1 /* 2 * Copyright (C) 2010 Citrix Ltd. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 * 7 * Contributions after 2012-01-13 are licensed under the terms of the 8 * GNU GPL, version 2 or (at your option) any later version. 9 */ 10 11 #include "qemu/osdep.h" 12 13 #include "cpu.h" 14 #include "hw/pci/pci.h" 15 #include "hw/pci/pci_host.h" 16 #include "hw/i386/pc.h" 17 #include "hw/irq.h" 18 #include "hw/hw.h" 19 #include "hw/i386/apic-msidef.h" 20 #include "hw/xen/xen_common.h" 21 #include "hw/xen/xen-legacy-backend.h" 22 #include "hw/xen/xen-bus.h" 23 #include "qapi/error.h" 24 #include "qapi/qapi-commands-misc.h" 25 #include "qemu/error-report.h" 26 #include "qemu/main-loop.h" 27 #include "qemu/range.h" 28 #include "sysemu/runstate.h" 29 #include "sysemu/sysemu.h" 30 #include "sysemu/xen-mapcache.h" 31 #include "trace.h" 32 #include "exec/address-spaces.h" 33 34 #include <xen/hvm/ioreq.h> 35 #include <xen/hvm/e820.h> 36 37 //#define DEBUG_XEN_HVM 38 39 #ifdef DEBUG_XEN_HVM 40 #define DPRINTF(fmt, ...) \ 41 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) 42 #else 43 #define DPRINTF(fmt, ...) \ 44 do { } while (0) 45 #endif 46 47 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; 48 static MemoryRegion *framebuffer; 49 static bool xen_in_migration; 50 51 /* Compatibility with older version */ 52 53 /* This allows QEMU to build on a system that has Xen 4.5 or earlier 54 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h 55 * needs to be included before this block and hw/xen/xen_common.h needs to 56 * be included before xen/hvm/ioreq.h 57 */ 58 #ifndef IOREQ_TYPE_VMWARE_PORT 59 #define IOREQ_TYPE_VMWARE_PORT 3 60 struct vmware_regs { 61 uint32_t esi; 62 uint32_t edi; 63 uint32_t ebx; 64 uint32_t ecx; 65 uint32_t edx; 66 }; 67 typedef struct vmware_regs vmware_regs_t; 68 69 struct shared_vmport_iopage { 70 struct vmware_regs vcpu_vmport_regs[1]; 71 }; 72 typedef struct shared_vmport_iopage shared_vmport_iopage_t; 73 #endif 74 75 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) 76 { 77 return shared_page->vcpu_ioreq[i].vp_eport; 78 } 79 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) 80 { 81 return &shared_page->vcpu_ioreq[vcpu]; 82 } 83 84 #define BUFFER_IO_MAX_DELAY 100 85 86 typedef struct XenPhysmap { 87 hwaddr start_addr; 88 ram_addr_t size; 89 const char *name; 90 hwaddr phys_offset; 91 92 QLIST_ENTRY(XenPhysmap) list; 93 } XenPhysmap; 94 95 static QLIST_HEAD(, XenPhysmap) xen_physmap; 96 97 typedef struct XenPciDevice { 98 PCIDevice *pci_dev; 99 uint32_t sbdf; 100 QLIST_ENTRY(XenPciDevice) entry; 101 } XenPciDevice; 102 103 typedef struct XenIOState { 104 ioservid_t ioservid; 105 shared_iopage_t *shared_page; 106 shared_vmport_iopage_t *shared_vmport_page; 107 buffered_iopage_t *buffered_io_page; 108 QEMUTimer *buffered_io_timer; 109 CPUState **cpu_by_vcpu_id; 110 /* the evtchn port for polling the notification, */ 111 evtchn_port_t *ioreq_local_port; 112 /* evtchn remote and local ports for buffered io */ 113 evtchn_port_t bufioreq_remote_port; 114 evtchn_port_t bufioreq_local_port; 115 /* the evtchn fd for polling */ 116 xenevtchn_handle *xce_handle; 117 /* which vcpu we are serving */ 118 int send_vcpu; 119 120 struct xs_handle *xenstore; 121 MemoryListener memory_listener; 122 MemoryListener io_listener; 123 QLIST_HEAD(, XenPciDevice) dev_list; 124 DeviceListener device_listener; 125 hwaddr free_phys_offset; 126 const XenPhysmap *log_for_dirtybit; 127 /* Buffer used by xen_sync_dirty_bitmap */ 128 unsigned long *dirty_bitmap; 129 130 Notifier exit; 131 Notifier suspend; 132 Notifier wakeup; 133 } XenIOState; 134 135 /* Xen specific function for piix pci */ 136 137 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) 138 { 139 return irq_num + ((pci_dev->devfn >> 3) << 2); 140 } 141 142 void xen_piix3_set_irq(void *opaque, int irq_num, int level) 143 { 144 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2, 145 irq_num & 3, level); 146 } 147 148 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) 149 { 150 int i; 151 152 /* Scan for updates to PCI link routes (0x60-0x63). */ 153 for (i = 0; i < len; i++) { 154 uint8_t v = (val >> (8 * i)) & 0xff; 155 if (v & 0x80) { 