1 /* 2 * Copyright (C) 2010 Citrix Ltd. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 * 7 * Contributions after 2012-01-13 are licensed under the terms of the 8 * GNU GPL, version 2 or (at your option) any later version. 9 */ 10 11 #include "qemu/osdep.h" 12 13 #include "cpu.h" 14 #include "hw/pci/pci.h" 15 #include "hw/pci/pci_host.h" 16 #include "hw/i386/pc.h" 17 #include "hw/irq.h" 18 #include "hw/hw.h" 19 #include "hw/i386/apic-msidef.h" 20 #include "hw/xen/xen_common.h" 21 #include "hw/xen/xen-legacy-backend.h" 22 #include "hw/xen/xen-bus.h" 23 #include "qapi/error.h" 24 #include "qapi/qapi-commands-misc.h" 25 #include "qemu/error-report.h" 26 #include "qemu/main-loop.h" 27 #include "qemu/range.h" 28 #include "sysemu/sysemu.h" 29 #include "sysemu/xen-mapcache.h" 30 #include "trace.h" 31 #include "exec/address-spaces.h" 32 33 #include <xen/hvm/ioreq.h> 34 #include <xen/hvm/e820.h> 35 36 //#define DEBUG_XEN_HVM 37 38 #ifdef DEBUG_XEN_HVM 39 #define DPRINTF(fmt, ...) \ 40 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) 41 #else 42 #define DPRINTF(fmt, ...) \ 43 do { } while (0) 44 #endif 45 46 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; 47 static MemoryRegion *framebuffer; 48 static bool xen_in_migration; 49 50 /* Compatibility with older version */ 51 52 /* This allows QEMU to build on a system that has Xen 4.5 or earlier 53 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h 54 * needs to be included before this block and hw/xen/xen_common.h needs to 55 * be included before xen/hvm/ioreq.h 56 */ 57 #ifndef IOREQ_TYPE_VMWARE_PORT 58 #define IOREQ_TYPE_VMWARE_PORT 3 59 struct vmware_regs { 60 uint32_t esi; 61 uint32_t edi; 62 uint32_t ebx; 63 uint32_t ecx; 64 uint32_t edx; 65 }; 66 typedef struct vmware_regs vmware_regs_t; 67 68 struct shared_vmport_iopage { 69 struct vmware_regs vcpu_vmport_regs[1]; 70 }; 71 typedef struct shared_vmport_iopage shared_vmport_iopage_t; 72 #endif 73 74 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) 75 { 76 return shared_page->vcpu_ioreq[i].vp_eport; 77 } 78 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) 79 { 80 return &shared_page->vcpu_ioreq[vcpu]; 81 } 82 83 #define BUFFER_IO_MAX_DELAY 100 84 85 typedef struct XenPhysmap { 86 hwaddr start_addr; 87 ram_addr_t size; 88 const char *name; 89 hwaddr phys_offset; 90 91 QLIST_ENTRY(XenPhysmap) list; 92 } XenPhysmap; 93 94 static QLIST_HEAD(, XenPhysmap) xen_physmap; 95 96 typedef struct XenPciDevice { 97 PCIDevice *pci_dev; 98 uint32_t sbdf; 99 QLIST_ENTRY(XenPciDevice) entry; 100 } XenPciDevice; 101 102 typedef struct XenIOState { 103 ioservid_t ioservid; 104 shared_iopage_t *shared_page; 105 shared_vmport_iopage_t *shared_vmport_page; 106 buffered_iopage_t *buffered_io_page; 107 QEMUTimer *buffered_io_timer; 108 CPUState **cpu_by_vcpu_id; 109 /* the evtchn port for polling the notification, */ 110 evtchn_port_t *ioreq_local_port; 111 /* evtchn remote and local ports for buffered io */ 112 evtchn_port_t bufioreq_remote_port; 113 evtchn_port_t bufioreq_local_port; 114 /* the evtchn fd for polling */ 115 xenevtchn_handle *xce_handle; 116 /* which vcpu we are serving */ 117 int send_vcpu; 118 119 struct xs_handle *xenstore; 120 MemoryListener memory_listener; 121 MemoryListener io_listener; 122 QLIST_HEAD(, XenPciDevice) dev_list; 123 DeviceListener device_listener; 124 hwaddr free_phys_offset; 125 const XenPhysmap *log_for_dirtybit; 126 /* Buffer used by xen_sync_dirty_bitmap */ 127 unsigned long *dirty_bitmap; 128 129 Notifier exit; 130 Notifier suspend; 131 Notifier wakeup; 132 } XenIOState; 133 134 /* Xen specific function for piix pci */ 135 136 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) 137 { 138 return irq_num + ((pci_dev->devfn >> 3) << 2); 139 } 140 141 void xen_piix3_set_irq(void *opaque, int irq_num, int level) 142 { 143 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2, 144 irq_num & 3, level); 145 } 146 147 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) 148 { 149 int i; 150 151 /* Scan for updates to PCI link routes (0x60-0x63). */ 152 for (i = 0; i < len; i++) { 153 uint8_t v = (val >> (8 * i)) & 0xff; 154 if (v & 0x80) { 155 v = 0; 156 } 157 v &= 0xf; 158 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { 159 xen_set_pci_link_route(xen_domid, address + i - 0x60, v); 160 } 161 } 162 } 163 164 int xen_is_pirq_msi(uint32_t msi_data) 165 { 166 /* If vector is 0, the msi is remapped into a pirq, passed as 167 * dest_id. 168 */ 169 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0; 170 } 171 172 void xen_hvm_inject_msi(uint64_t addr, uint32_t data) 173 { 174 xen_inject_msi(xen_domid, addr, data); 175 } 176 177 static void xen_suspend_notifier(Notifier *notifier, void *data) 178 { 179 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); 180 } 181 182 /* Xen Interrupt Controller */ 183 184 static void xen_set_irq(void *opaque, int irq, int level) 185 { 186 xen_set_isa_irq_level(xen_domid, irq, level); 187 } 188 189 qemu_irq *xen_interrupt_controller_init(void) 190 { 191 return qemu_allocate_irqs(xen_set_irq, NULL, 16); 192 } 193 194 /* Memory Ops */ 195 196 static void xen_ram_init(PCMachineState *pcms, 197 ram_addr_t ram_size, MemoryRegion **ram_memory_p) 198 { 199 MemoryRegion *sysmem = get_system_memory(); 200 ram_addr_t block_len; 201 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(), 202 PC_MACHINE_MAX_RAM_BELOW_4G, 203 &error_abort); 204 205 /* Handle the machine opt max-ram-below-4g. It is basically doing 206 * min(xen limit, user limit). 