1 /* 2 * Copyright (C) 2010 Citrix Ltd. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 * 7 * Contributions after 2012-01-13 are licensed under the terms of the 8 * GNU GPL, version 2 or (at your option) any later version. 9 */ 10 11 #include "qemu/osdep.h" 12 13 #include "cpu.h" 14 #include "hw/pci/pci.h" 15 #include "hw/i386/pc.h" 16 #include "hw/i386/apic-msidef.h" 17 #include "hw/xen/xen_common.h" 18 #include "hw/xen/xen_backend.h" 19 #include "qmp-commands.h" 20 21 #include "qemu/error-report.h" 22 #include "qemu/range.h" 23 #include "sysemu/xen-mapcache.h" 24 #include "trace.h" 25 #include "exec/address-spaces.h" 26 27 #include <xen/hvm/ioreq.h> 28 #include <xen/hvm/params.h> 29 #include <xen/hvm/e820.h> 30 31 //#define DEBUG_XEN_HVM 32 33 #ifdef DEBUG_XEN_HVM 34 #define DPRINTF(fmt, ...) \ 35 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) 36 #else 37 #define DPRINTF(fmt, ...) \ 38 do { } while (0) 39 #endif 40 41 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; 42 static MemoryRegion *framebuffer; 43 static bool xen_in_migration; 44 45 /* Compatibility with older version */ 46 47 /* This allows QEMU to build on a system that has Xen 4.5 or earlier 48 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h 49 * needs to be included before this block and hw/xen/xen_common.h needs to 50 * be included before xen/hvm/ioreq.h 51 */ 52 #ifndef IOREQ_TYPE_VMWARE_PORT 53 #define IOREQ_TYPE_VMWARE_PORT 3 54 struct vmware_regs { 55 uint32_t esi; 56 uint32_t edi; 57 uint32_t ebx; 58 uint32_t ecx; 59 uint32_t edx; 60 }; 61 typedef struct vmware_regs vmware_regs_t; 62 63 struct shared_vmport_iopage { 64 struct vmware_regs vcpu_vmport_regs[1]; 65 }; 66 typedef struct shared_vmport_iopage shared_vmport_iopage_t; 67 #endif 68 69 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) 70 { 71 return shared_page->vcpu_ioreq[i].vp_eport; 72 } 73 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) 74 { 75 return &shared_page->vcpu_ioreq[vcpu]; 76 } 77 78 #define BUFFER_IO_MAX_DELAY 100 79 80 typedef struct XenPhysmap { 81 hwaddr start_addr; 82 ram_addr_t size; 83 const char *name; 84 hwaddr phys_offset; 85 86 QLIST_ENTRY(XenPhysmap) list; 87 } XenPhysmap; 88 89 typedef struct XenIOState { 90 ioservid_t ioservid; 91 shared_iopage_t *shared_page; 92 shared_vmport_iopage_t *shared_vmport_page; 93 buffered_iopage_t *buffered_io_page; 94 QEMUTimer *buffered_io_timer; 95 CPUState **cpu_by_vcpu_id; 96 /* the evtchn port for polling the notification, */ 97 evtchn_port_t *ioreq_local_port; 98 /* evtchn local port for buffered io */ 99 evtchn_port_t bufioreq_local_port; 100 /* the evtchn fd for polling */ 101 xenevtchn_handle *xce_handle; 102 /* which vcpu we are serving */ 103 int send_vcpu; 104 105 struct xs_handle *xenstore; 106 MemoryListener memory_listener; 107 MemoryListener io_listener; 108 DeviceListener device_listener; 109 QLIST_HEAD(, XenPhysmap) physmap; 110 hwaddr free_phys_offset; 111 const XenPhysmap *log_for_dirtybit; 112 113 Notifier exit; 114 Notifier suspend; 115 Notifier wakeup; 116 } XenIOState; 117 118 /* Xen specific function for piix pci */ 119 120 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) 121 { 122 return irq_num + ((pci_dev->devfn >> 3) << 2); 123 } 124 125 void xen_piix3_set_irq(void *opaque, int irq_num, int level) 126 { 127 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2, 128 irq_num & 3, level); 129 } 130 131 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) 132 { 133 int i; 134 135 /* Scan for updates to PCI link routes (0x60-0x63). */ 136 for (i = 0; i < len; i++) { 137 uint8_t v = (val >> (8 * i)) & 0xff; 138 if (v & 0x80) { 139 v = 0; 140 } 141 v &= 0xf; 142 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { 143 xen_set_pci_link_route(xen_domid, address + i - 0x60, v); 144 } 145 } 146 } 147 148 int xen_is_pirq_msi(uint32_t msi_data) 149 { 150 /* If vector is 0, the msi is remapped into a pirq, passed as 151 * dest_id. 152 */ 153 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0; 154 } 155 156 void xen_hvm_inject_msi(uint64_t addr, uint32_t data) 157 { 158 xen_inject_msi(xen_domid, addr, data); 159 } 160 161 static void xen_suspend_notifier(Notifier *notifier, void *data) 162 { 163 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); 164 } 165 166 /* Xen Interrupt Controller */ 167 168 static void xen_set_irq(void *opaque, int irq, int level) 169 { 170 xen_set_isa_irq_level(xen_domid, irq, level); 171 } 172 173 qemu_irq *xen_interrupt_controller_init(void) 174 { 175 return qemu_allocate_irqs(xen_set_irq, NULL, 16); 176 } 177 178 /* Memory Ops */ 179 180 static void xen_ram_init(PCMachineState *pcms, 181 ram_addr_t ram_size, MemoryRegion **ram_memory_p) 182 { 183 MemoryRegion *sysmem = get_system_memory(); 184 ram_addr_t block_len; 185 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(), 186 PC_MACHINE_MAX_RAM_BELOW_4G, 187 &error_abort); 188 189 /* Handle the machine opt max-ram-below-4g. It is basically doing 190 * min(xen limit, user limit). 