156 v = 0; 157 } 158 v &= 0xf; 159 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { 160 xen_set_pci_link_route(xen_domid, address + i - 0x60, v); 161 } 162 } 163 } 164 165 int xen_is_pirq_msi(uint32_t msi_data) 166 { 167 /* If vector is 0, the msi is remapped into a pirq, passed as 168 * dest_id. 169 */ 170 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0; 171 } 172 173 void xen_hvm_inject_msi(uint64_t addr, uint32_t data) 174 { 175 xen_inject_msi(xen_domid, addr, data); 176 } 177 178 static void xen_suspend_notifier(Notifier *notifier, void *data) 179 { 180 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); 181 } 182 183 /* Xen Interrupt Controller */ 184 185 static void xen_set_irq(void *opaque, int irq, int level) 186 { 187 xen_set_isa_irq_level(xen_domid, irq, level); 188 } 189 190 qemu_irq *xen_interrupt_controller_init(void) 191 { 192 return qemu_allocate_irqs(xen_set_irq, NULL, 16); 193 } 194 195 /* Memory Ops */ 196 197 static void xen_ram_init(PCMachineState *pcms, 198 ram_addr_t ram_size, MemoryRegion **ram_memory_p) 199 { 200 MemoryRegion *sysmem = get_system_memory(); 201 ram_addr_t block_len; 202 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(), 203 PC_MACHINE_MAX_RAM_BELOW_4G, 204 &error_abort); 205 206 /* Handle the machine opt max-ram-below-4g. It is basically doing 207 * min(xen limit, user limit). 208 */ 209 if (!user_lowmem) { 210 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */ 211 } 212 if (HVM_BELOW_4G_RAM_END <= user_lowmem) { 213 user_lowmem = HVM_BELOW_4G_RAM_END; 214 } 215 216 if (ram_size >= user_lowmem) { 217 pcms->above_4g_mem_size = ram_size - user_lowmem; 218 pcms->below_4g_mem_size = user_lowmem; 219 } else { 220 pcms->above_4g_mem_size = 0; 221 pcms->below_4g_mem_size = ram_size; 222 } 223 if (!pcms->above_4g_mem_size) { 224 block_len = ram_size; 225 } else { 226 /* 227 * Xen does not allocate the memory continuously, it keeps a 228 * hole of the size computed above or passed in. 229 */ 230 block_len = (1ULL << 32) + pcms->above_4g_mem_size; 231 } 232 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, 233 &error_fatal); 234 *ram_memory_p = &ram_memory; 235 236 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", 237 &ram_memory, 0, 0xa0000); 238 memory_region_add_subregion(sysmem, 0, &ram_640k); 239 /* Skip of the VGA IO memory space, it will be registered later by the VGA 240 * emulated device. 241 * 242 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load 243 * the Options ROM, so it is registered here as RAM. 244 */ 245 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", 246 &ram_memory, 0xc0000, 247 pcms->below_4g_mem_size - 0xc0000); 248 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); 249 if (pcms->above_4g_mem_size > 0) { 250 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", 251 &ram_memory, 0x100000000ULL, 252 pcms->above_4g_mem_size); 253 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); 254 } 255 } 256 257 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, 258 Error **errp) 259 { 260 unsigned long nr_pfn; 261 xen_pfn_t *pfn_list; 262 int i; 263 264 if (runstate_check(RUN_STATE_INMIGRATE)) { 265 /* RAM already populated in Xen */ 266 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT 267 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", 268 __func__, size, ram_addr); 269 return; 270 } 271 272 if (mr == &ram_memory) { 273 return; 274 } 275 276 trace_xen_ram_alloc(ram_addr, size); 277 278 nr_pfn = size >> TARGET_PAGE_BITS; 279 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); 280 281 for (i = 0; i < nr_pfn; i++) { 282 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; 283 } 284 285 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { 286 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, 287 ram_addr); 288 } 289 290 g_free(pfn_list); 291 } 292 293 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size) 294 { 295 XenPhysmap *physmap = NULL; 296 297 start_addr &= TARGET_PAGE_MASK; 298 299 QLIST_FOREACH(physmap, &xen_physmap, list) { 300 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { 301 return physmap; 302 } 303 } 304 return NULL; 305 } 306 307 