207 */ 208 if (!user_lowmem) { 209 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */ 210 } 211 if (HVM_BELOW_4G_RAM_END <= user_lowmem) { 212 user_lowmem = HVM_BELOW_4G_RAM_END; 213 } 214 215 if (ram_size >= user_lowmem) { 216 pcms->above_4g_mem_size = ram_size - user_lowmem; 217 pcms->below_4g_mem_size = user_lowmem; 218 } else { 219 pcms->above_4g_mem_size = 0; 220 pcms->below_4g_mem_size = ram_size; 221 } 222 if (!pcms->above_4g_mem_size) { 223 block_len = ram_size; 224 } else { 225 /* 226 * Xen does not allocate the memory continuously, it keeps a 227 * hole of the size computed above or passed in. 228 */ 229 block_len = (1ULL << 32) + pcms->above_4g_mem_size; 230 } 231 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, 232 &error_fatal); 233 *ram_memory_p = &ram_memory; 234 235 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", 236 &ram_memory, 0, 0xa0000); 237 memory_region_add_subregion(sysmem, 0, &ram_640k); 238 /* Skip of the VGA IO memory space, it will be registered later by the VGA 239 * emulated device. 240 * 241 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load 242 * the Options ROM, so it is registered here as RAM. 243 */ 244 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", 245 &ram_memory, 0xc0000, 246 pcms->below_4g_mem_size - 0xc0000); 247 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); 248 if (pcms->above_4g_mem_size > 0) { 249 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", 250 &ram_memory, 0x100000000ULL, 251 pcms->above_4g_mem_size); 252 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); 253 } 254 } 255 256 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, 257 Error **errp) 258 { 259 unsigned long nr_pfn; 260 xen_pfn_t *pfn_list; 261 int i; 262 263 if (runstate_check(RUN_STATE_INMIGRATE)) { 264 /* RAM already populated in Xen */ 265 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT 266 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", 267 __func__, size, ram_addr); 268 return; 269 } 270 271 if (mr == &ram_memory) { 272 return; 273 } 274 275 trace_xen_ram_alloc(ram_addr, size); 276 277 nr_pfn = size >> TARGET_PAGE_BITS; 278 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); 279 280 for (i = 0; i < nr_pfn; i++) { 281 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; 282 } 283 284 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { 285 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, 286 ram_addr); 287 } 288 289 g_free(pfn_list); 290 } 291 292 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size) 293 { 294 XenPhysmap *physmap = NULL; 295 296 start_addr &= TARGET_PAGE_MASK; 297 298 QLIST_FOREACH(physmap, &xen_physmap, list) { 299 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { 300 return physmap; 301 } 302 } 303 return NULL; 304 } 305 306 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size) 307 { 308 hwaddr addr = phys_offset & TARGET_PAGE_MASK; 309 XenPhysmap *physmap = NULL; 310 311 QLIST_FOREACH(physmap, &xen_physmap, list) { 312 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { 313 return physmap->start_addr + (phys_offset - physmap->phys_offset); 314 } 315 } 316 317 return phys_offset; 318 } 319 320 #ifdef XEN_COMPAT_PHYSMAP 321 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 322 { 323 char path[80], value[17]; 324 325 snprintf(path, sizeof(path), 326 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", 327 xen_domid, (uint64_t)physmap->phys_offset); 328 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr); 329 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 330 return -1; 331 } 332 snprintf(path, sizeof(path), 333 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", 334 xen_domid, (uint64_t)physmap->phys_offset); 335 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size); 336 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 337 return -1; 338 } 339 if (physmap->name) { 340 snprintf(path, sizeof(path), 341 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", 342 xen_domid, (uint64_t)physmap->phys_offset); 343 if (!xs_write(state->xenstore, 0, path, 344 physmap->name, strlen(physmap->name))) { 345 return -1; 346 } 347 } 348 return 0; 349 } 350 #else 351 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 352 { 353 return 0; 354 } 355 #endif 356 357 static int xen_add_to_physmap(XenIOState *state, 358 hwaddr start_addr, 359 ram_addr_t size, 360 MemoryRegion *mr, 361 hwaddr offset_within_region) 362 { 363 unsigned long nr_pages; 364 int rc = 0; 365 XenPhysmap *physmap = NULL; 366 hwaddr pfn, start_gpfn; 367 hwaddr phys_offset = memory_region_get_ram_addr(mr); 368 const char *mr_name; 369 370 if (get_physmapping(start_addr, size)) { 371 return 0; 372 } 373 if (size <= 0) { 374 return -1; 375 } 376 377 /* Xen can only handle a single dirty log region for now and we want 378 * the linear framebuffer to be that region. 