191 */ 192 if (!user_lowmem) { 193 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */ 194 } 195 if (HVM_BELOW_4G_RAM_END <= user_lowmem) { 196 user_lowmem = HVM_BELOW_4G_RAM_END; 197 } 198 199 if (ram_size >= user_lowmem) { 200 pcms->above_4g_mem_size = ram_size - user_lowmem; 201 pcms->below_4g_mem_size = user_lowmem; 202 } else { 203 pcms->above_4g_mem_size = 0; 204 pcms->below_4g_mem_size = ram_size; 205 } 206 if (!pcms->above_4g_mem_size) { 207 block_len = ram_size; 208 } else { 209 /* 210 * Xen does not allocate the memory continuously, it keeps a 211 * hole of the size computed above or passed in. 212 */ 213 block_len = (1ULL << 32) + pcms->above_4g_mem_size; 214 } 215 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, 216 &error_fatal); 217 *ram_memory_p = &ram_memory; 218 219 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", 220 &ram_memory, 0, 0xa0000); 221 memory_region_add_subregion(sysmem, 0, &ram_640k); 222 /* Skip of the VGA IO memory space, it will be registered later by the VGA 223 * emulated device. 224 * 225 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load 226 * the Options ROM, so it is registered here as RAM. 227 */ 228 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", 229 &ram_memory, 0xc0000, 230 pcms->below_4g_mem_size - 0xc0000); 231 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); 232 if (pcms->above_4g_mem_size > 0) { 233 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", 234 &ram_memory, 0x100000000ULL, 235 pcms->above_4g_mem_size); 236 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); 237 } 238 } 239 240 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, 241 Error **errp) 242 { 243 unsigned long nr_pfn; 244 xen_pfn_t *pfn_list; 245 int i; 246 247 if (runstate_check(RUN_STATE_INMIGRATE)) { 248 /* RAM already populated in Xen */ 249 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT 250 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", 251 __func__, size, ram_addr); 252 return; 253 } 254 255 if (mr == &ram_memory) { 256 return; 257 } 258 259 trace_xen_ram_alloc(ram_addr, size); 260 261 nr_pfn = size >> TARGET_PAGE_BITS; 262 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); 263 264 for (i = 0; i < nr_pfn; i++) { 265 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; 266 } 267 268 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { 269 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, 270 ram_addr); 271 } 272 273 g_free(pfn_list); 274 } 275 276 static XenPhysmap *get_physmapping(XenIOState *state, 277 hwaddr start_addr, ram_addr_t size) 278 { 279 XenPhysmap *physmap = NULL; 280 281 start_addr &= TARGET_PAGE_MASK; 282 283 QLIST_FOREACH(physmap, &state->physmap, list) { 284 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { 285 return physmap; 286 } 287 } 288 return NULL; 289 } 290 291 #ifdef XEN_COMPAT_PHYSMAP 292 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr, 293 ram_addr_t size, void *opaque) 294 { 295 hwaddr addr = start_addr & TARGET_PAGE_MASK; 296 XenIOState *xen_io_state = opaque; 297 XenPhysmap *physmap = NULL; 298 299 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) { 300 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { 301 return physmap->start_addr; 302 } 303 } 304 305 return start_addr; 306 } 307 308 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 309 { 310 char path[80], value[17]; 311 312 snprintf(path, sizeof(path), 313 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", 314 xen_domid, (uint64_t)physmap->phys_offset); 315 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr); 316 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 317 return -1; 318 } 319 snprintf(path, sizeof(path), 320 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", 321 xen_domid, (uint64_t)physmap->phys_offset); 322 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size); 323 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 324 return -1; 325 } 326 if (physmap->name) { 327 snprintf(path, sizeof(path), 328 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", 329 xen_domid, (uint64_t)physmap->phys_offset); 330 if (!xs_write(state->xenstore, 0, path, 331 physmap->name, strlen(physmap->name))) { 332 return -1; 333 } 334 } 335 return 0; 336 } 337 #else 338 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 339 { 340 return 0; 341 } 342 #endif 343 344 static int xen_add_to_physmap(XenIOState *state, 345 hwaddr start_addr, 346 ram_addr_t size, 347 MemoryRegion *mr, 348 hwaddr offset_within_region) 349 { 350 unsigned long i = 0; 351 int rc = 0; 352 XenPhysmap *physmap = NULL; 353 hwaddr pfn, start_gpfn; 354 hwaddr phys_offset = memory_region_get_ram_addr(mr); 355 const char *mr_name; 356 357 if (get_physmapping(state, start_addr, size)) { 358 return 0; 359 } 360 if (size <= 0) { 361 return -1; 362 } 363 364 /* Xen can only handle a single dirty log region for now and we want 365 * the linear framebuffer to be that region. 