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size) 308 { 309 hwaddr addr = phys_offset & TARGET_PAGE_MASK; 310 XenPhysmap *physmap = NULL; 311 312 QLIST_FOREACH(physmap, &xen_physmap, list) { 313 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { 314 return physmap->start_addr + (phys_offset - physmap->phys_offset); 315 } 316 } 317 318 return phys_offset; 319 } 320 321 #ifdef XEN_COMPAT_PHYSMAP 322 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 323 { 324 char path[80], value[17]; 325 326 snprintf(path, sizeof(path), 327 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", 328 xen_domid, (uint64_t)physmap->phys_offset); 329 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr); 330 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 331 return -1; 332 } 333 snprintf(path, sizeof(path), 334 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", 335 xen_domid, (uint64_t)physmap->phys_offset); 336 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size); 337 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 338 return -1; 339 } 340 if (physmap->name) { 341 snprintf(path, sizeof(path), 342 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", 343 xen_domid, (uint64_t)physmap->phys_offset); 344 if (!xs_write(state->xenstore, 0, path, 345 physmap->name, strlen(physmap->name))) { 346 return -1; 347 } 348 } 349 return 0; 350 } 351 #else 352 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 353 { 354 return 0; 355 } 356 #endif 357 358 static int xen_add_to_physmap(XenIOState *state, 359 hwaddr start_addr, 360 ram_addr_t size, 361 MemoryRegion *mr, 362 hwaddr offset_within_region) 363 { 364 unsigned long nr_pages; 365 int rc = 0; 366 XenPhysmap *physmap = NULL; 367 hwaddr pfn, start_gpfn; 368 hwaddr phys_offset = memory_region_get_ram_addr(mr); 369 const char *mr_name; 370 371 if (get_physmapping(start_addr, size)) { 372 return 0; 373 } 374 if (size <= 0) { 375 return -1; 376 } 377 378 /* Xen can only handle a single dirty log region for now and we want 379 * the linear framebuffer to be that region. 380 * Avoid tracking any regions that is not videoram and avoid tracking 381 * the legacy vga region. */ 382 if (mr == framebuffer && start_addr > 0xbffff) { 383 goto go_physmap; 384 } 385 return -1; 386 387 go_physmap: 388 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", 389 start_addr, start_addr + size); 390 391 mr_name = memory_region_name(mr); 392 393 physmap = g_malloc(sizeof(XenPhysmap)); 394 395 physmap->start_addr = start_addr; 396 physmap->size = size; 397 physmap->name = mr_name; 398 physmap->phys_offset = phys_offset; 399 400 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 401 402 if (runstate_check(RUN_STATE_INMIGRATE)) { 403 /* Now when we have a physmap entry we can replace a dummy mapping with 404 * a real one of guest foreign memory. */ 405 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size); 406 assert(p && p == memory_region_get_ram_ptr(mr)); 407 408 return 0; 409 } 410 411 pfn = phys_offset >> TARGET_PAGE_BITS; 412 start_gpfn = start_addr >> TARGET_PAGE_BITS; 413 nr_pages = size >> TARGET_PAGE_BITS; 414 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn, 415 start_gpfn); 416 if (rc) { 417 int saved_errno = errno; 418 419 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx 420 " to GFN %"HWADDR_PRIx" failed: %s", 421 nr_pages, pfn, start_gpfn, strerror(saved_errno)); 422 errno = saved_errno; 423 return -1; 424 } 425 426 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid, 427 start_addr >> TARGET_PAGE_BITS, 428 (start_addr + size - 1) >> TARGET_PAGE_BITS, 429 XEN_DOMCTL_MEM_CACHEATTR_WB); 430 if (rc) { 431 error_report("pin_memory_cacheattr failed: %s", strerror(errno)); 432 } 433 return xen_save_physmap(state, physmap); 434 } 435 436 static int xen_remove_from_physmap(XenIOState *state, 437 hwaddr start_addr, 438 ram_addr_t size) 439 { 440 int rc = 0; 441 XenPhysmap *physmap = NULL; 442 hwaddr phys_offset = 0; 443 444 physmap = get_physmapping(start_addr, size); 445 if (physmap == NULL) { 446 return -1; 447 } 448 449 phys_offset = physmap->phys_offset; 450 size = physmap->size; 451 452 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " 453 