379 * Avoid tracking any regions that is not videoram and avoid tracking 380 * the legacy vga region. */ 381 if (mr == framebuffer && start_addr > 0xbffff) { 382 goto go_physmap; 383 } 384 return -1; 385 386 go_physmap: 387 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", 388 start_addr, start_addr + size); 389 390 mr_name = memory_region_name(mr); 391 392 physmap = g_malloc(sizeof(XenPhysmap)); 393 394 physmap->start_addr = start_addr; 395 physmap->size = size; 396 physmap->name = mr_name; 397 physmap->phys_offset = phys_offset; 398 399 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 400 401 if (runstate_check(RUN_STATE_INMIGRATE)) { 402 /* Now when we have a physmap entry we can replace a dummy mapping with 403 * a real one of guest foreign memory. */ 404 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size); 405 assert(p && p == memory_region_get_ram_ptr(mr)); 406 407 return 0; 408 } 409 410 pfn = phys_offset >> TARGET_PAGE_BITS; 411 start_gpfn = start_addr >> TARGET_PAGE_BITS; 412 nr_pages = size >> TARGET_PAGE_BITS; 413 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn, 414 start_gpfn); 415 if (rc) { 416 int saved_errno = errno; 417 418 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx 419 " to GFN %"HWADDR_PRIx" failed: %s", 420 nr_pages, pfn, start_gpfn, strerror(saved_errno)); 421 errno = saved_errno; 422 return -1; 423 } 424 425 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid, 426 start_addr >> TARGET_PAGE_BITS, 427 (start_addr + size - 1) >> TARGET_PAGE_BITS, 428 XEN_DOMCTL_MEM_CACHEATTR_WB); 429 if (rc) { 430 error_report("pin_memory_cacheattr failed: %s", strerror(errno)); 431 } 432 return xen_save_physmap(state, physmap); 433 } 434 435 static int xen_remove_from_physmap(XenIOState *state, 436 hwaddr start_addr, 437 ram_addr_t size) 438 { 439 int rc = 0; 440 XenPhysmap *physmap = NULL; 441 hwaddr phys_offset = 0; 442 443 physmap = get_physmapping(start_addr, size); 444 if (physmap == NULL) { 445 return -1; 446 } 447 448 phys_offset = physmap->phys_offset; 449 size = physmap->size; 450 451 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " 452 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); 453 454 size >>= TARGET_PAGE_BITS; 455 start_addr >>= TARGET_PAGE_BITS; 456 phys_offset >>= TARGET_PAGE_BITS; 457 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr, 458 phys_offset); 459 if (rc) { 460 int saved_errno = errno; 461 462 error_report("relocate_memory "RAM_ADDR_FMT" pages" 463 " from GFN %"HWADDR_PRIx 464 " to GFN %"HWADDR_PRIx" failed: %s", 465 size, start_addr, phys_offset, strerror(saved_errno)); 466 errno = saved_errno; 467 return -1; 468 } 469 470 QLIST_REMOVE(physmap, list); 471 if (state->log_for_dirtybit == physmap) { 472 state->log_for_dirtybit = NULL; 473 g_free(state->dirty_bitmap); 474 state->dirty_bitmap = NULL; 475 } 476 g_free(physmap); 477 478 return 0; 479 } 480 481 static void xen_set_memory(struct MemoryListener *listener, 482 MemoryRegionSection *section, 483 bool add) 484 { 485 XenIOState *state = container_of(listener, XenIOState, memory_listener); 486 hwaddr start_addr = section->offset_within_address_space; 487 ram_addr_t size = int128_get64(section->size); 488 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); 489 hvmmem_type_t mem_type; 490 491 if (section->mr == &ram_memory) { 492 return; 493 } else { 494 if (add) { 495 xen_map_memory_section(xen_domid, state->ioservid, 496 section); 497 } else { 498 xen_unmap_memory_section(xen_domid, state->ioservid, 499 section); 500 } 501 } 502 503 if (!memory_region_is_ram(section->mr)) { 504 return; 505 } 506 507 if (log_dirty != add) { 508 return; 509 } 510 511 trace_xen_client_set_memory(start_addr, size, log_dirty); 512 513 start_addr &= TARGET_PAGE_MASK; 514 size = TARGET_PAGE_ALIGN(size); 515 516 if (add) { 517 if (!memory_region_is_rom(section->mr)) { 518 xen_add_to_physmap(state, start_addr, size, 519 section->mr, section->offset_within_region); 520 } else { 521 mem_type = HVMMEM_ram_ro; 522 if (xen_set_mem_type(xen_domid, mem_type, 523 start_addr >> TARGET_PAGE_BITS, 524 size >> TARGET_PAGE_BITS)) { 525 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n", 526 start_addr); 527 } 528 } 529 } else { 530 if (xen_remove_from_physmap(state, start_addr, size) < 0) { 531 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); 532 } 533 } 534 } 535 536 static void xen_region_add(MemoryListener *listener, 537 MemoryRegionSection *section) 538 { 539 memory_region_ref(section->mr); 540 xen_set_memory(listener, section, true); 541 } 542 543 static void xen_region_del(MemoryListener *listener, 544 MemoryRegionSection *section) 545 { 546 xen_set_memory(listener, section, false); 547 memory_region_unref(section->mr); 548 } 549 550 static void xen_io_add(MemoryListener *listener, 551 MemoryRegionSection *section) 552 { 553 XenIOState *state = container_of(listener, XenIOState, io_listener); 554 MemoryRegion *mr = section->mr; 555 556 if (mr->ops == &unassigned_io_ops) { 557 return; 558 } 559 560 memory_region_ref(mr); 561 562 xen_map_io_section(xen_domid, state->ioservid, section); 563 } 564 565 static void xen_io_del(MemoryListener *listener, 566 MemoryRegionSection *section) 567 { 568 XenIOState *state = container_of(listener, XenIOState, io_listener); 569 MemoryRegion *mr = section->mr; 570 571 if (mr->ops == &unassigned_io_ops) { 572 return; 573 } 574 575 xen_unmap_io_section(xen_domid, state->ioservid, section); 576 577 memory_region_unref(mr); 578 } 579 580 static void xen_device_realize(DeviceListener *listener, 581 DeviceState *dev) 582 { 583 XenIOState *state = container_of(listener, XenIOState, device_listener); 584 585 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 586 PCIDevice *pci_dev = PCI_DEVICE(dev); 587 XenPciDevice *xendev = g_new(XenPciDevice, 1); 588 589 xendev->pci_dev = pci_dev; 590 xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev), 591 pci_dev->devfn); 592 QLIST_INSERT_HEAD(&state->dev_list, xendev, entry); 593 594 xen_map_pcidev(xen_domid, state->ioservid, pci_dev); 595 } 596 } 597 598 static void xen_device_unrealize(DeviceListener *listener, 599 DeviceState *dev) 600 { 601 XenIOState *state = container_of(listener, XenIOState, device_listener); 602 603 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 604 PCIDevice *pci_dev = PCI_DEVICE(dev); 605 XenPciDevice *xendev, *next; 606 607 