366 * Avoid tracking any regions that is not videoram and avoid tracking 367 * the legacy vga region. */ 368 if (mr == framebuffer && start_addr > 0xbffff) { 369 goto go_physmap; 370 } 371 return -1; 372 373 go_physmap: 374 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", 375 start_addr, start_addr + size); 376 377 mr_name = memory_region_name(mr); 378 379 physmap = g_malloc(sizeof(XenPhysmap)); 380 381 physmap->start_addr = start_addr; 382 physmap->size = size; 383 physmap->name = mr_name; 384 physmap->phys_offset = phys_offset; 385 386 QLIST_INSERT_HEAD(&state->physmap, physmap, list); 387 388 if (runstate_check(RUN_STATE_INMIGRATE)) { 389 /* Now when we have a physmap entry we can replace a dummy mapping with 390 * a real one of guest foreign memory. */ 391 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size); 392 assert(p && p == memory_region_get_ram_ptr(mr)); 393 394 return 0; 395 } 396 397 pfn = phys_offset >> TARGET_PAGE_BITS; 398 start_gpfn = start_addr >> TARGET_PAGE_BITS; 399 for (i = 0; i < size >> TARGET_PAGE_BITS; i++) { 400 unsigned long idx = pfn + i; 401 xen_pfn_t gpfn = start_gpfn + i; 402 403 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); 404 if (rc) { 405 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %" 406 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno); 407 return -rc; 408 } 409 } 410 411 xc_domain_pin_memory_cacheattr(xen_xc, xen_domid, 412 start_addr >> TARGET_PAGE_BITS, 413 (start_addr + size - 1) >> TARGET_PAGE_BITS, 414 XEN_DOMCTL_MEM_CACHEATTR_WB); 415 return xen_save_physmap(state, physmap); 416 } 417 418 static int xen_remove_from_physmap(XenIOState *state, 419 hwaddr start_addr, 420 ram_addr_t size) 421 { 422 unsigned long i = 0; 423 int rc = 0; 424 XenPhysmap *physmap = NULL; 425 hwaddr phys_offset = 0; 426 427 physmap = get_physmapping(state, start_addr, size); 428 if (physmap == NULL) { 429 return -1; 430 } 431 432 phys_offset = physmap->phys_offset; 433 size = physmap->size; 434 435 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " 436 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); 437 438 size >>= TARGET_PAGE_BITS; 439 start_addr >>= TARGET_PAGE_BITS; 440 phys_offset >>= TARGET_PAGE_BITS; 441 for (i = 0; i < size; i++) { 442 xen_pfn_t idx = start_addr + i; 443 xen_pfn_t gpfn = phys_offset + i; 444 445 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); 446 if (rc) { 447 fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %" 448 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno); 449 return -rc; 450 } 451 } 452 453 QLIST_REMOVE(physmap, list); 454 if (state->log_for_dirtybit == physmap) { 455 state->log_for_dirtybit = NULL; 456 } 457 g_free(physmap); 458 459 return 0; 460 } 461 462 static void xen_set_memory(struct MemoryListener *listener, 463 MemoryRegionSection *section, 464 bool add) 465 { 466 XenIOState *state = container_of(listener, XenIOState, memory_listener); 467 hwaddr start_addr = section->offset_within_address_space; 468 ram_addr_t size = int128_get64(section->size); 469 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); 470 hvmmem_type_t mem_type; 471 472 if (section->mr == &ram_memory) { 473 return; 474 } else { 475 if (add) { 476 xen_map_memory_section(xen_domid, state->ioservid, 477 section); 478 } else { 479 xen_unmap_memory_section(xen_domid, state->ioservid, 480 section); 481 } 482 } 483 484 if (!memory_region_is_ram(section->mr)) { 485 return; 486 } 487 488 if (log_dirty != add) { 489 return; 490 } 491 492 trace_xen_client_set_memory(start_addr, size, log_dirty); 493 494 start_addr &= TARGET_PAGE_MASK; 495 size = TARGET_PAGE_ALIGN(size); 496 497 if (add) { 498 if (!memory_region_is_rom(section->mr)) { 499 xen_add_to_physmap(state, start_addr, size, 500 section->mr, section->offset_within_region); 501 } else { 502 mem_type = HVMMEM_ram_ro; 503 if (xen_set_mem_type(xen_domid, mem_type, 504 start_addr >> TARGET_PAGE_BITS, 505 size >> TARGET_PAGE_BITS)) { 506 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n", 507 start_addr); 508 } 509 } 510 } else { 511 if (xen_remove_from_physmap(state, start_addr, size) < 0) { 512 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); 513 } 514 } 515 } 516 517 static void xen_region_add(MemoryListener *listener, 518 MemoryRegionSection *section) 519 { 520 memory_region_ref(section->mr); 521 xen_set_memory(listener, section, true); 522 } 523 524 static void xen_region_del(MemoryListener *listener, 525 MemoryRegionSection *section) 526 { 527 xen_set_memory(listener, section, false); 528 memory_region_unref(section->mr); 529 } 530 531 static void xen_io_add(MemoryListener *listener, 532 MemoryRegionSection *section) 533 { 534 XenIOState *state = container_of(listener, XenIOState, io_listener); 535 MemoryRegion *mr = section->mr; 536 537 if (mr->ops == &unassigned_io_ops) { 538 return; 539 } 540 541 memory_region_ref(mr); 542 543 xen_map_io_section(xen_domid, state->ioservid, section); 544 } 545 546 static void xen_io_del(MemoryListener *listener, 547 MemoryRegionSection *section) 548 { 549 XenIOState *state = container_of(listener, XenIOState, io_listener); 550 MemoryRegion *mr = section->mr; 