1 /* 2 * Copyright (C) 2010 Citrix Ltd. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 * 7 * Contributions after 2012-01-13 are licensed under the terms of the 8 * GNU GPL, version 2 or (at your option) any later version. 9 */ 10 11 #include "qemu/osdep.h" 12 13 #include "cpu.h" 14 #include "hw/pci/pci.h" 15 #include "hw/pci/pci_host.h" 16 #include "hw/i386/pc.h" 17 #include "hw/i386/apic-msidef.h" 18 #include "hw/xen/xen_common.h" 19 #include "hw/xen/xen-legacy-backend.h" 20 #include "hw/xen/xen-bus.h" 21 #include "qapi/error.h" 22 #include "qapi/qapi-commands-misc.h" 23 #include "qemu/error-report.h" 24 #include "qemu/range.h" 25 #include "sysemu/xen-mapcache.h" 26 #include "trace.h" 27 #include "exec/address-spaces.h" 28 29 #include <xen/hvm/ioreq.h> 30 #include <xen/hvm/params.h> 31 #include <xen/hvm/e820.h> 32 33 //#define DEBUG_XEN_HVM 34 35 #ifdef DEBUG_XEN_HVM 36 #define DPRINTF(fmt, ...) \ 37 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) 38 #else 39 #define DPRINTF(fmt, ...) \ 40 do { } while (0) 41 #endif 42 43 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; 44 static MemoryRegion *framebuffer; 45 static bool xen_in_migration; 46 47 /* Compatibility with older version */ 48 49 /* This allows QEMU to build on a system that has Xen 4.5 or earlier 50 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h 51 * needs to be included before this block and hw/xen/xen_common.h needs to 52 * be included before xen/hvm/ioreq.h 53 */ 54 #ifndef IOREQ_TYPE_VMWARE_PORT 55 #define IOREQ_TYPE_VMWARE_PORT 3 56 struct vmware_regs { 57 uint32_t esi; 58 uint32_t edi; 59 uint32_t ebx; 60 uint32_t ecx; 61 uint32_t edx; 62 }; 63 typedef struct vmware_regs vmware_regs_t; 64 65 struct shared_vmport_iopage { 66 struct vmware_regs vcpu_vmport_regs[1]; 67 }; 68 typedef struct shared_vmport_iopage shared_vmport_iopage_t; 69 #endif 70 71 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) 72 { 73 return shared_page->vcpu_ioreq[i].vp_eport; 74 } 75 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) 76 { 77 return &shared_page->vcpu_ioreq[vcpu]; 78 } 79 80 #define BUFFER_IO_MAX_DELAY 100 81 82 typedef struct XenPhysmap { 83 hwaddr start_addr; 84 ram_addr_t size; 85 const char *name; 86 hwaddr phys_offset; 87 88 QLIST_ENTRY(XenPhysmap) list; 89 } XenPhysmap; 90 91 static QLIST_HEAD(, XenPhysmap) xen_physmap; 92 93 typedef struct XenPciDevice { 94 PCIDevice *pci_dev; 95 uint32_t sbdf; 96 QLIST_ENTRY(XenPciDevice) entry; 97 } XenPciDevice; 98 99 typedef struct XenIOState { 100 ioservid_t ioservid; 101 shared_iopage_t *shared_page; 102 shared_vmport_iopage_t *shared_vmport_page; 103 buffered_iopage_t *buffered_io_page; 104 QEMUTimer *buffered_io_timer; 105 CPUState **cpu_by_vcpu_id; 106 /* the evtchn port for polling the notification, */ 107 evtchn_port_t *ioreq_local_port; 108 /* evtchn remote and local ports for buffered io */ 109 evtchn_port_t bufioreq_remote_port; 110 evtchn_port_t bufioreq_local_port; 111 /* the evtchn fd for polling */ 112 xenevtchn_handle *xce_handle; 113 /* which vcpu we are serving */ 114 int send_vcpu; 115 116 struct xs_handle *xenstore; 117 MemoryListener memory_listener; 118 MemoryListener io_listener; 119 QLIST_HEAD(, XenPciDevice) dev_list; 120 DeviceListener device_listener; 121 hwaddr free_phys_offset; 122 const XenPhysmap *log_for_dirtybit; 123 124 Notifier exit; 125 Notifier suspend; 126 Notifier wakeup; 127 } XenIOState; 128 129 /* Xen specific function for piix pci */ 130 131 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) 132 { 133 return irq_num + ((pci_dev->devfn >> 3) << 2); 134 } 135 136 void xen_piix3_set_irq(void *opaque, int irq_num, int level) 137 { 138 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2, 139 irq_num & 3, level); 140 } 141 142 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) 143 { 144 int i; 145 146 /* Scan for updates to PCI link routes (0x60-0x63). */ 147 for (i = 0; i < len; i++) { 148 uint8_t v = (val >> (8 * i)) & 0xff; 149 if (v & 0x80) { 150 v = 0; 151 } 152 v &= 0xf; 153 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { 154 xen_set_pci_link_route(xen_domid, address + i - 0x60, v); 155 } 156 } 157 } 158 159 int xen_is_pirq_msi(uint32_t msi_data) 160 { 161 /* If vector is 0, the msi is remapped into a pirq, passed as 162 * dest_id. 163 */ 164 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0; 165 } 166 167 void xen_hvm_inject_msi(uint64_t addr, uint32_t data) 168 { 169 xen_inject_msi(xen_domid, addr, data); 170 } 171 172 static void xen_suspend_notifier(Notifier *notifier, void *data) 173 { 174 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); 175 } 176 177 /* Xen Interrupt Controller */ 178 179 static void xen_set_irq(void *opaque, int irq, int level) 180 { 181 xen_set_isa_irq_level(xen_domid, irq, level); 182 } 183 184 qemu_irq *xen_interrupt_controller_init(void) 185 { 186 return qemu_allocate_irqs(xen_set_irq, NULL, 16); 187 } 188 189 /* Memory Ops */ 190 191 static void xen_ram_init(PCMachineState *pcms, 192 ram_addr_t ram_size, MemoryRegion **ram_memory_p) 193 { 194 MemoryRegion *sysmem = get_system_memory(); 195 ram_addr_t block_len; 196 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(), 197 PC_MACHINE_MAX_RAM_BELOW_4G, 198 &error_abort); 199 200 /* Handle the machine opt max-ram-below-4g. It is basically doing 201 * min(xen limit, user limit). 