_interface_close(xc_handle); 1563 } 1564 } 1565 1566 void xen_register_framebuffer(MemoryRegion *mr) 1567 { 1568 framebuffer = mr; 1569 } 1570 1571 void xen_shutdown_fatal_error(const char *fmt, ...) 1572 { 1573 va_list ap; 1574 1575 va_start(ap, fmt); 1576 vfprintf(stderr, fmt, ap); 1577 va_end(ap); 1578 fprintf(stderr, "Will destroy the domain.\n"); 1579 /* destroy the domain */ 1580 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR); 1581 } 1582 1583 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length) 1584 { 1585 if (unlikely(xen_in_migration)) { 1586 int rc; 1587 ram_addr_t start_pfn, nb_pages; 1588 1589 start = xen_phys_offset_to_gaddr(start, length); 1590 1591 if (length == 0) { 1592 length = TARGET_PAGE_SIZE; 1593 } 1594 start_pfn = start >> TARGET_PAGE_BITS; 1595 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) 1596 - start_pfn; 1597 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages); 1598 if (rc) { 1599 fprintf(stderr, 1600 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", 1601 __func__, start, nb_pages, errno, strerror(errno)); 1602 } 1603 } 1604 } 1605 1606 void qmp_xen_set_global_dirty_log(bool enable, Error **errp) 1607 { 1608 if (enable) { 1609 memory_global_dirty_log_start(); 1610 } else { 1611 memory_global_dirty_log_stop(); 1612 } 1613 } 1614