551 552 if (mr->ops == &unassigned_io_ops) { 553 return; 554 } 555 556 xen_unmap_io_section(xen_domid, state->ioservid, section); 557 558 memory_region_unref(mr); 559 } 560 561 static void xen_device_realize(DeviceListener *listener, 562 DeviceState *dev) 563 { 564 XenIOState *state = container_of(listener, XenIOState, device_listener); 565 566 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 567 PCIDevice *pci_dev = PCI_DEVICE(dev); 568 569 xen_map_pcidev(xen_domid, state->ioservid, pci_dev); 570 } 571 } 572 573 static void xen_device_unrealize(DeviceListener *listener, 574 DeviceState *dev) 575 { 576 XenIOState *state = container_of(listener, XenIOState, device_listener); 577 578 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 579 PCIDevice *pci_dev = PCI_DEVICE(dev); 580 581 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev); 582 } 583 } 584 585 static void xen_sync_dirty_bitmap(XenIOState *state, 586 hwaddr start_addr, 587 ram_addr_t size) 588 { 589 hwaddr npages = size >> TARGET_PAGE_BITS; 590 const int width = sizeof(unsigned long) * 8; 591 unsigned long bitmap[DIV_ROUND_UP(npages, width)]; 592 int rc, i, j; 593 const XenPhysmap *physmap = NULL; 594 595 physmap = get_physmapping(state, start_addr, size); 596 if (physmap == NULL) { 597 /* not handled */ 598 return; 599 } 600 601 if (state->log_for_dirtybit == NULL) { 602 state->log_for_dirtybit = physmap; 603 } else if (state->log_for_dirtybit != physmap) { 604 /* Only one range for dirty bitmap can be tracked. */ 605 return; 606 } 607 608 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS, 609 npages, bitmap); 610 if (rc < 0) { 611 #ifndef ENODATA 612 #define ENODATA ENOENT 613 #endif 614 if (errno == ENODATA) { 615 memory_region_set_dirty(framebuffer, 0, size); 616 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx 617 ", 0x" TARGET_FMT_plx "): %s\n", 618 start_addr, start_addr + size, strerror(errno)); 619 } 620 return; 621 } 622 623 for (i = 0; i < ARRAY_SIZE(bitmap); i++) { 624 unsigned long map = bitmap[i]; 625 while (map != 0) { 626 j = ctzl(map); 627 map &= ~(1ul << j); 628 memory_region_set_dirty(framebuffer, 629 (i * width + j) * TARGET_PAGE_SIZE, 630 TARGET_PAGE_SIZE); 631 }; 632 } 633 } 634 635 static void xen_log_start(MemoryListener *listener, 636 MemoryRegionSection *section, 637 int old, int new) 638 { 639 XenIOState *state = container_of(listener, XenIOState, memory_listener); 640 641 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { 642 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 643 int128_get64(section->size)); 644 } 645 } 646 647 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, 648 int old, int new) 649 { 650 XenIOState *state = container_of(listener, XenIOState, memory_listener); 651 652 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { 653 state->log_for_dirtybit = NULL; 654 /* Disable dirty bit tracking */ 655 xen_track_dirty_vram(xen_domid, 0, 0, NULL); 656 } 657 } 658 659 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) 660 { 661 XenIOState *state = container_of(listener, XenIOState, memory_listener); 662 663 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 664 int128_get64(section->size)); 665 } 666 667 static void xen_log_global_start(MemoryListener *listener) 668 { 669 if (xen_enabled()) { 670 xen_in_migration = true; 671 } 672 } 673 674 static void xen_log_global_stop(MemoryListener *listener) 675 { 676 xen_in_migration = false; 677 } 678 679 static MemoryListener xen_memory_listener = { 680 .region_add = xen_region_add, 681 .region_del = xen_region_del, 682 .log_start = xen_log_start, 683 .log_stop = xen_log_stop, 684 .log_sync = xen_log_sync, 685 .log_global_start = xen_log_global_start, 686 .log_global_stop = xen_log_global_stop, 687 .priority = 10, 688 }; 689 690 static MemoryListener xen_io_listener = { 691 .region_add = xen_io_add, 692 .region_del = xen_io_del, 693 .priority = 10, 694 }; 695 696 static DeviceListener xen_device_listener = { 697 .realize = xen_device_realize, 698 .unrealize = xen_device_unrealize, 699 }; 700 701 /* get the ioreq packets from share mem */ 702 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) 703 { 704 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); 705 706 if (req->state != STATE_IOREQ_READY) { 707 DPRINTF("I/O request not ready: " 708 "%x, ptr: %x, port: %"PRIx64", " 709 "data: %"PRIx64", count: %u, size: %u\n", 710 req->state, req->data_is_ptr, req->addr, 711 req->data, req->count, req->size); 712 return NULL; 713 } 714 715 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ 716 717 req->state = STATE_IOREQ_INPROCESS; 718 return req; 719 } 720 721 /* use poll to get the port notification */ 722 /* ioreq_vec--out,the */ 723 /* retval--the number of ioreq packet */ 724 static ioreq_t *cpu_get_ioreq(XenIOState *state) 725 { 726 int i; 727 evtchn_port_t port; 728 729 port = xenevtchn_pending(state->xce_handle); 730 if (port == state->bufioreq_local_port) { 731 timer_mod(state->buffered_io_timer, 732 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 733 return NULL; 734 } 735 736 if (port != -1) { 737 for (i = 0; i < max_cpus; i++) { 738 if (state->ioreq_local_port[i] == port) { 739 break; 740 } 741 } 742 743 if (i == max_cpus) { 744 hw_error("Fatal error while trying to get io event!