202 */ 203 if (!user_lowmem) { 204 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */ 205 } 206 if (HVM_BELOW_4G_RAM_END <= user_lowmem) { 207 user_lowmem = HVM_BELOW_4G_RAM_END; 208 } 209 210 if (ram_size >= user_lowmem) { 211 pcms->above_4g_mem_size = ram_size - user_lowmem; 212 pcms->below_4g_mem_size = user_lowmem; 213 } else { 214 pcms->above_4g_mem_size = 0; 215 pcms->below_4g_mem_size = ram_size; 216 } 217 if (!pcms->above_4g_mem_size) { 218 block_len = ram_size; 219 } else { 220 /* 221 * Xen does not allocate the memory continuously, it keeps a 222 * hole of the size computed above or passed in. 223 */ 224 block_len = (1ULL << 32) + pcms->above_4g_mem_size; 225 } 226 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, 227 &error_fatal); 228 *ram_memory_p = &ram_memory; 229 230 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", 231 &ram_memory, 0, 0xa0000); 232 memory_region_add_subregion(sysmem, 0, &ram_640k); 233 /* Skip of the VGA IO memory space, it will be registered later by the VGA 234 * emulated device. 235 * 236 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load 237 * the Options ROM, so it is registered here as RAM. 238 */ 239 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", 240 &ram_memory, 0xc0000, 241 pcms->below_4g_mem_size - 0xc0000); 242 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); 243 if (pcms->above_4g_mem_size > 0) { 244 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", 245 &ram_memory, 0x100000000ULL, 246 pcms->above_4g_mem_size); 247 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); 248 } 249 } 250 251 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, 252 Error **errp) 253 { 254 unsigned long nr_pfn; 255 xen_pfn_t *pfn_list; 256 int i; 257 258 if (runstate_check(RUN_STATE_INMIGRATE)) { 259 /* RAM already populated in Xen */ 260 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT 261 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", 262 __func__, size, ram_addr); 263 return; 264 } 265 266 if (mr == &ram_memory) { 267 return; 268 } 269 270 trace_xen_ram_alloc(ram_addr, size); 271 272 nr_pfn = size >> TARGET_PAGE_BITS; 273 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); 274 275 for (i = 0; i < nr_pfn; i++) { 276 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; 277 } 278 279 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { 280 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, 281 ram_addr); 282 } 283 284 g_free(pfn_list); 285 } 286 287 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size) 288 { 289 XenPhysmap *physmap = NULL; 290 291 start_addr &= TARGET_PAGE_MASK; 292 293 QLIST_FOREACH(physmap, &xen_physmap, list) { 294 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { 295 return physmap; 296 } 297 } 298 return NULL; 299 } 300 301 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size) 302 { 303 hwaddr addr = phys_offset & TARGET_PAGE_MASK; 304 XenPhysmap *physmap = NULL; 305 306 QLIST_FOREACH(physmap, &xen_physmap, list) { 307 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { 308 return physmap->start_addr + (phys_offset - physmap->phys_offset); 309 } 310 } 311 312 return phys_offset; 313 } 314 315 #ifdef XEN_COMPAT_PHYSMAP 316 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 317 { 318 char path[80], value[17]; 319 320 snprintf(path, sizeof(path), 321 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", 322 xen_domid, (uint64_t)physmap->phys_offset); 323 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr); 324 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 325 return -1; 326 } 327 snprintf(path, sizeof(path), 328 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", 329 xen_domid, (uint64_t)physmap->phys_offset); 330 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size); 331 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 332 return -1; 333 } 334 if (physmap->name) { 335 snprintf(path, sizeof(path), 336 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", 337 xen_domid, (uint64_t)physmap->phys_offset); 338 if (!xs_write(state->xenstore, 0, path, 339 physmap->name, strlen(physmap->name))) { 340 return -1; 341 } 342 } 343 return 0; 344 } 345 #else 346 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 347 { 348 return 0; 349 } 350 #endif 351 352 static int xen_add_to_physmap(XenIOState *state, 353 hwaddr start_addr, 354 ram_addr_t size, 355 MemoryRegion *mr, 356 hwaddr offset_within_region) 357 { 358 unsigned long nr_pages; 359 int rc = 0; 360 XenPhysmap *physmap = NULL; 361 hwaddr pfn, start_gpfn; 362 hwaddr phys_offset = memory_region_get_ram_addr(mr); 363 const char *mr_name; 364 365 if (get_physmapping(start_addr, size)) { 366 return 0; 367 } 368 if (size <= 0) { 369 return -1; 370 } 371 372 /* Xen can only handle a single dirty log region for now and we want 373 * the linear framebuffer to be that region. 