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev); 608 609 QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) { 610 if (xendev->pci_dev == pci_dev) { 611 QLIST_REMOVE(xendev, entry); 612 g_free(xendev); 613 break; 614 } 615 } 616 } 617 } 618 619 static void xen_sync_dirty_bitmap(XenIOState *state, 620 hwaddr start_addr, 621 ram_addr_t size) 622 { 623 hwaddr npages = size >> TARGET_PAGE_BITS; 624 const int width = sizeof(unsigned long) * 8; 625 size_t bitmap_size = DIV_ROUND_UP(npages, width); 626 int rc, i, j; 627 const XenPhysmap *physmap = NULL; 628 629 physmap = get_physmapping(start_addr, size); 630 if (physmap == NULL) { 631 /* not handled */ 632 return; 633 } 634 635 if (state->log_for_dirtybit == NULL) { 636 state->log_for_dirtybit = physmap; 637 state->dirty_bitmap = g_new(unsigned long, bitmap_size); 638 } else if (state->log_for_dirtybit != physmap) { 639 /* Only one range for dirty bitmap can be tracked. */ 640 return; 641 } 642 643 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS, 644 npages, state->dirty_bitmap); 645 if (rc < 0) { 646 #ifndef ENODATA 647 #define ENODATA ENOENT 648 #endif 649 if (errno == ENODATA) { 650 memory_region_set_dirty(framebuffer, 0, size); 651 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx 652 ", 0x" TARGET_FMT_plx "): %s\n", 653 start_addr, start_addr + size, strerror(errno)); 654 } 655 return; 656 } 657 658 for (i = 0; i < bitmap_size; i++) { 659 unsigned long map = state->dirty_bitmap[i]; 660 while (map != 0) { 661 j = ctzl(map); 662 map &= ~(1ul << j); 663 memory_region_set_dirty(framebuffer, 664 (i * width + j) * TARGET_PAGE_SIZE, 665 TARGET_PAGE_SIZE); 666 }; 667 } 668 } 669 670 static void xen_log_start(MemoryListener *listener, 671 MemoryRegionSection *section, 672 int old, int new) 673 { 674 XenIOState *state = container_of(listener, XenIOState, memory_listener); 675 676 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { 677 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 678 int128_get64(section->size)); 679 } 680 } 681 682 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, 683 int old, int new) 684 { 685 XenIOState *state = container_of(listener, XenIOState, memory_listener); 686 687 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { 688 state->log_for_dirtybit = NULL; 689 g_free(state->dirty_bitmap); 690 state->dirty_bitmap = NULL; 691 /* Disable dirty bit tracking */ 692 xen_track_dirty_vram(xen_domid, 0, 0, NULL); 693 } 694 } 695 696 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) 697 { 698 XenIOState *state = container_of(listener, XenIOState, memory_listener); 699 700 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 701 int128_get64(section->size)); 702 } 703 704 static void xen_log_global_start(MemoryListener *listener) 705 { 706 if (xen_enabled()) { 707 xen_in_migration = true; 708 } 709 } 710 711 static void xen_log_global_stop(MemoryListener *listener) 712 { 713 xen_in_migration = false; 714 } 715 716 static MemoryListener xen_memory_listener = { 717 .region_add = xen_region_add, 718 .region_del = xen_region_del, 719 .log_start = xen_log_start, 720 .log_stop = xen_log_stop, 721 .log_sync = xen_log_sync, 722 .log_global_start = xen_log_global_start, 723 .log_global_stop = xen_log_global_stop, 724 .priority = 10, 725 }; 726 727 static MemoryListener xen_io_listener = { 728 .region_add = xen_io_add, 729 .region_del = xen_io_del, 730 .priority = 10, 731 }; 732 733 static DeviceListener xen_device_listener = { 734 .realize = xen_device_realize, 735 .unrealize = xen_device_unrealize, 736 }; 737 738 /* get the ioreq packets from share mem */ 739 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) 740 { 741 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); 742 743 if (req->state != STATE_IOREQ_READY) { 744 DPRINTF("I/O request not ready: " 745 "%x, ptr: %x, port: %"PRIx64", " 746 "data: %"PRIx64", count: %u, size: %u\n", 747 req->state, req->data_is_ptr, req->addr, 748 req->data, req->count, req->size); 749 return NULL; 750 } 751 752 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ 753 754 req->state = STATE_IOREQ_INPROCESS; 755 return req; 756 } 757 758 /* use poll to get the port notification */ 759 /* ioreq_vec--out,the */ 760 /* retval--the number of ioreq packet */ 761 static ioreq_t *cpu_get_ioreq(XenIOState *state) 762 { 763 MachineState *ms = MACHINE(qdev_get_machine()); 764 unsigned int max_cpus = ms->smp.max_cpus; 765 int i; 766 evtchn_port_t port; 767 768 port = xenevtchn_pending(state->xce_handle); 769 if (port == state->bufioreq_local_port) { 770 timer_mod(state->buffered_io_timer, 771 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 772 return NULL; 773 } 774 775 if (port != -1) { 776 for (i = 0; i < max_cpus; i++) { 777 if (state->ioreq_local_port[i] == port) { 778 break; 779 } 780 } 781 782 if (i == max_cpus) { 783 hw_error("Fatal error while trying to get io event!\n"); 784 } 785 786 /* unmask the wanted port again */ 787 xenevtchn_unmask(state->xce_handle, port); 788 789 /* get the io packet from shared memory */ 790 state->send_vcpu = i; 791 return cpu_get_ioreq_from_shared_memory(state, i); 792 } 793 794 /* read error or read nothing */ 795 return NULL; 796 } 797 798 static uint32_t do_inp(uint32_t addr, unsigned long size) 799 { 800 switch (size) { 801 case 1: 802 return cpu_inb(addr); 803 case 2: 804 return cpu_inw(addr); 805 case 4: 806 return cpu_inl(addr); 807 default: 808 hw_error("inp: bad size: %04x %lx", addr, size); 809 } 810 } 811 812 static void do_outp(uint32_t addr, 813 unsigned long size, uint32_t val) 814 { 815 switch (size) { 816 case 1: 817 return cpu_outb(addr, val); 818 case 2: 819 return cpu_outw(addr, val); 820 case 4: 821 return cpu_outl(addr, val); 822 default: 823 hw_error("outp: bad size: %04x %lx", addr, size); 824 } 825 } 826 827 /* 828 * Helper functions which read/write an object from/to physical guest 829 * memory, as part of the implementation of an ioreq. 