\n"); 745 } 746 747 /* unmask the wanted port again */ 748 xenevtchn_unmask(state->xce_handle, port); 749 750 /* get the io packet from shared memory */ 751 state->send_vcpu = i; 752 return cpu_get_ioreq_from_shared_memory(state, i); 753 } 754 755 /* read error or read nothing */ 756 return NULL; 757 } 758 759 static uint32_t do_inp(uint32_t addr, unsigned long size) 760 { 761 switch (size) { 762 case 1: 763 return cpu_inb(addr); 764 case 2: 765 return cpu_inw(addr); 766 case 4: 767 return cpu_inl(addr); 768 default: 769 hw_error("inp: bad size: %04x %lx", addr, size); 770 } 771 } 772 773 static void do_outp(uint32_t addr, 774 unsigned long size, uint32_t val) 775 { 776 switch (size) { 777 case 1: 778 return cpu_outb(addr, val); 779 case 2: 780 return cpu_outw(addr, val); 781 case 4: 782 return cpu_outl(addr, val); 783 default: 784 hw_error("outp: bad size: %04x %lx", addr, size); 785 } 786 } 787 788 /* 789 * Helper functions which read/write an object from/to physical guest 790 * memory, as part of the implementation of an ioreq. 791 * 792 * Equivalent to 793 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, 794 * val, req->size, 0/1) 795 * except without the integer overflow problems. 796 */ 797 static void rw_phys_req_item(hwaddr addr, 798 ioreq_t *req, uint32_t i, void *val, int rw) 799 { 800 /* Do everything unsigned so overflow just results in a truncated result 801 * and accesses to undesired parts of guest memory, which is up 802 * to the guest */ 803 hwaddr offset = (hwaddr)req->size * i; 804 if (req->df) { 805 addr -= offset; 806 } else { 807 addr += offset; 808 } 809 cpu_physical_memory_rw(addr, val, req->size, rw); 810 } 811 812 static inline void read_phys_req_item(hwaddr addr, 813 ioreq_t *req, uint32_t i, void *val) 814 { 815 rw_phys_req_item(addr, req, i, val, 0); 816 } 817 static inline void write_phys_req_item(hwaddr addr, 818 ioreq_t *req, uint32_t i, void *val) 819 { 820 rw_phys_req_item(addr, req, i, val, 1); 821 } 822 823 824 static void cpu_ioreq_pio(ioreq_t *req) 825 { 826 uint32_t i; 827 828 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, 829 req->data, req->count, req->size); 830 831 if (req->size > sizeof(uint32_t)) { 832 hw_error("PIO: bad size (%u)", req->size); 833 } 834 835 if (req->dir == IOREQ_READ) { 836 if (!req->data_is_ptr) { 837 req->data = do_inp(req->addr, req->size); 838 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, 839 req->size); 840 } else { 841 uint32_t tmp; 842 843 for (i = 0; i < req->count; i++) { 844 tmp = do_inp(req->addr, req->size); 845 write_phys_req_item(req->data, req, i, &tmp); 846 } 847 } 848 } else if (req->dir == IOREQ_WRITE) { 849 if (!req->data_is_ptr) { 850 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, 851 req->size); 852 do_outp(req->addr, req->size, req->data); 853 } else { 854 for (i = 0; i < req->count; i++) { 855 uint32_t tmp = 0; 856 857 read_phys_req_item(req->data, req, i, &tmp); 858 do_outp(req->addr, req->size, tmp); 859 } 860 } 861 } 862 } 863 864 static void cpu_ioreq_move(ioreq_t *req) 865 { 866 uint32_t i; 867 868 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, 869 req->data, req->count, req->size); 870 871 if (req->size > sizeof(req->data)) { 872 hw_error("MMIO: bad size (%u)", req->size); 873 } 874 875 if (!req->data_is_ptr) { 876 if (req->dir == IOREQ_READ) { 877 for (i = 0; i < req->count; i++) { 878 read_phys_req_item(req->addr, req, i, &req->data); 879 } 880 } else if (req->dir == IOREQ_WRITE) { 881 for (i = 0; i < req->count; i++) { 882 write_phys_req_item(req->addr, req, i, &req->data); 883 } 884 } 885 } else { 886 uint64_t tmp; 887 888 if (req->dir == IOREQ_READ) { 889 for (i = 0; i < req->count; i++) { 890 read_phys_req_item(req->addr, req, i, &tmp); 891 write_phys_req_item(req->data, req, i, &tmp); 892 } 893 } else if (req->dir == IOREQ_WRITE) { 894 for (i = 0; i < req->count; i++) { 895 read_phys_req_item(req->data, req, i, &tmp); 896 write_phys_req_item(req->addr, req, i, &tmp); 897 } 898 } 899 } 900 } 901 902 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) 903 { 904 X86CPU *cpu; 905 CPUX86State *env; 906 907 cpu = X86_CPU(current_cpu); 908 env = &cpu->env; 909 env->regs[R_EAX] = req->data; 910 env->regs[R_EBX] = vmport_regs->ebx; 911 env->regs[R_ECX] = vmport_regs->ecx; 912 env->regs[R_EDX] = vmport_regs->edx; 913 env->regs[R_ESI] = vmport_regs->esi; 914 env->regs[R_EDI] = vmport_regs->edi; 915 } 916 917 static void regs_from_cpu(vmware_regs_t *vmport_regs) 918 { 919 X86CPU *cpu = X86_CPU(current_cpu); 920 CPUX86State *env = &cpu->env; 921 922 vmport_regs->ebx = env->regs[R_EBX]; 923 vmport_regs->ecx = env->regs[R_ECX]; 924 vmport_regs->edx = env->regs[R_EDX]; 925 vmport_regs->esi = env->regs[R_ESI]; 926 vmport_regs->edi = env->regs[R_EDI]; 927 } 928 929 