374 * Avoid tracking any regions that is not videoram and avoid tracking 375 * the legacy vga region. */ 376 if (mr == framebuffer && start_addr > 0xbffff) { 377 goto go_physmap; 378 } 379 return -1; 380 381 go_physmap: 382 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", 383 start_addr, start_addr + size); 384 385 mr_name = memory_region_name(mr); 386 387 physmap = g_malloc(sizeof(XenPhysmap)); 388 389 physmap->start_addr = start_addr; 390 physmap->size = size; 391 physmap->name = mr_name; 392 physmap->phys_offset = phys_offset; 393 394 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 395 396 if (runstate_check(RUN_STATE_INMIGRATE)) { 397 /* Now when we have a physmap entry we can replace a dummy mapping with 398 * a real one of guest foreign memory. */ 399 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size); 400 assert(p && p == memory_region_get_ram_ptr(mr)); 401 402 return 0; 403 } 404 405 pfn = phys_offset >> TARGET_PAGE_BITS; 406 start_gpfn = start_addr >> TARGET_PAGE_BITS; 407 nr_pages = size >> TARGET_PAGE_BITS; 408 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn, 409 start_gpfn); 410 if (rc) { 411 int saved_errno = errno; 412 413 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx 414 " to GFN %"HWADDR_PRIx" failed: %s", 415 nr_pages, pfn, start_gpfn, strerror(saved_errno)); 416 errno = saved_errno; 417 return -1; 418 } 419 420 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid, 421 start_addr >> TARGET_PAGE_BITS, 422 (start_addr + size - 1) >> TARGET_PAGE_BITS, 423 XEN_DOMCTL_MEM_CACHEATTR_WB); 424 if (rc) { 425 error_report("pin_memory_cacheattr failed: %s", strerror(errno)); 426 } 427 return xen_save_physmap(state, physmap); 428 } 429 430 static int xen_remove_from_physmap(XenIOState *state, 431 hwaddr start_addr, 432 ram_addr_t size) 433 { 434 int rc = 0; 435 XenPhysmap *physmap = NULL; 436 hwaddr phys_offset = 0; 437 438 physmap = get_physmapping(start_addr, size); 439 if (physmap == NULL) { 440 return -1; 441 } 442 443 phys_offset = physmap->phys_offset; 444 size = physmap->size; 445 446 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " 447 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); 448 449 size >>= TARGET_PAGE_BITS; 450 start_addr >>= TARGET_PAGE_BITS; 451 phys_offset >>= TARGET_PAGE_BITS; 452 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr, 453 phys_offset); 454 if (rc) { 455 int saved_errno = errno; 456 457 error_report("relocate_memory "RAM_ADDR_FMT" pages" 458 " from GFN %"HWADDR_PRIx 459 " to GFN %"HWADDR_PRIx" failed: %s", 460 size, start_addr, phys_offset, strerror(saved_errno)); 461 errno = saved_errno; 462 return -1; 463 } 464 465 QLIST_REMOVE(physmap, list); 466 if (state->log_for_dirtybit == physmap) { 467 state->log_for_dirtybit = NULL; 468 } 469 g_free(physmap); 470 471 return 0; 472 } 473 474 static void xen_set_memory(struct MemoryListener *listener, 475 MemoryRegionSection *section, 476 bool add) 477 { 478 XenIOState *state = container_of(listener, XenIOState, memory_listener); 479 hwaddr start_addr = section->offset_within_address_space; 480 ram_addr_t size = int128_get64(section->size); 481 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); 482 hvmmem_type_t mem_type; 483 484 if (section->mr == &ram_memory) { 485 return; 486 } else { 487 if (add) { 488 xen_map_memory_section(xen_domid, state->ioservid, 489 section); 490 } else { 491 xen_unmap_memory_section(xen_domid, state->ioservid, 492 section); 493 } 494 } 495 496 if (!memory_region_is_ram(section->mr)) { 497 return; 498 } 499 500 if (log_dirty != add) { 501 return; 502 } 503 504 trace_xen_client_set_memory(start_addr, size, log_dirty); 505 506 start_addr &= TARGET_PAGE_MASK; 507 size = TARGET_PAGE_ALIGN(size); 508 509 if (add) { 510 if (!memory_region_is_rom(section->mr)) { 511 xen_add_to_physmap(state, start_addr, size, 512 section->mr, section->offset_within_region); 513 } else { 514 mem_type = HVMMEM_ram_ro; 515 if (xen_set_mem_type(xen_domid, mem_type, 516 start_addr >> TARGET_PAGE_BITS, 517 size >> TARGET_PAGE_BITS)) { 518 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n", 519 start_addr); 520 } 521 } 522 } else { 523 if (xen_remove_from_physmap(state, start_addr, size) < 0) { 524 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); 525 } 526 } 527 } 528 529 static void xen_region_add(MemoryListener *listener, 530 MemoryRegionSection *section) 531 { 532 memory_region_ref(section->mr); 533 xen_set_memory(listener, section, true); 534 } 535 536 static void xen_region_del(MemoryListener *listener, 537 MemoryRegionSection *section) 538 { 539 xen_set_memory(listener, section, false); 540 memory_region_unref(section->mr); 541 } 542 543 static void xen_io_add(MemoryListener *listener, 544 MemoryRegionSection *section) 545 { 546 XenIOState *state = container_of(listener, XenIOState, io_listener); 547 MemoryRegion *mr = section->mr; 548 549 if (mr->ops == &unassigned_io_ops) { 550 return; 551 } 552 553 memory_region_ref(mr); 554 555 xen_map_io_section(xen_domid, state->ioservid, section); 556 } 557 558 static void xen_io_del(MemoryListener *listener, 559 MemoryRegionSection *section) 560 { 561 XenIOState *state = container_of(listener, XenIOState, io_listener); 562 MemoryRegion *mr = section->mr; 563 564 if (mr->ops == &unassigned_io_ops) { 565 return; 566 } 567 568 xen_unmap_io_section(xen_domid, state->ioservid, section); 569 570 memory_region_unref(mr); 571 } 572 573 static void xen_device_realize(DeviceListener *listener, 574 DeviceState *dev) 575 { 576 XenIOState *state = container_of(listener, XenIOState, device_listener); 577 578 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 579 PCIDevice *pci_dev = PCI_DEVICE(dev); 580 XenPciDevice *xendev = g_new(XenPciDevice, 1); 581 582 xendev->pci_dev = pci_dev; 583 xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev), 584 pci_dev->devfn); 585 QLIST_INSERT_HEAD(&state->dev_list, xendev, entry); 586 587 xen_map_pcidev(xen_domid, state->ioservid, pci_dev); 588 } 589 } 590 591 static void xen_device_unrealize(DeviceListener *listener, 592 DeviceState *dev) 593 { 594 XenIOState *state = container_of(listener, XenIOState, device_listener); 595 596 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 597 PCIDevice *pci_dev = PCI_DEVICE(dev); 598 XenPciDevice *xendev, *next; 599 600 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev); 