830 * 831 * Equivalent to 832 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, 833 * val, req->size, 0/1) 834 * except without the integer overflow problems. 835 */ 836 static void rw_phys_req_item(hwaddr addr, 837 ioreq_t *req, uint32_t i, void *val, int rw) 838 { 839 /* Do everything unsigned so overflow just results in a truncated result 840 * and accesses to undesired parts of guest memory, which is up 841 * to the guest */ 842 hwaddr offset = (hwaddr)req->size * i; 843 if (req->df) { 844 addr -= offset; 845 } else { 846 addr += offset; 847 } 848 cpu_physical_memory_rw(addr, val, req->size, rw); 849 } 850 851 static inline void read_phys_req_item(hwaddr addr, 852 ioreq_t *req, uint32_t i, void *val) 853 { 854 rw_phys_req_item(addr, req, i, val, 0); 855 } 856 static inline void write_phys_req_item(hwaddr addr, 857 ioreq_t *req, uint32_t i, void *val) 858 { 859 rw_phys_req_item(addr, req, i, val, 1); 860 } 861 862 863 static void cpu_ioreq_pio(ioreq_t *req) 864 { 865 uint32_t i; 866 867 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, 868 req->data, req->count, req->size); 869 870 if (req->size > sizeof(uint32_t)) { 871 hw_error("PIO: bad size (%u)", req->size); 872 } 873 874 if (req->dir == IOREQ_READ) { 875 if (!req->data_is_ptr) { 876 req->data = do_inp(req->addr, req->size); 877 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, 878 req->size); 879 } else { 880 uint32_t tmp; 881 882 for (i = 0; i < req->count; i++) { 883 tmp = do_inp(req->addr, req->size); 884 write_phys_req_item(req->data, req, i, &tmp); 885 } 886 } 887 } else if (req->dir == IOREQ_WRITE) { 888 if (!req->data_is_ptr) { 889 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, 890 req->size); 891 do_outp(req->addr, req->size, req->data); 892 } else { 893 for (i = 0; i < req->count; i++) { 894 uint32_t tmp = 0; 895 896 read_phys_req_item(req->data, req, i, &tmp); 897 do_outp(req->addr, req->size, tmp); 898 } 899 } 900 } 901 } 902 903 static void cpu_ioreq_move(ioreq_t *req) 904 { 905 uint32_t i; 906 907 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, 908 req->data, req->count, req->size); 909 910 if (req->size > sizeof(req->data)) { 911 hw_error("MMIO: bad size (%u)", req->size); 912 } 913 914 if (!req->data_is_ptr) { 915 if (req->dir == IOREQ_READ) { 916 for (i = 0; i < req->count; i++) { 917 read_phys_req_item(req->addr, req, i, &req->data); 918 } 919 } else if (req->dir == IOREQ_WRITE) { 920 for (i = 0; i < req->count; i++) { 921 write_phys_req_item(req->addr, req, i, &req->data); 922 } 923 } 924 } else { 925 uint64_t tmp; 926 927 if (req->dir == IOREQ_READ) { 928 for (i = 0; i < req->count; i++) { 929 read_phys_req_item(req->addr, req, i, &tmp); 930 write_phys_req_item(req->data, req, i, &tmp); 931 } 932 } else if (req->dir == IOREQ_WRITE) { 933 for (i = 0; i < req->count; i++) { 934 read_phys_req_item(req->data, req, i, &tmp); 935 write_phys_req_item(req->addr, req, i, &tmp); 936 } 937 } 938 } 939 } 940 941 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req) 942 { 943 uint32_t sbdf = req->addr >> 32; 944 uint32_t reg = req->addr; 945 XenPciDevice *xendev; 946 947 if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) && 948 req->size != sizeof(uint32_t)) { 949 hw_error("PCI config access: bad size (%u)", req->size); 950 } 951 952 if (req->count != 1) { 953 hw_error("PCI config access: bad count (%u)", req->count); 954 } 955 956 QLIST_FOREACH(xendev, &state->dev_list, entry) { 957 if (xendev->sbdf != sbdf) { 958 continue; 959 } 960 961 if (!req->data_is_ptr) { 962 if (req->dir == IOREQ_READ) { 963 req->data = pci_host_config_read_common( 964 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 965 req->size); 966 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 967 req->size, req->data); 968 } else if (req->dir == IOREQ_WRITE) { 969 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 970 req->size, req->data); 971 pci_host_config_write_common( 972 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 973 req->data, req->size); 974 } 975 } else { 976 uint32_t tmp; 977 978 if (req->dir == IOREQ_READ) { 979 tmp = pci_host_config_read_common( 980 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 981 req->size); 982 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 983 req->size, tmp); 984 write_phys_req_item(req->data, req, 0, &tmp); 985 } else if (req->dir == IOREQ_WRITE) { 986 read_phys_req_item(req->data, req, 0, &tmp); 987 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 988 req->size, tmp); 989 pci_host_config_write_common( 990 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 991 tmp, req->size); 992 } 993 } 994 } 995 } 996 997 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) 998 { 999 X86CPU *cpu; 1000 CPUX86State *env; 1001 1002 cpu = X86_CPU(current_cpu); 1003 env = &cpu->env; 1004 env->regs[R_EAX] = req->data; 1005 env->regs[R_EBX] = vmport_regs->ebx; 1006 env->regs[R_ECX] = vmport_regs->ecx; 1007 env->regs[R_EDX] = vmport_regs->edx; 1008 env->regs[R_ESI] = vmport_regs->esi; 1009 env->regs[R_EDI] = vmport_regs->edi; 1010 } 1011 1012 static void regs_from_cpu(vmware_regs_t *vmport_regs) 1013 { 1014 X86CPU *cpu = X86_CPU(current_cpu); 1015 CPUX86State *env = &cpu->env; 1016 1017 vmport_regs->ebx = env->regs[R_EBX]; 1018 