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) 930 { 931 vmware_regs_t *vmport_regs; 932 933 assert(state->shared_vmport_page); 934 vmport_regs = 935 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; 936 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); 937 938 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; 939 regs_to_cpu(vmport_regs, req); 940 cpu_ioreq_pio(req); 941 regs_from_cpu(vmport_regs); 942 current_cpu = NULL; 943 } 944 945 static void handle_ioreq(XenIOState *state, ioreq_t *req) 946 { 947 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, 948 req->addr, req->data, req->count, req->size); 949 950 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && 951 (req->size < sizeof (target_ulong))) { 952 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; 953 } 954 955 if (req->dir == IOREQ_WRITE) 956 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, 957 req->addr, req->data, req->count, req->size); 958 959 switch (req->type) { 960 case IOREQ_TYPE_PIO: 961 cpu_ioreq_pio(req); 962 break; 963 case IOREQ_TYPE_COPY: 964 cpu_ioreq_move(req); 965 break; 966 case IOREQ_TYPE_VMWARE_PORT: 967 handle_vmport_ioreq(state, req); 968 break; 969 case IOREQ_TYPE_TIMEOFFSET: 970 break; 971 case IOREQ_TYPE_INVALIDATE: 972 xen_invalidate_map_cache(); 973 break; 974 case IOREQ_TYPE_PCI_CONFIG: { 975 uint32_t sbdf = req->addr >> 32; 976 uint32_t val; 977 978 /* Fake a write to port 0xCF8 so that 979 * the config space access will target the 980 * correct device model. 981 */ 982 val = (1u << 31) | 983 ((req->addr & 0x0f00) << 16) | 984 ((sbdf & 0xffff) << 8) | 985 (req->addr & 0xfc); 986 do_outp(0xcf8, 4, val); 987 988 /* Now issue the config space access via 989 * port 0xCFC 990 */ 991 req->addr = 0xcfc | (req->addr & 0x03); 992 cpu_ioreq_pio(req); 993 break; 994 } 995 default: 996 hw_error("Invalid ioreq type 0x%x\n", req->type); 997 } 998 if (req->dir == IOREQ_READ) { 999 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, 1000 req->addr, req->data, req->count, req->size); 1001 } 1002 } 1003 1004 static int handle_buffered_iopage(XenIOState *state) 1005 { 1006 buffered_iopage_t *buf_page = state->buffered_io_page; 1007 buf_ioreq_t *buf_req = NULL; 1008 ioreq_t req; 1009 int qw; 1010 1011 if (!buf_page) { 1012 return 0; 1013 } 1014 1015 memset(&req, 0x00, sizeof(req)); 1016 req.state = STATE_IOREQ_READY; 1017 req.count = 1; 1018 req.dir = IOREQ_WRITE; 1019 1020 for (;;) { 1021 uint32_t rdptr = buf_page->read_pointer, wrptr; 1022 1023 xen_rmb(); 1024 wrptr = buf_page->write_pointer; 1025 xen_rmb(); 1026 if (rdptr != buf_page->read_pointer) { 1027 continue; 1028 } 1029 if (rdptr == wrptr) { 1030 break; 1031 } 1032 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; 1033 req.size = 1U << buf_req->size; 1034 req.addr = buf_req->addr; 1035 req.data = buf_req->data; 1036 req.type = buf_req->type; 1037 xen_rmb(); 1038 qw = (req.size == 8); 1039 if (qw) { 1040 if (rdptr + 1 == wrptr) { 1041 hw_error("Incomplete quad word buffered ioreq"); 1042 } 1043 buf_req = &buf_page->buf_ioreq[(rdptr + 1) % 1044 IOREQ_BUFFER_SLOT_NUM]; 1045 req.data |= ((uint64_t)buf_req->data) << 32; 1046 xen_rmb(); 1047 } 1048 1049 handle_ioreq(state, &req); 1050 1051 /* Only req.data may get updated by handle_ioreq(), albeit even that 1052 * should not happen as such data would never make it to the guest (we 1053 * can only usefully see writes here after all). 1054 */ 1055 assert(req.state == STATE_IOREQ_READY); 1056 assert(req.count == 1); 1057 assert(req.dir == IOREQ_WRITE); 1058 assert(!req.data_is_ptr); 1059 1060 atomic_add(&buf_page->read_pointer, qw + 1); 1061 } 1062 1063 return req.count; 1064 } 1065 1066 static void handle_buffered_io(void *opaque) 1067 { 1068 XenIOState *state = opaque; 1069 1070 if (handle_buffered_iopage(state)) { 1071 timer_mod(state->buffered_io_timer, 1072 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 1073 } else { 1074 timer_del(state->buffered_io_timer); 1075 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port); 1076 } 1077 } 1078 1079 static void cpu_handle_ioreq(void *opaque) 1080 { 1081 XenIOState *state = opaque; 1082 ioreq_t *req = cpu_get_ioreq(state); 1083 1084 handle_buffered_iopage(state); 1085 if (req) { 1086 ioreq_t copy = *req; 1087 1088 xen_rmb(); 1089 handle_ioreq(state, ©); 1090 req->data = copy.data; 1091 1092 if (req->state != STATE_IOREQ_INPROCESS) { 1093 fprintf(stderr, "Badness in I/O request ... not in service?!: " 1094 "%x, ptr: %x, port: %"PRIx64", " 1095 "data: %"PRIx64", count: %u, size: %u, type: %u\n", 1096 req->state, req->data_is_ptr, req->addr, 1097 req->data, req->count, req->size, req->type); 1098 destroy_hvm_domain(false); 1099 return; 1100 } 1101 1102 xen_wmb(); /* Update ioreq contents /then/ update state. */ 1103 1104 /* 1105 * We do this before we send the response so that the tools 1106 * have the opportunity to pick up on the reset before the 1107 * guest resumes and does a hlt with interrupts disabled which 1108 * causes Xen to powerdown the domain. 