601 602 QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) { 603 if (xendev->pci_dev == pci_dev) { 604 QLIST_REMOVE(xendev, entry); 605 g_free(xendev); 606 break; 607 } 608 } 609 } 610 } 611 612 static void xen_sync_dirty_bitmap(XenIOState *state, 613 hwaddr start_addr, 614 ram_addr_t size) 615 { 616 hwaddr npages = size >> TARGET_PAGE_BITS; 617 const int width = sizeof(unsigned long) * 8; 618 unsigned long bitmap[DIV_ROUND_UP(npages, width)]; 619 int rc, i, j; 620 const XenPhysmap *physmap = NULL; 621 622 physmap = get_physmapping(start_addr, size); 623 if (physmap == NULL) { 624 /* not handled */ 625 return; 626 } 627 628 if (state->log_for_dirtybit == NULL) { 629 state->log_for_dirtybit = physmap; 630 } else if (state->log_for_dirtybit != physmap) { 631 /* Only one range for dirty bitmap can be tracked. */ 632 return; 633 } 634 635 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS, 636 npages, bitmap); 637 if (rc < 0) { 638 #ifndef ENODATA 639 #define ENODATA ENOENT 640 #endif 641 if (errno == ENODATA) { 642 memory_region_set_dirty(framebuffer, 0, size); 643 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx 644 ", 0x" TARGET_FMT_plx "): %s\n", 645 start_addr, start_addr + size, strerror(errno)); 646 } 647 return; 648 } 649 650 for (i = 0; i < ARRAY_SIZE(bitmap); i++) { 651 unsigned long map = bitmap[i]; 652 while (map != 0) { 653 j = ctzl(map); 654 map &= ~(1ul << j); 655 memory_region_set_dirty(framebuffer, 656 (i * width + j) * TARGET_PAGE_SIZE, 657 TARGET_PAGE_SIZE); 658 }; 659 } 660 } 661 662 static void xen_log_start(MemoryListener *listener, 663 MemoryRegionSection *section, 664 int old, int new) 665 { 666 XenIOState *state = container_of(listener, XenIOState, memory_listener); 667 668 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { 669 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 670 int128_get64(section->size)); 671 } 672 } 673 674 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, 675 int old, int new) 676 { 677 XenIOState *state = container_of(listener, XenIOState, memory_listener); 678 679 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { 680 state->log_for_dirtybit = NULL; 681 /* Disable dirty bit tracking */ 682 xen_track_dirty_vram(xen_domid, 0, 0, NULL); 683 } 684 } 685 686 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) 687 { 688 XenIOState *state = container_of(listener, XenIOState, memory_listener); 689 690 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 691 int128_get64(section->size)); 692 } 693 694 static void xen_log_global_start(MemoryListener *listener) 695 { 696 if (xen_enabled()) { 697 xen_in_migration = true; 698 } 699 } 700 701 static void xen_log_global_stop(MemoryListener *listener) 702 { 703 xen_in_migration = false; 704 } 705 706 static MemoryListener xen_memory_listener = { 707 .region_add = xen_region_add, 708 .region_del = xen_region_del, 709 .log_start = xen_log_start, 710 .log_stop = xen_log_stop, 711 .log_sync = xen_log_sync, 712 .log_global_start = xen_log_global_start, 713 .log_global_stop = xen_log_global_stop, 714 .priority = 10, 715 }; 716 717 static MemoryListener xen_io_listener = { 718 .region_add = xen_io_add, 719 .region_del = xen_io_del, 720 .priority = 10, 721 }; 722 723 static DeviceListener xen_device_listener = { 724 .realize = xen_device_realize, 725 .unrealize = xen_device_unrealize, 726 }; 727 728 /* get the ioreq packets from share mem */ 729 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) 730 { 731 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); 732 733 if (req->state != STATE_IOREQ_READY) { 734 DPRINTF("I/O request not ready: " 735 "%x, ptr: %x, port: %"PRIx64", " 736 "data: %"PRIx64", count: %u, size: %u\n", 737 req->state, req->data_is_ptr, req->addr, 738 req->data, req->count, req->size); 739 return NULL; 740 } 741 742 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ 743 744 req->state = STATE_IOREQ_INPROCESS; 745 return req; 746 } 747 748 /* use poll to get the port notification */ 749 /* ioreq_vec--out,the */ 750 /* retval--the number of ioreq packet */ 751 static ioreq_t *cpu_get_ioreq(XenIOState *state) 752 { 753 int i; 754 evtchn_port_t port; 755 756 port = xenevtchn_pending(state->xce_handle); 757 if (port == state->bufioreq_local_port) { 758 timer_mod(state->buffered_io_timer, 759 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 760 return NULL; 761 } 762 763 if (port != -1) { 764 for (i = 0; i < max_cpus; i++) { 765 if (state->ioreq_local_port[i] == port) { 766 break; 767 } 768 } 769 770 if (i == max_cpus) { 771 hw_error("Fatal error while trying to get io event!\n"); 772 } 773 774 /* unmask the wanted port again */ 775 xenevtchn_unmask(state->xce_handle, port); 776 777 /* get the io packet from shared memory */ 778 state->send_vcpu = i; 779 return cpu_get_ioreq_from_shared_memory(state, i); 780 } 781 782 /* read error or read nothing */ 783 return NULL; 784 } 785 786 static uint32_t do_inp(uint32_t addr, unsigned long size) 787 { 788 switch (size) { 789 case 1: 790 return cpu_inb(addr); 791 case 2: 792 return cpu_inw(addr); 793 case 4: 794 return cpu_inl(addr); 795 default: 796 hw_error("inp: bad size: %04x %lx", addr, size); 797 } 798 } 799 800 static void do_outp(uint32_t addr, 801 unsigned long size, uint32_t val) 802 { 803 switch (size) { 804 case 1: 805 return cpu_outb(addr, val); 806 case 2: 807 return cpu_outw(addr, val); 808 case 4: 809 return cpu_outl(addr, val); 810 default: 811 hw_error("outp: bad size: %04x %lx", addr, size); 812 } 813 } 814 815 /* 816 * Helper functions which read/write an object from/to physical guest 817 * memory, as part of the implementation of an ioreq. 