vmport_regs->ecx = env->regs[R_ECX]; 1019 vmport_regs->edx = env->regs[R_EDX]; 1020 vmport_regs->esi = env->regs[R_ESI]; 1021 vmport_regs->edi = env->regs[R_EDI]; 1022 } 1023 1024 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) 1025 { 1026 vmware_regs_t *vmport_regs; 1027 1028 assert(state->shared_vmport_page); 1029 vmport_regs = 1030 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; 1031 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); 1032 1033 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; 1034 regs_to_cpu(vmport_regs, req); 1035 cpu_ioreq_pio(req); 1036 regs_from_cpu(vmport_regs); 1037 current_cpu = NULL; 1038 } 1039 1040 static void handle_ioreq(XenIOState *state, ioreq_t *req) 1041 { 1042 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, 1043 req->addr, req->data, req->count, req->size); 1044 1045 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && 1046 (req->size < sizeof (target_ulong))) { 1047 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; 1048 } 1049 1050 if (req->dir == IOREQ_WRITE) 1051 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, 1052 req->addr, req->data, req->count, req->size); 1053 1054 switch (req->type) { 1055 case IOREQ_TYPE_PIO: 1056 cpu_ioreq_pio(req); 1057 break; 1058 case IOREQ_TYPE_COPY: 1059 cpu_ioreq_move(req); 1060 break; 1061 case IOREQ_TYPE_VMWARE_PORT: 1062 handle_vmport_ioreq(state, req); 1063 break; 1064 case IOREQ_TYPE_TIMEOFFSET: 1065 break; 1066 case IOREQ_TYPE_INVALIDATE: 1067 xen_invalidate_map_cache(); 1068 break; 1069 case IOREQ_TYPE_PCI_CONFIG: 1070 cpu_ioreq_config(state, req); 1071 break; 1072 default: 1073 hw_error("Invalid ioreq type 0x%x\n", req->type); 1074 } 1075 if (req->dir == IOREQ_READ) { 1076 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, 1077 req->addr, req->data, req->count, req->size); 1078 } 1079 } 1080 1081 static int handle_buffered_iopage(XenIOState *state) 1082 { 1083 buffered_iopage_t *buf_page = state->buffered_io_page; 1084 buf_ioreq_t *buf_req = NULL; 1085 ioreq_t req; 1086 int qw; 1087 1088 if (!buf_page) { 1089 return 0; 1090 } 1091 1092 memset(&req, 0x00, sizeof(req)); 1093 req.state = STATE_IOREQ_READY; 1094 req.count = 1; 1095 req.dir = IOREQ_WRITE; 1096 1097 for (;;) { 1098 uint32_t rdptr = buf_page->read_pointer, wrptr; 1099 1100 xen_rmb(); 1101 wrptr = buf_page->write_pointer; 1102 xen_rmb(); 1103 if (rdptr != buf_page->read_pointer) { 1104 continue; 1105 } 1106 if (rdptr == wrptr) { 1107 break; 1108 } 1109 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; 1110 req.size = 1U << buf_req->size; 1111 req.addr = buf_req->addr; 1112 req.data = buf_req->data; 1113 req.type = buf_req->type; 1114 xen_rmb(); 1115 qw = (req.size == 8); 1116 if (qw) { 1117 if (rdptr + 1 == wrptr) { 1118 hw_error("Incomplete quad word buffered ioreq"); 1119 } 1120 buf_req = &buf_page->buf_ioreq[(rdptr + 1) % 1121 IOREQ_BUFFER_SLOT_NUM]; 1122 req.data |= ((uint64_t)buf_req->data) << 32; 1123 xen_rmb(); 1124 } 1125 1126 handle_ioreq(state, &req); 1127 1128 /* Only req.data may get updated by handle_ioreq(), albeit even that 1129 * should not happen as such data would never make it to the guest (we 1130 * can only usefully see writes here after all). 1131 */ 1132 assert(req.state == STATE_IOREQ_READY); 1133 assert(req.count == 1); 1134 assert(req.dir == IOREQ_WRITE); 1135 assert(!req.data_is_ptr); 1136 1137 atomic_add(&buf_page->read_pointer, qw + 1); 1138 } 1139 1140 return req.count; 1141 } 1142 1143 static void handle_buffered_io(void *opaque) 1144 { 1145 XenIOState *state = opaque; 1146 1147 if (handle_buffered_iopage(state)) { 1148 timer_mod(state->buffered_io_timer, 1149 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 1150 } else { 1151 timer_del(state->buffered_io_timer); 1152 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port); 1153 } 1154 } 1155 1156 static void cpu_handle_ioreq(void *opaque) 1157 { 1158 XenIOState *state = opaque; 1159 ioreq_t *req = cpu_get_ioreq(state); 1160 1161 handle_buffered_iopage(state); 1162 if (req) { 1163 ioreq_t copy = *req; 1164 1165 xen_rmb(); 1166 handle_ioreq(state, ©); 1167 req->data = copy.data; 1168 1169 if (req->state != STATE_IOREQ_INPROCESS) { 1170 fprintf(stderr, "Badness in I/O request ... not in service?!: " 1171 "%x, ptr: %x, port: %"PRIx64", " 1172 "data: %"PRIx64", count: %u, size: %u, type: %u\n", 1173 req->state, req->data_is_ptr, req->addr, 1174 req->data, req->count, req->size, req->type); 1175 destroy_hvm_domain(false); 1176 return; 1177 } 1178 1179 xen_wmb(); /* Update ioreq contents /then/ update state. */ 1180 1181 /* 1182 * We do this before we send the response so that the tools 1183 * have the opportunity to pick up on the reset before the 1184 * guest resumes and does a hlt with interrupts disabled which 1185 * causes Xen to powerdown the domain. 