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); 454 455 size >>= TARGET_PAGE_BITS; 456 start_addr >>= TARGET_PAGE_BITS; 457 phys_offset >>= TARGET_PAGE_BITS; 458 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr, 459 phys_offset); 460 if (rc) { 461 int saved_errno = errno; 462 463 error_report("relocate_memory "RAM_ADDR_FMT" pages" 464 " from GFN %"HWADDR_PRIx 465 " to GFN %"HWADDR_PRIx" failed: %s", 466 size, start_addr, phys_offset, strerror(saved_errno)); 467 errno = saved_errno; 468 return -1; 469 } 470 471 QLIST_REMOVE(physmap, list); 472 if (state->log_for_dirtybit == physmap) { 473 state->log_for_dirtybit = NULL; 474 g_free(state->dirty_bitmap); 475 state->dirty_bitmap = NULL; 476 } 477 g_free(physmap); 478 479 return 0; 480 } 481 482 static void xen_set_memory(struct MemoryListener *listener, 483 MemoryRegionSection *section, 484 bool add) 485 { 486 XenIOState *state = container_of(listener, XenIOState, memory_listener); 487 hwaddr start_addr = section->offset_within_address_space; 488 ram_addr_t size = int128_get64(section->size); 489 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); 490 hvmmem_type_t mem_type; 491 492 if (section->mr == &ram_memory) { 493 return; 494 } else { 495 if (add) { 496 xen_map_memory_section(xen_domid, state->ioservid, 497 section); 498 } else { 499 xen_unmap_memory_section(xen_domid, state->ioservid, 500 section); 501 } 502 } 503 504 if (!memory_region_is_ram(section->mr)) { 505 return; 506 } 507 508 if (log_dirty != add) { 509 return; 510 } 511 512 trace_xen_client_set_memory(start_addr, size, log_dirty); 513 514 start_addr &= TARGET_PAGE_MASK; 515 size = TARGET_PAGE_ALIGN(size); 516 517 if (add) { 518 if (!memory_region_is_rom(section->mr)) { 519 xen_add_to_physmap(state, start_addr, size, 520 section->mr, section->offset_within_region); 521 } else { 522 mem_type = HVMMEM_ram_ro; 523 if (xen_set_mem_type(xen_domid, mem_type, 524 start_addr >> TARGET_PAGE_BITS, 525 size >> TARGET_PAGE_BITS)) { 526 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n", 527 start_addr); 528 } 529 } 530 } else { 531 if (xen_remove_from_physmap(state, start_addr, size) < 0) { 532 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); 533 } 534 } 535 } 536 537 static void xen_region_add(MemoryListener *listener, 538 MemoryRegionSection *section) 539 { 540 memory_region_ref(section->mr); 541 xen_set_memory(listener, section, true); 542 } 543 544 static void xen_region_del(MemoryListener *listener, 545 MemoryRegionSection *section) 546 { 547 xen_set_memory(listener, section, false); 548 memory_region_unref(section->mr); 549 } 550 551 static void xen_io_add(MemoryListener *listener, 552 MemoryRegionSection *section) 553 { 554 XenIOState *state = container_of(listener, XenIOState, io_listener); 555 MemoryRegion *mr = section->mr; 556 557 if (mr->ops == &unassigned_io_ops) { 558 return; 559 } 560 561 memory_region_ref(mr); 562 563 xen_map_io_section(xen_domid, state->ioservid, section); 564 } 565 566 static void xen_io_del(MemoryListener *listener, 567 MemoryRegionSection *section) 568 { 569 XenIOState *state = container_of(listener, XenIOState, io_listener); 570 MemoryRegion *mr = section->mr; 571 572 if (mr->ops == &unassigned_io_ops) { 573 return; 574 } 575 576 xen_unmap_io_section(xen_domid, state->ioservid, section); 577 578 memory_region_unref(mr); 579 } 580 581 static void xen_device_realize(DeviceListener *listener, 582 DeviceState *dev) 583 { 584 XenIOState *state = container_of(listener, XenIOState, device_listener); 585 586 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 587 PCIDevice *pci_dev = PCI_DEVICE(dev); 588 XenPciDevice *xendev = g_new(XenPciDevice, 1); 589 590 xendev->pci_dev = pci_dev; 591 xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev), 592 pci_dev->devfn); 593 QLIST_INSERT_HEAD(&state->dev_list, xendev, entry); 594 595 xen_map_pcidev(xen_domid, state->ioservid, pci_dev); 596 } 597 } 598 599 static void xen_device_unrealize(DeviceListener *listener, 600 DeviceState *dev) 601 { 602 XenIOState *state = container_of(listener, XenIOState, device_listener); 603 604 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 605 PCIDevice *pci_dev = PCI_DEVICE(dev); 606 