818 * 819 * Equivalent to 820 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, 821 * val, req->size, 0/1) 822 * except without the integer overflow problems. 823 */ 824 static void rw_phys_req_item(hwaddr addr, 825 ioreq_t *req, uint32_t i, void *val, int rw) 826 { 827 /* Do everything unsigned so overflow just results in a truncated result 828 * and accesses to undesired parts of guest memory, which is up 829 * to the guest */ 830 hwaddr offset = (hwaddr)req->size * i; 831 if (req->df) { 832 addr -= offset; 833 } else { 834 addr += offset; 835 } 836 cpu_physical_memory_rw(addr, val, req->size, rw); 837 } 838 839 static inline void read_phys_req_item(hwaddr addr, 840 ioreq_t *req, uint32_t i, void *val) 841 { 842 rw_phys_req_item(addr, req, i, val, 0); 843 } 844 static inline void write_phys_req_item(hwaddr addr, 845 ioreq_t *req, uint32_t i, void *val) 846 { 847 rw_phys_req_item(addr, req, i, val, 1); 848 } 849 850 851 static void cpu_ioreq_pio(ioreq_t *req) 852 { 853 uint32_t i; 854 855 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, 856 req->data, req->count, req->size); 857 858 if (req->size > sizeof(uint32_t)) { 859 hw_error("PIO: bad size (%u)", req->size); 860 } 861 862 if (req->dir == IOREQ_READ) { 863 if (!req->data_is_ptr) { 864 req->data = do_inp(req->addr, req->size); 865 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, 866 req->size); 867 } else { 868 uint32_t tmp; 869 870 for (i = 0; i < req->count; i++) { 871 tmp = do_inp(req->addr, req->size); 872 write_phys_req_item(req->data, req, i, &tmp); 873 } 874 } 875 } else if (req->dir == IOREQ_WRITE) { 876 if (!req->data_is_ptr) { 877 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, 878 req->size); 879 do_outp(req->addr, req->size, req->data); 880 } else { 881 for (i = 0; i < req->count; i++) { 882 uint32_t tmp = 0; 883 884 read_phys_req_item(req->data, req, i, &tmp); 885 do_outp(req->addr, req->size, tmp); 886 } 887 } 888 } 889 } 890 891 static void cpu_ioreq_move(ioreq_t *req) 892 { 893 uint32_t i; 894 895 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, 896 req->data, req->count, req->size); 897 898 if (req->size > sizeof(req->data)) { 899 hw_error("MMIO: bad size (%u)", req->size); 900 } 901 902 if (!req->data_is_ptr) { 903 if (req->dir == IOREQ_READ) { 904 for (i = 0; i < req->count; i++) { 905 read_phys_req_item(req->addr, req, i, &req->data); 906 } 907 } else if (req->dir == IOREQ_WRITE) { 908 for (i = 0; i < req->count; i++) { 909 write_phys_req_item(req->addr, req, i, &req->data); 910 } 911 } 912 } else { 913 uint64_t tmp; 914 915 if (req->dir == IOREQ_READ) { 916 for (i = 0; i < req->count; i++) { 917 read_phys_req_item(req->addr, req, i, &tmp); 918 write_phys_req_item(req->data, req, i, &tmp); 919 } 920 } else if (req->dir == IOREQ_WRITE) { 921 for (i = 0; i < req->count; i++) { 922 read_phys_req_item(req->data, req, i, &tmp); 923 write_phys_req_item(req->addr, req, i, &tmp); 924 } 925 } 926 } 927 } 928 929 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req) 930 { 931 uint32_t sbdf = req->addr >> 32; 932 uint32_t reg = req->addr; 933 XenPciDevice *xendev; 934 935 if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) && 936 req->size != sizeof(uint32_t)) { 937 hw_error("PCI config access: bad size (%u)", req->size); 938 } 939 940 if (req->count != 1) { 941 hw_error("PCI config access: bad count (%u)", req->count); 942 } 943 944 QLIST_FOREACH(xendev, &state->dev_list, entry) { 945 if (xendev->sbdf != sbdf) { 946 continue; 947 } 948 949 if (!req->data_is_ptr) { 950 if (req->dir == IOREQ_READ) { 951 req->data = pci_host_config_read_common( 952 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 953 req->size); 954 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 955 req->size, req->data); 956 } else if (req->dir == IOREQ_WRITE) { 957 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 958 req->size, req->data); 959 pci_host_config_write_common( 960 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 961 req->data, req->size); 962 } 963 } else { 964 uint32_t tmp; 965 966 if (req->dir == IOREQ_READ) { 967 tmp = pci_host_config_read_common( 968 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 969 req->size); 970 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 971 req->size, tmp); 972 write_phys_req_item(req->data, req, 0, &tmp); 973 } else if (req->dir == IOREQ_WRITE) { 974 read_phys_req_item(req->data, req, 0, &tmp); 975 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 976 req->size, tmp); 977 pci_host_config_write_common( 978 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 979 tmp, req->size); 980 } 981 } 982 } 983 } 984 985 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) 986 { 987 X86CPU *cpu; 988 CPUX86State *env; 989 990 cpu = X86_CPU(current_cpu); 991 env = &cpu->env; 992 env->regs[R_EAX] = req->data; 993 env->regs[R_EBX] = vmport_regs->ebx; 994 env->regs[R_ECX] = vmport_regs->ecx; 995 env->regs[R_EDX] = vmport_regs->edx; 996 env->regs[R_ESI] = vmport_regs->esi; 997 env->regs[R_EDI] = vmport_regs->edi; 998 } 999 1000 static void regs_from_cpu(vmware_regs_t *vmport_regs) 1001 { 1002 X86CPU *cpu = X86_CPU(current_cpu); 1003 CPUX86State *env = &cpu->env; 1004 1005 vmport_regs->ebx = env->regs[R_EBX]; 1006 vmport_regs->ecx = env->regs[R_ECX]; 1007 vmport_regs->edx = env->regs[R_EDX]; 1008 vmport_regs->esi = env->regs[R_ESI]; 1009 