1109 */ 1110 if (runstate_is_running()) { 1111 ShutdownCause request; 1112 1113 if (qemu_shutdown_requested_get()) { 1114 destroy_hvm_domain(false); 1115 } 1116 request = qemu_reset_requested_get(); 1117 if (request) { 1118 qemu_system_reset(request); 1119 destroy_hvm_domain(true); 1120 } 1121 } 1122 1123 req->state = STATE_IORESP_READY; 1124 xenevtchn_notify(state->xce_handle, 1125 state->ioreq_local_port[state->send_vcpu]); 1126 } 1127 } 1128 1129 static void xen_main_loop_prepare(XenIOState *state) 1130 { 1131 int evtchn_fd = -1; 1132 1133 if (state->xce_handle != NULL) { 1134 evtchn_fd = xenevtchn_fd(state->xce_handle); 1135 } 1136 1137 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, 1138 state); 1139 1140 if (evtchn_fd != -1) { 1141 CPUState *cpu_state; 1142 1143 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); 1144 CPU_FOREACH(cpu_state) { 1145 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", 1146 __func__, cpu_state->cpu_index, cpu_state); 1147 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; 1148 } 1149 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); 1150 } 1151 } 1152 1153 1154 static void xen_hvm_change_state_handler(void *opaque, int running, 1155 RunState rstate) 1156 { 1157 XenIOState *state = opaque; 1158 1159 if (running) { 1160 xen_main_loop_prepare(state); 1161 } 1162 1163 xen_set_ioreq_server_state(xen_domid, 1164 state->ioservid, 1165 (rstate == RUN_STATE_RUNNING)); 1166 } 1167 1168 static void xen_exit_notifier(Notifier *n, void *data) 1169 { 1170 XenIOState *state = container_of(n, XenIOState, exit); 1171 1172 xenevtchn_close(state->xce_handle); 1173 xs_daemon_close(state->xenstore); 1174 } 1175 1176 #ifdef XEN_COMPAT_PHYSMAP 1177 static void xen_read_physmap(XenIOState *state) 1178 { 1179 XenPhysmap *physmap = NULL; 1180 unsigned int len, num, i; 1181 char path[80], *value = NULL; 1182 char **entries = NULL; 1183 1184 snprintf(path, sizeof(path), 1185 "/local/domain/0/device-model/%d/physmap", xen_domid); 1186 entries = xs_directory(state->xenstore, 0, path, &num); 1187 if (entries == NULL) 1188 return; 1189 1190 for (i = 0; i < num; i++) { 1191 physmap = g_malloc(sizeof (XenPhysmap)); 1192 physmap->phys_offset = strtoull(entries[i], NULL, 16); 1193 snprintf(path, sizeof(path), 1194 "/local/domain/0/device-model/%d/physmap/%s/start_addr", 1195 xen_domid, entries[i]); 1196 value = xs_read(state->xenstore, 0, path, &len); 1197 if (value == NULL) { 1198 g_free(physmap); 1199 continue; 1200 } 1201 physmap->start_addr = strtoull(value, NULL, 16); 1202 free(value); 1203 1204 snprintf(path, sizeof(path), 1205 "/local/domain/0/device-model/%d/physmap/%s/size", 1206 xen_domid, entries[i]); 1207 value = xs_read(state->xenstore, 0, path, &len); 1208 if (value == NULL) { 1209 g_free(physmap); 1210 continue; 1211 } 1212 physmap->size = strtoull(value, NULL, 16); 1213 free(value); 1214 1215 snprintf(path, sizeof(path), 1216 "/local/domain/0/device-model/%d/physmap/%s/name", 1217 xen_domid, entries[i]); 1218 physmap->name = xs_read(state->xenstore, 0, path, &len); 1219 1220 QLIST_INSERT_HEAD(&state->physmap, physmap, list); 1221 } 1222 free(entries); 1223 } 1224 #else 1225 static void xen_read_physmap(XenIOState *state) 1226 { 1227 } 1228 #endif 1229 1230 static void xen_wakeup_notifier(Notifier *notifier, void *data) 1231 { 1232 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); 1233 } 1234 1235 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory) 1236 { 1237 int i, rc; 1238 xen_pfn_t ioreq_pfn; 1239 xen_pfn_t bufioreq_pfn; 1240 evtchn_port_t bufioreq_evtchn; 1241 XenIOState *state; 1242 1243 state = g_malloc0(sizeof (XenIOState)); 1244 1245 state->xce_handle = xenevtchn_open(NULL, 0); 1246 if (state->xce_handle == NULL) { 1247 perror("xen: event channel open"); 1248 goto err; 1249 } 1250 1251 state->xenstore = xs_daemon_open(); 1252 if (state->xenstore == NULL) { 1253 perror("xen: xenstore open"); 1254 goto err; 1255 } 1256 1257 if (xen_domid_restrict) { 1258 rc = xen_restrict(xen_domid); 1259 if (rc < 0) { 1260 error_report("failed to restrict: error %d", errno); 1261 goto err; 1262 } 1263 } 1264 1265 xen_create_ioreq_server(xen_domid, &state->ioservid); 1266 1267 state->exit.notify = xen_exit_notifier; 1268 qemu_add_exit_notifier(&state->exit); 1269 1270 state->suspend.notify = xen_suspend_notifier; 1271 qemu_register_suspend_notifier(&state->suspend); 1272 1273 state->wakeup.notify = xen_wakeup_notifier; 1274 qemu_register_wakeup_notifier(&state->wakeup); 1275 1276 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid, 1277 &ioreq_pfn, &bufioreq_pfn, 1278 &bufioreq_evtchn); 1279 if (rc < 0) { 1280 error_report("failed to get ioreq server info: error %d handle=%p", 1281 errno, xen_xc); 1282 goto err; 1283 } 1284 1285 DPRINTF("shared page at pfn %lx\n", ioreq_pfn); 1286 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); 1287 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); 1288 1289 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, 1290 PROT_READ|PROT_WRITE, 1291 1, &ioreq_pfn, NULL); 