1186 */ 1187 if (runstate_is_running()) { 1188 ShutdownCause request; 1189 1190 if (qemu_shutdown_requested_get()) { 1191 destroy_hvm_domain(false); 1192 } 1193 request = qemu_reset_requested_get(); 1194 if (request) { 1195 qemu_system_reset(request); 1196 destroy_hvm_domain(true); 1197 } 1198 } 1199 1200 req->state = STATE_IORESP_READY; 1201 xenevtchn_notify(state->xce_handle, 1202 state->ioreq_local_port[state->send_vcpu]); 1203 } 1204 } 1205 1206 static void xen_main_loop_prepare(XenIOState *state) 1207 { 1208 int evtchn_fd = -1; 1209 1210 if (state->xce_handle != NULL) { 1211 evtchn_fd = xenevtchn_fd(state->xce_handle); 1212 } 1213 1214 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, 1215 state); 1216 1217 if (evtchn_fd != -1) { 1218 CPUState *cpu_state; 1219 1220 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); 1221 CPU_FOREACH(cpu_state) { 1222 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", 1223 __func__, cpu_state->cpu_index, cpu_state); 1224 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; 1225 } 1226 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); 1227 } 1228 } 1229 1230 1231 static void xen_hvm_change_state_handler(void *opaque, int running, 1232 RunState rstate) 1233 { 1234 XenIOState *state = opaque; 1235 1236 if (running) { 1237 xen_main_loop_prepare(state); 1238 } 1239 1240 xen_set_ioreq_server_state(xen_domid, 1241 state->ioservid, 1242 (rstate == RUN_STATE_RUNNING)); 1243 } 1244 1245 static void xen_exit_notifier(Notifier *n, void *data) 1246 { 1247 XenIOState *state = container_of(n, XenIOState, exit); 1248 1249 xenevtchn_close(state->xce_handle); 1250 xs_daemon_close(state->xenstore); 1251 } 1252 1253 #ifdef XEN_COMPAT_PHYSMAP 1254 static void xen_read_physmap(XenIOState *state) 1255 { 1256 XenPhysmap *physmap = NULL; 1257 unsigned int len, num, i; 1258 char path[80], *value = NULL; 1259 char **entries = NULL; 1260 1261 snprintf(path, sizeof(path), 1262 "/local/domain/0/device-model/%d/physmap", xen_domid); 1263 entries = xs_directory(state->xenstore, 0, path, &num); 1264 if (entries == NULL) 1265 return; 1266 1267 for (i = 0; i < num; i++) { 1268 physmap = g_malloc(sizeof (XenPhysmap)); 1269 physmap->phys_offset = strtoull(entries[i], NULL, 16); 1270 snprintf(path, sizeof(path), 1271 "/local/domain/0/device-model/%d/physmap/%s/start_addr", 1272 xen_domid, entries[i]); 1273 value = xs_read(state->xenstore, 0, path, &len); 1274 if (value == NULL) { 1275 g_free(physmap); 1276 continue; 1277 } 1278 physmap->start_addr = strtoull(value, NULL, 16); 1279 free(value); 1280 1281 snprintf(path, sizeof(path), 1282 "/local/domain/0/device-model/%d/physmap/%s/size", 1283 xen_domid, entries[i]); 1284 value = xs_read(state->xenstore, 0, path, &len); 1285 if (value == NULL) { 1286 g_free(physmap); 1287 continue; 1288 } 1289 physmap->size = strtoull(value, NULL, 16); 1290 free(value); 1291 1292 snprintf(path, sizeof(path), 1293 "/local/domain/0/device-model/%d/physmap/%s/name", 1294 xen_domid, entries[i]); 1295 physmap->name = xs_read(state->xenstore, 0, path, &len); 1296 1297 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 1298 } 1299 free(entries); 1300 } 1301 #else 1302 static void xen_read_physmap(XenIOState *state) 1303 { 1304 } 1305 #endif 1306 1307 static void xen_wakeup_notifier(Notifier *notifier, void *data) 1308 { 1309 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); 1310 } 1311 1312 static int xen_map_ioreq_server(XenIOState *state) 1313 { 1314 void *addr = NULL; 1315 xenforeignmemory_resource_handle *fres; 1316 xen_pfn_t ioreq_pfn; 1317 xen_pfn_t bufioreq_pfn; 1318 evtchn_port_t bufioreq_evtchn; 1319 int rc; 1320 1321 /* 1322 * Attempt to map using the resource API and fall back to normal 1323 * foreign mapping if this is not supported. 1324 */ 1325 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0); 1326 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1); 1327 fres = xenforeignmemory_map_resource(xen_fmem, xen_domid, 1328 XENMEM_resource_ioreq_server, 1329 state->ioservid, 0, 2, 1330 &addr, 1331 PROT_READ | PROT_WRITE, 0); 1332 if (fres != NULL) { 1333 trace_xen_map_resource_ioreq(state->ioservid, addr); 1334 state->buffered_io_page = addr; 1335 state->shared_page = addr + TARGET_PAGE_SIZE; 1336 } else if (errno != EOPNOTSUPP) { 1337 error_report("failed to map ioreq server resources: error %d handle=%p", 1338 errno, xen_xc); 1339 return -1; 1340 } 1341 1342 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid, 1343 (state->shared_page == NULL) ? 1344 &ioreq_pfn : NULL, 1345 (state->buffered_io_page == NULL) ? 1346 &bufioreq_pfn : NULL, 1347 &bufioreq_evtchn); 1348 if (rc < 0) { 1349 error_report("failed to get ioreq server info: error %d handle=%p", 1350 errno, xen_xc); 1351 return rc; 1352 } 1353 1354 if (state->shared_page == NULL) { 1355 DPRINTF("shared page at pfn %lx\n", ioreq_pfn); 1356 1357 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, 1358 PROT_READ | PROT_WRITE, 1359 1, &ioreq_pfn, NULL); 1360 if (state->shared_page == NULL) { 1361 error_report("map shared IO page returned error %d handle=%p", 1362 errno, xen_xc); 1363 } 1364 } 1365 1366 if (state->buffered_io_page == NULL) { 1367 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); 1368 1369 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, 1370 PROT_READ | PROT_WRITE, 1371 1, &bufioreq_pfn, 1372 NULL); 1373 if (state->buffered_io_page == NULL) { 1374 error_report("map buffered IO page returned error %d", errno); 1375 return -1; 1376 } 1377 } 1378 1379 if (state->shared_page == NULL || state->buffered_io_page == NULL) { 1380 return -1; 1381 } 1382 1383 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); 1384 1385 state->bufioreq_remote_port = bufioreq_evtchn; 1386 1387 return 0; 1388 } 1389 1390 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory) 1391 { 1392 MachineState *ms = MACHINE(pcms); 1393 unsigned int max_cpus = ms->smp.max_cpus; 1394 int i, rc; 1395 xen_pfn_t ioreq_pfn; 1396 XenIOState *state; 1397 1398 state = g_malloc0(sizeof (XenIOState)); 1399 1400 state->xce_handle = xenevtchn_open(NULL, 0); 1401 if (state->xce_handle == NULL) { 1402 perror("xen: event channel open"); 1403 goto err; 1404 } 1405 1406 state->xenstore = xs_daemon_open(); 1407 if (state->xenstore == NULL) { 1408 perror("xen: xenstore open"); 1409 goto err; 1410 } 1411 1412 xen_create_ioreq_server(xen_domid, &state->ioservid); 