vmport_regs->edi = env->regs[R_EDI]; 1010 } 1011 1012 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) 1013 { 1014 vmware_regs_t *vmport_regs; 1015 1016 assert(state->shared_vmport_page); 1017 vmport_regs = 1018 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; 1019 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); 1020 1021 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; 1022 regs_to_cpu(vmport_regs, req); 1023 cpu_ioreq_pio(req); 1024 regs_from_cpu(vmport_regs); 1025 current_cpu = NULL; 1026 } 1027 1028 static void handle_ioreq(XenIOState *state, ioreq_t *req) 1029 { 1030 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, 1031 req->addr, req->data, req->count, req->size); 1032 1033 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && 1034 (req->size < sizeof (target_ulong))) { 1035 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; 1036 } 1037 1038 if (req->dir == IOREQ_WRITE) 1039 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, 1040 req->addr, req->data, req->count, req->size); 1041 1042 switch (req->type) { 1043 case IOREQ_TYPE_PIO: 1044 cpu_ioreq_pio(req); 1045 break; 1046 case IOREQ_TYPE_COPY: 1047 cpu_ioreq_move(req); 1048 break; 1049 case IOREQ_TYPE_VMWARE_PORT: 1050 handle_vmport_ioreq(state, req); 1051 break; 1052 case IOREQ_TYPE_TIMEOFFSET: 1053 break; 1054 case IOREQ_TYPE_INVALIDATE: 1055 xen_invalidate_map_cache(); 1056 break; 1057 case IOREQ_TYPE_PCI_CONFIG: 1058 cpu_ioreq_config(state, req); 1059 break; 1060 default: 1061 hw_error("Invalid ioreq type 0x%x\n", req->type); 1062 } 1063 if (req->dir == IOREQ_READ) { 1064 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, 1065 req->addr, req->data, req->count, req->size); 1066 } 1067 } 1068 1069 static int handle_buffered_iopage(XenIOState *state) 1070 { 1071 buffered_iopage_t *buf_page = state->buffered_io_page; 1072 buf_ioreq_t *buf_req = NULL; 1073 ioreq_t req; 1074 int qw; 1075 1076 if (!buf_page) { 1077 return 0; 1078 } 1079 1080 memset(&req, 0x00, sizeof(req)); 1081 req.state = STATE_IOREQ_READY; 1082 req.count = 1; 1083 req.dir = IOREQ_WRITE; 1084 1085 for (;;) { 1086 uint32_t rdptr = buf_page->read_pointer, wrptr; 1087 1088 xen_rmb(); 1089 wrptr = buf_page->write_pointer; 1090 xen_rmb(); 1091 if (rdptr != buf_page->read_pointer) { 1092 continue; 1093 } 1094 if (rdptr == wrptr) { 1095 break; 1096 } 1097 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; 1098 req.size = 1U << buf_req->size; 1099 req.addr = buf_req->addr; 1100 req.data = buf_req->data; 1101 req.type = buf_req->type; 1102 xen_rmb(); 1103 qw = (req.size == 8); 1104 if (qw) { 1105 if (rdptr + 1 == wrptr) { 1106 hw_error("Incomplete quad word buffered ioreq"); 1107 } 1108 buf_req = &buf_page->buf_ioreq[(rdptr + 1) % 1109 IOREQ_BUFFER_SLOT_NUM]; 1110 req.data |= ((uint64_t)buf_req->data) << 32; 1111 xen_rmb(); 1112 } 1113 1114 handle_ioreq(state, &req); 1115 1116 /* Only req.data may get updated by handle_ioreq(), albeit even that 1117 * should not happen as such data would never make it to the guest (we 1118 * can only usefully see writes here after all). 1119 */ 1120 assert(req.state == STATE_IOREQ_READY); 1121 assert(req.count == 1); 1122 assert(req.dir == IOREQ_WRITE); 1123 assert(!req.data_is_ptr); 1124 1125 atomic_add(&buf_page->read_pointer, qw + 1); 1126 } 1127 1128 return req.count; 1129 } 1130 1131 static void handle_buffered_io(void *opaque) 1132 { 1133 XenIOState *state = opaque; 1134 1135 if (handle_buffered_iopage(state)) { 1136 timer_mod(state->buffered_io_timer, 1137 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 1138 } else { 1139 timer_del(state->buffered_io_timer); 1140 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port); 1141 } 1142 } 1143 1144 static void cpu_handle_ioreq(void *opaque) 1145 { 1146 XenIOState *state = opaque; 1147 ioreq_t *req = cpu_get_ioreq(state); 1148 1149 handle_buffered_iopage(state); 1150 if (req) { 1151 ioreq_t copy = *req; 1152 1153 xen_rmb(); 1154 handle_ioreq(state, ©); 1155 req->data = copy.data; 1156 1157 if (req->state != STATE_IOREQ_INPROCESS) { 1158 fprintf(stderr, "Badness in I/O request ... not in service?!: " 1159 "%x, ptr: %x, port: %"PRIx64", " 1160 "data: %"PRIx64", count: %u, size: %u, type: %u\n", 1161 req->state, req->data_is_ptr, req->addr, 1162 req->data, req->count, req->size, req->type); 1163 destroy_hvm_domain(false); 1164 return; 1165 } 1166 1167 xen_wmb(); /* Update ioreq contents /then/ update state. */ 1168 1169 /* 1170 * We do this before we send the response so that the tools 1171 * have the opportunity to pick up on the reset before the 1172 * guest resumes and does a hlt with interrupts disabled which 1173 * causes Xen to powerdown the domain. 