1292 if (state->shared_page == NULL) { 1293 error_report("map shared IO page returned error %d handle=%p", 1294 errno, xen_xc); 1295 goto err; 1296 } 1297 1298 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); 1299 if (!rc) { 1300 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); 1301 state->shared_vmport_page = 1302 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1303 1, &ioreq_pfn, NULL); 1304 if (state->shared_vmport_page == NULL) { 1305 error_report("map shared vmport IO page returned error %d handle=%p", 1306 errno, xen_xc); 1307 goto err; 1308 } 1309 } else if (rc != -ENOSYS) { 1310 error_report("get vmport regs pfn returned error %d, rc=%d", 1311 errno, rc); 1312 goto err; 1313 } 1314 1315 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, 1316 PROT_READ|PROT_WRITE, 1317 1, &bufioreq_pfn, NULL); 1318 if (state->buffered_io_page == NULL) { 1319 error_report("map buffered IO page returned error %d", errno); 1320 goto err; 1321 } 1322 1323 /* Note: cpus is empty at this point in init */ 1324 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *)); 1325 1326 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true); 1327 if (rc < 0) { 1328 error_report("failed to enable ioreq server info: error %d handle=%p", 1329 errno, xen_xc); 1330 goto err; 1331 } 1332 1333 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t)); 1334 1335 /* FIXME: how about if we overflow the page here? */ 1336 for (i = 0; i < max_cpus; i++) { 1337 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1338 xen_vcpu_eport(state->shared_page, i)); 1339 if (rc == -1) { 1340 error_report("shared evtchn %d bind error %d", i, errno); 1341 goto err; 1342 } 1343 state->ioreq_local_port[i] = rc; 1344 } 1345 1346 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1347 bufioreq_evtchn); 1348 if (rc == -1) { 1349 error_report("buffered evtchn bind error %d", errno); 1350 goto err; 1351 } 1352 state->bufioreq_local_port = rc; 1353 1354 /* Init RAM management */ 1355 #ifdef XEN_COMPAT_PHYSMAP 1356 xen_map_cache_init(xen_phys_offset_to_gaddr, state); 1357 #else 1358 xen_map_cache_init(NULL, state); 1359 #endif 1360 xen_ram_init(pcms, ram_size, ram_memory); 1361 1362 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); 1363 1364 state->memory_listener = xen_memory_listener; 1365 QLIST_INIT(&state->physmap); 1366 memory_listener_register(&state->memory_listener, &address_space_memory); 1367 state->log_for_dirtybit = NULL; 1368 1369 state->io_listener = xen_io_listener; 1370 memory_listener_register(&state->io_listener, &address_space_io); 1371 1372 state->device_listener = xen_device_listener; 1373 device_listener_register(&state->device_listener); 1374 1375 /* Initialize backend core & drivers */ 1376 if (xen_be_init() != 0) { 1377 error_report("xen backend core setup failed"); 1378 goto err; 1379 } 1380 xen_be_register_common(); 1381 xen_read_physmap(state); 1382 1383 /* Disable ACPI build because Xen handles it */ 1384 pcms->acpi_build_enabled = false; 1385 1386 return; 1387 1388 err: 1389 error_report("xen hardware virtual machine initialisation failed"); 1390 exit(1); 1391 } 1392 1393 void destroy_hvm_domain(bool reboot) 1394 { 1395 xc_interface *xc_handle; 1396 int sts; 1397 1398 xc_handle = xc_interface_open(0, 0, 0); 1399 if (xc_handle == NULL) { 1400 fprintf(stderr, "Cannot acquire xenctrl handle\n"); 1401 } else { 1402 sts = xc_domain_shutdown(xc_handle, xen_domid, 1403 reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff); 1404 if (sts != 0) { 1405 fprintf(stderr, "xc_domain_shutdown failed to issue %s, " 1406 "sts %d, %s\n", reboot ? "reboot" : "poweroff", 1407 sts, strerror(errno)); 1408 } else { 1409 fprintf(stderr, "Issued domain %d %s\n", xen_domid, 1410 reboot ? "reboot" : "poweroff"); 1411 } 1412 xc_interface_close(xc_handle); 1413 } 1414 } 1415 1416 void xen_register_framebuffer(MemoryRegion *mr) 1417 { 1418 framebuffer = mr; 1419 } 1420 1421 void xen_shutdown_fatal_error(const char *fmt, ...) 1422 { 1423 va_list ap; 1424 1425 va_start(ap, fmt); 1426 vfprintf(stderr, fmt, ap); 1427 va_end(ap); 1428 fprintf(stderr, "Will destroy the domain.\n"); 1429 /* destroy the domain */ 1430 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR); 1431 } 1432 1433 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length) 1434 { 1435 if (unlikely(xen_in_migration)) { 1436 int rc; 1437 ram_addr_t start_pfn, nb_pages; 1438 1439 if (length == 0) { 1440 length = TARGET_PAGE_SIZE; 1441 } 1442 start_pfn = start >> TARGET_PAGE_BITS; 1443 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) 1444 - start_pfn; 1445 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages); 1446 if (rc) { 1447 fprintf(stderr, 1448 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", 1449 __func__, start, nb_pages, errno, strerror(errno)); 1450 } 1451 } 1452 } 1453 1454 void qmp_xen_set_global_dirty_log(bool enable, Error **errp) 1455 { 1456 if (enable) { 1457 memory_global_dirty_log_start(); 1458 } else { 1459 memory_global_dirty_log_stop(); 1460 } 1461 } 1462