1413 1414 state->exit.notify = xen_exit_notifier; 1415 qemu_add_exit_notifier(&state->exit); 1416 1417 state->suspend.notify = xen_suspend_notifier; 1418 qemu_register_suspend_notifier(&state->suspend); 1419 1420 state->wakeup.notify = xen_wakeup_notifier; 1421 qemu_register_wakeup_notifier(&state->wakeup); 1422 1423 /* 1424 * Register wake-up support in QMP query-current-machine API 1425 */ 1426 qemu_register_wakeup_support(); 1427 1428 rc = xen_map_ioreq_server(state); 1429 if (rc < 0) { 1430 goto err; 1431 } 1432 1433 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); 1434 if (!rc) { 1435 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); 1436 state->shared_vmport_page = 1437 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1438 1, &ioreq_pfn, NULL); 1439 if (state->shared_vmport_page == NULL) { 1440 error_report("map shared vmport IO page returned error %d handle=%p", 1441 errno, xen_xc); 1442 goto err; 1443 } 1444 } else if (rc != -ENOSYS) { 1445 error_report("get vmport regs pfn returned error %d, rc=%d", 1446 errno, rc); 1447 goto err; 1448 } 1449 1450 /* Note: cpus is empty at this point in init */ 1451 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *)); 1452 1453 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true); 1454 if (rc < 0) { 1455 error_report("failed to enable ioreq server info: error %d handle=%p", 1456 errno, xen_xc); 1457 goto err; 1458 } 1459 1460 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t)); 1461 1462 /* FIXME: how about if we overflow the page here? */ 1463 for (i = 0; i < max_cpus; i++) { 1464 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1465 xen_vcpu_eport(state->shared_page, i)); 1466 if (rc == -1) { 1467 error_report("shared evtchn %d bind error %d", i, errno); 1468 goto err; 1469 } 1470 state->ioreq_local_port[i] = rc; 1471 } 1472 1473 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1474 state->bufioreq_remote_port); 1475 if (rc == -1) { 1476 error_report("buffered evtchn bind error %d", errno); 1477 goto err; 1478 } 1479 state->bufioreq_local_port = rc; 1480 1481 /* Init RAM management */ 1482 #ifdef XEN_COMPAT_PHYSMAP 1483 xen_map_cache_init(xen_phys_offset_to_gaddr, state); 1484 #else 1485 xen_map_cache_init(NULL, state); 1486 #endif 1487 xen_ram_init(pcms, ram_size, ram_memory); 1488 1489 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); 1490 1491 state->memory_listener = xen_memory_listener; 1492 memory_listener_register(&state->memory_listener, &address_space_memory); 1493 state->log_for_dirtybit = NULL; 1494 1495 state->io_listener = xen_io_listener; 1496 memory_listener_register(&state->io_listener, &address_space_io); 1497 1498 state->device_listener = xen_device_listener; 1499 QLIST_INIT(&state->dev_list); 1500 device_listener_register(&state->device_listener); 1501 1502 xen_bus_init(); 1503 1504 /* Initialize backend core & drivers */ 1505 if (xen_be_init() != 0) { 1506 error_report("xen backend core setup failed"); 1507 goto err; 1508 } 1509 xen_be_register_common(); 1510 1511 QLIST_INIT(&xen_physmap); 1512 xen_read_physmap(state); 1513 1514 /* Disable ACPI build because Xen handles it */ 1515 pcms->acpi_build_enabled = false; 1516 1517 return; 1518 1519 err: 1520 error_report("xen hardware virtual machine initialisation failed"); 1521 exit(1); 1522 } 1523 1524 void destroy_hvm_domain(bool reboot) 1525 { 1526 xc_interface *xc_handle; 1527 int sts; 1528 int rc; 1529 1530 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff; 1531 1532 if (xen_dmod) { 1533 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason); 1534 if (!rc) { 1535 return; 1536 } 1537 if (errno != ENOTTY /* old Xen */) { 1538 perror("xendevicemodel_shutdown failed"); 1539 } 1540 /* well, try the old thing then */ 1541 } 1542 1543 xc_handle = xc_interface_open(0, 0, 0); 1544 if (xc_handle == NULL) { 1545 fprintf(stderr, "Cannot acquire xenctrl handle\n"); 1546 } else { 1547 sts = xc_domain_shutdown(xc_handle, xen_domid, reason); 1548 if (sts != 0) { 1549 fprintf(stderr, "xc_domain_shutdown failed to issue %s, " 1550 "sts %d, %s\n", reboot ? "reboot" : "poweroff", 1551 sts, strerror(errno)); 1552 } else { 1553 fprintf(stderr, "Issued domain %d %s\n", xen_domid, 1554 reboot ? "reboot" : "poweroff"); 1555 } 1556 xc_interface_close(xc_handle); 1557 } 1558 } 1559 1560 void xen_register_framebuffer(MemoryRegion *mr) 1561 { 1562 framebuffer = mr; 1563 } 1564 1565 void xen_shutdown_fatal_error(const char *fmt, ...) 1566 { 1567 va_list ap; 1568 1569 va_start(ap, fmt); 1570 vfprintf(stderr, fmt, ap); 1571 va_end(ap); 1572 fprintf(stderr, "Will destroy the domain.\n"); 1573 /* destroy the domain */ 1574 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR); 1575 } 1576 1577 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length) 1578 { 1579 if (unlikely(xen_in_migration)) { 1580 int rc; 1581 ram_addr_t start_pfn, nb_pages; 1582 1583 start = xen_phys_offset_to_gaddr(start, length); 1584 1585 if (length == 0) { 1586 length = TARGET_PAGE_SIZE; 1587 } 1588 start_pfn = start >> TARGET_PAGE_BITS; 1589 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) 1590 - start_pfn; 1591 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages); 1592 if (rc) { 1593 fprintf(stderr, 1594 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", 1595 __func__, start, nb_pages, errno, strerror(errno)); 1596 } 1597 } 1598 } 1599 1600 void qmp_xen_set_global_dirty_log(bool enable, Error **errp) 1601 { 1602 if (enable) { 1603 memory_global_dirty_log_start(); 1604 } else { 1605 memory_global_dirty_log_stop(); 1606 } 1607 } 1608