1174 */ 1175 if (runstate_is_running()) { 1176 ShutdownCause request; 1177 1178 if (qemu_shutdown_requested_get()) { 1179 destroy_hvm_domain(false); 1180 } 1181 request = qemu_reset_requested_get(); 1182 if (request) { 1183 qemu_system_reset(request); 1184 destroy_hvm_domain(true); 1185 } 1186 } 1187 1188 req->state = STATE_IORESP_READY; 1189 xenevtchn_notify(state->xce_handle, 1190 state->ioreq_local_port[state->send_vcpu]); 1191 } 1192 } 1193 1194 static void xen_main_loop_prepare(XenIOState *state) 1195 { 1196 int evtchn_fd = -1; 1197 1198 if (state->xce_handle != NULL) { 1199 evtchn_fd = xenevtchn_fd(state->xce_handle); 1200 } 1201 1202 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, 1203 state); 1204 1205 if (evtchn_fd != -1) { 1206 CPUState *cpu_state; 1207 1208 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); 1209 CPU_FOREACH(cpu_state) { 1210 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", 1211 __func__, cpu_state->cpu_index, cpu_state); 1212 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; 1213 } 1214 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); 1215 } 1216 } 1217 1218 1219 static void xen_hvm_change_state_handler(void *opaque, int running, 1220 RunState rstate) 1221 { 1222 XenIOState *state = opaque; 1223 1224 if (running) { 1225 xen_main_loop_prepare(state); 1226 } 1227 1228 xen_set_ioreq_server_state(xen_domid, 1229 state->ioservid, 1230 (rstate == RUN_STATE_RUNNING)); 1231 } 1232 1233 static void xen_exit_notifier(Notifier *n, void *data) 1234 { 1235 XenIOState *state = container_of(n, XenIOState, exit); 1236 1237 xenevtchn_close(state->xce_handle); 1238 xs_daemon_close(state->xenstore); 1239 } 1240 1241 #ifdef XEN_COMPAT_PHYSMAP 1242 static void xen_read_physmap(XenIOState *state) 1243 { 1244 XenPhysmap *physmap = NULL; 1245 unsigned int len, num, i; 1246 char path[80], *value = NULL; 1247 char **entries = NULL; 1248 1249 snprintf(path, sizeof(path), 1250 "/local/domain/0/device-model/%d/physmap", xen_domid); 1251 entries = xs_directory(state->xenstore, 0, path, &num); 1252 if (entries == NULL) 1253 return; 1254 1255 for (i = 0; i < num; i++) { 1256 physmap = g_malloc(sizeof (XenPhysmap)); 1257 physmap->phys_offset = strtoull(entries[i], NULL, 16); 1258 snprintf(path, sizeof(path), 1259 "/local/domain/0/device-model/%d/physmap/%s/start_addr", 1260 xen_domid, entries[i]); 1261 value = xs_read(state->xenstore, 0, path, &len); 1262 if (value == NULL) { 1263 g_free(physmap); 1264 continue; 1265 } 1266 physmap->start_addr = strtoull(value, NULL, 16); 1267 free(value); 1268 1269 snprintf(path, sizeof(path), 1270 "/local/domain/0/device-model/%d/physmap/%s/size", 1271 xen_domid, entries[i]); 1272 value = xs_read(state->xenstore, 0, path, &len); 1273 if (value == NULL) { 1274 g_free(physmap); 1275 continue; 1276 } 1277 physmap->size = strtoull(value, NULL, 16); 1278 free(value); 1279 1280 snprintf(path, sizeof(path), 1281 "/local/domain/0/device-model/%d/physmap/%s/name", 1282 xen_domid, entries[i]); 1283 physmap->name = xs_read(state->xenstore, 0, path, &len); 1284 1285 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 1286 } 1287 free(entries); 1288 } 1289 #else 1290 static void xen_read_physmap(XenIOState *state) 1291 { 1292 } 1293 #endif 1294 1295 static void xen_wakeup_notifier(Notifier *notifier, void *data) 1296 { 1297 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); 1298 } 1299 1300 static int xen_map_ioreq_server(XenIOState *state) 1301 { 1302 void *addr = NULL; 1303 xenforeignmemory_resource_handle *fres; 1304 xen_pfn_t ioreq_pfn; 1305 xen_pfn_t bufioreq_pfn; 1306 evtchn_port_t bufioreq_evtchn; 1307 int rc; 1308 1309 /* 1310 * Attempt to map using the resource API and fall back to normal 1311 * foreign mapping if this is not supported. 1312 */ 1313 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0); 1314 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1); 1315 fres = xenforeignmemory_map_resource(xen_fmem, xen_domid, 1316 XENMEM_resource_ioreq_server, 1317 state->ioservid, 0, 2, 1318 &addr, 1319 PROT_READ | PROT_WRITE, 0); 1320 if (fres != NULL) { 1321 trace_xen_map_resource_ioreq(state->ioservid, addr); 1322 state->buffered_io_page = addr; 1323 state->shared_page = addr + TARGET_PAGE_SIZE; 1324 } else if (errno != EOPNOTSUPP) { 1325 error_report("failed to map ioreq server resources: error %d handle=%p", 1326 errno, xen_xc); 1327 return -1; 1328 } 1329 1330 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid, 1331 (state->shared_page == NULL) ? 1332 &ioreq_pfn : NULL, 1333 (state->buffered_io_page == NULL) ? 1334 &bufioreq_pfn : NULL, 1335 &bufioreq_evtchn); 1336 if (rc < 0) { 1337 error_report("failed to get ioreq server info: error %d handle=%p", 1338 errno, xen_xc); 1339 return rc; 1340 } 1341 1342 if (state->shared_page == NULL) { 1343 DPRINTF("shared page at pfn %lx\n", ioreq_pfn); 1344 1345 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, 1346 PROT_READ | PROT_WRITE, 1347 1, &ioreq_pfn, NULL); 1348 if (state->shared_page == NULL) { 1349 error_report("map shared IO page returned error %d handle=%p", 1350 errno, xen_xc); 1351 } 1352 } 1353 1354 if (state->buffered_io_page == NULL) { 1355 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); 1356 1357 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, 1358 PROT_READ | PROT_WRITE, 1359 1, &bufioreq_pfn, 1360 NULL); 1361 if (state->buffered_io_page == NULL) { 1362 error_report("map buffered IO page returned error %d", errno); 1363 return -1; 1364 } 1365 } 1366 1367 if (state->shared_page == NULL || state->buffered_io_page == NULL) { 1368 return -1; 1369 } 1370 1371 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); 1372 1373 state->bufioreq_remote_port = bufioreq_evtchn; 1374 1375 return 0; 1376 } 1377 1378 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory) 1379 { 1380 int i, rc; 1381 xen_pfn_t ioreq_pfn; 1382 XenIOState *state; 1383 1384 state = g_malloc0(sizeof (XenIOState)); 1385 1386 state->xce_handle = xenevtchn_open(NULL, 0); 1387 if (state->xce_handle == NULL) { 1388 perror("xen: event channel open"); 1389 goto err; 1390 } 1391 1392 state->xenstore = xs_daemon_open(); 1393 if (state->xenstore == NULL) { 1394 perror("xen: xenstore open"); 1395 goto err; 1396 } 1397 1398 xen_create_ioreq_server(xen_domid, &state->ioservid); 1399 1400 state->exit.notify = xen_exit_notifier; 1401 qemu_add_exit_notifier(&state->exit); 1402 1403 state->suspend.notify = xen_suspend_notifier; 1404 qemu_register_suspend_notifier(&state->suspend); 1405 1406 state->wakeup.notify = xen_wakeup_notifier; 1407 qemu_register_wakeup_notifier(&state->wakeup); 1408 1409 /* 1410 * Register wake-up support in QMP query-current-machine API 1411 */ 1412 qemu_register_wakeup_support(); 1413 1414 rc = xen_map_ioreq_server(state); 1415 if (rc < 0) { 1416 goto err; 1417 } 1418 1419 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); 1420 if (!rc) { 1421 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); 1422 state->shared_vmport_page = 1423 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1424 1, &ioreq_pfn, NULL); 1425 if (state->shared_vmport_page == NULL) { 1426 error_report("map shared vmport IO page returned error %d handle=%p", 1427 errno, xen_xc); 1428 goto err; 1429 } 1430 } else if (rc != -ENOSYS) { 1431 error_report("get vmport regs pfn returned error %d, rc=%d", 1432 errno, rc); 1433 goto err; 1434 } 1435 1436 /* Note: cpus is empty at this point in init */ 1437 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *)); 1438 1439 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true); 1440 if (rc < 0) { 1441 error_report("failed to enable ioreq server info: error %d handle=%p", 1442 errno, xen_xc); 1443 goto err; 1444 } 1445 1446 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t)); 1447 1448 /* FIXME: how about if we overflow the page here? */ 1449 for (i = 0; i < max_cpus; i++) { 1450 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1451 xen_vcpu_eport(state->shared_page, i)); 1452 if (rc == -1) { 1453 error_report("shared evtchn %d bind error %d", i, errno); 1454 goto err; 1455 } 1456 state->ioreq_local_port[i] = rc; 1457 } 1458 1459 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1460 state->bufioreq_remote_port); 1461 if (rc == -1) { 1462 error_report("buffered evtchn bind error %d", errno); 1463 goto err; 1464 } 1465 state->bufioreq_local_port = rc; 1466 1467 /* Init RAM management */ 1468 #ifdef XEN_COMPAT_PHYSMAP 1469 xen_map_cache_init(xen_phys_offset_to_gaddr, state); 1470 #else 1471 xen_map_cache_init(NULL, state); 1472 #endif 1473 xen_ram_init(pcms, ram_size, ram_memory); 1474 1475 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); 1476 1477 state->memory_listener = xen_memory_listener; 1478 memory_listener_register(&state->memory_listener, &address_space_memory); 1479 state->log_for_dirtybit = NULL; 1480 1481 state->io_listener = xen_io_listener; 1482 memory_listener_register(&state->io_listener, &address_space_io); 1483 1484 state->device_listener = xen_device_listener; 1485 QLIST_INIT(&state->dev_list); 1486 device_listener_register(&state->device_listener); 1487 1488 xen_bus_init(); 1489 1490 /* Initialize backend core & drivers */ 1491 if (xen_be_init() != 0) { 1492 error_report("xen backend core setup failed"); 1493 goto err; 1494 } 1495 xen_be_register_common(); 1496 1497 QLIST_INIT(&xen_physmap); 1498 xen_read_physmap(state); 1499 1500 /* Disable ACPI build because Xen handles it */ 1501 pcms->acpi_build_enabled = false; 1502 1503 return; 1504 1505 err: 1506 error_report("xen hardware virtual machine initialisation failed"); 1507 exit(1); 1508 } 1509 1510 void destroy_hvm_domain(bool reboot) 1511 { 1512 xc_interface *xc_handle; 1513 int sts; 1514 int rc; 1515 1516 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff; 1517 1518 if (xen_dmod) { 1519 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason); 1520 if (!rc) { 1521 return; 1522 } 1523 if (errno != ENOTTY /* old Xen */) { 1524 perror("xendevicemodel_shutdown failed"); 1525 } 1526 /* well, try the old thing then */ 1527 } 1528 1529 xc_handle = xc_interface_open(0, 0, 0); 1530 if (xc_handle == NULL) { 1531 fprintf(stderr, "Cannot acquire xenctrl handle\n"); 1532 } else { 1533 sts = xc_domain_shutdown(xc_handle, xen_domid, reason); 1534 if (sts != 0) { 1535 fprintf(stderr, "xc_domain_shutdown failed to issue %s, " 1536 "sts %d, %s\n", reboot ? "reboot" : "poweroff", 1537 sts, strerror(errno)); 1538 } else { 1539 fprintf(stderr, "Issued domain %d %s\n", xen_domid, 1540 reboot ? "reboot" : "poweroff"); 1541 } 1542 xc_interface_close(xc_handle); 1543 } 1544 } 1545 1546 void xen_register_framebuffer(MemoryRegion *mr) 1547 { 1548 framebuffer = mr; 1549 } 1550 1551 void xen_shutdown_fatal_error(const char *fmt, ...) 1552 { 1553 va_list ap; 1554 1555 va_start(ap, fmt); 1556 vfprintf(stderr, fmt, ap); 1557 va_end(ap); 1558 fprintf(stderr, "Will destroy the domain.\n"); 1559 /* destroy the domain */ 1560 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR); 1561 } 1562 1563 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length) 1564 { 1565 if (unlikely(xen_in_migration)) { 1566 int rc; 1567 ram_addr_t start_pfn, nb_pages; 1568 1569 start = xen_phys_offset_to_gaddr(start, length); 1570 1571 if (length == 0) { 1572 length = TARGET_PAGE_SIZE; 1573 } 1574 start_pfn = start >> TARGET_PAGE_BITS; 1575 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) 1576 - start_pfn; 1577 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages); 1578 if (rc) { 1579 fprintf(stderr, 1580 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", 1581 __func__, start, nb_pages, errno, strerror(errno)); 1582 } 1583 } 1584 } 1585 1586 void qmp_xen_set_global_dirty_log(bool enable, Error **errp) 1587 { 1588 if (enable) { 1589 memory_global_dirty_log_start(); 1590 } else { 1591 memory_global_dirty_log_stop(); 1592 } 1593 } 1594