XenPciDevice *xendev, *next; 607 608 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev); 609 610 QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) { 611 if (xendev->pci_dev == pci_dev) { 612 QLIST_REMOVE(xendev, entry); 613 g_free(xendev); 614 break; 615 } 616 } 617 } 618 } 619 620 static void xen_sync_dirty_bitmap(XenIOState *state, 621 hwaddr start_addr, 622 ram_addr_t size) 623 { 624 hwaddr npages = size >> TARGET_PAGE_BITS; 625 const int width = sizeof(unsigned long) * 8; 626 size_t bitmap_size = DIV_ROUND_UP(npages, width); 627 int rc, i, j; 628 const XenPhysmap *physmap = NULL; 629 630 physmap = get_physmapping(start_addr, size); 631 if (physmap == NULL) { 632 /* not handled */ 633 return; 634 } 635 636 if (state->log_for_dirtybit == NULL) { 637 state->log_for_dirtybit = physmap; 638 state->dirty_bitmap = g_new(unsigned long, bitmap_size); 639 } else if (state->log_for_dirtybit != physmap) { 640 /* Only one range for dirty bitmap can be tracked. */ 641 return; 642 } 643 644 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS, 645 npages, state->dirty_bitmap); 646 if (rc < 0) { 647 #ifndef ENODATA 648 #define ENODATA ENOENT 649 #endif 650 if (errno == ENODATA) { 651 memory_region_set_dirty(framebuffer, 0, size); 652 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx 653 ", 0x" TARGET_FMT_plx "): %s\n", 654 start_addr, start_addr + size, strerror(errno)); 655 } 656 return; 657 } 658 659 for (i = 0; i < bitmap_size; i++) { 660 unsigned long map = state->dirty_bitmap[i]; 661 while (map != 0) { 662 j = ctzl(map); 663 map &= ~(1ul << j); 664 memory_region_set_dirty(framebuffer, 665 (i * width + j) * TARGET_PAGE_SIZE, 666 TARGET_PAGE_SIZE); 667 }; 668 } 669 } 670 671 static void xen_log_start(MemoryListener *listener, 672 MemoryRegionSection *section, 673 int old, int new) 674 { 675 XenIOState *state = container_of(listener, XenIOState, memory_listener); 676 677 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { 678 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 679 int128_get64(section->size)); 680 } 681 } 682 683 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, 684 int old, int new) 685 { 686 XenIOState *state = container_of(listener, XenIOState, memory_listener); 687 688 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { 689 state->log_for_dirtybit = NULL; 690 g_free(state->dirty_bitmap); 691 state->dirty_bitmap = NULL; 692 /* Disable dirty bit tracking */ 693 xen_track_dirty_vram(xen_domid, 0, 0, NULL); 694 } 695 } 696 697 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) 698 { 699 XenIOState *state = container_of(listener, XenIOState, memory_listener); 700 701 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 702 int128_get64(section->size)); 703 } 704 705 static void xen_log_global_start(MemoryListener *listener) 706 { 707 if (xen_enabled()) { 708 xen_in_migration = true; 709 } 710 } 711 712 static void xen_log_global_stop(MemoryListener *listener) 713 { 714 xen_in_migration = false; 715 } 716 717 static MemoryListener xen_memory_listener = { 718 .region_add = xen_region_add, 719 .region_del = xen_region_del, 720 .log_start = xen_log_start, 721 .log_stop = xen_log_stop, 722 .log_sync = xen_log_sync, 723 .log_global_start = xen_log_global_start, 724 .log_global_stop = xen_log_global_stop, 725 .priority = 10, 726 }; 727 728 static MemoryListener xen_io_listener = { 729 .region_add = xen_io_add, 730 .region_del = xen_io_del, 731 .priority = 10, 732 }; 733 734 static DeviceListener xen_device_listener = { 735 .realize = xen_device_realize, 736 .unrealize = xen_device_unrealize, 737 }; 738 739 /* get the ioreq packets from share mem */ 740 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) 741 { 742 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); 743 744 if (req->state != STATE_IOREQ_READY) { 745 DPRINTF("I/O request not ready: " 746 "%x, ptr: %x, port: %"PRIx64", " 747 "data: %"PRIx64", count: %u, size: %u\n", 748 req->state, req->data_is_ptr, req->addr, 749 req->data, req->count, req->size); 750 return NULL; 751 } 752 753 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ 754 755 req->state = STATE_IOREQ_INPROCESS; 756 return req; 757 } 758 759 /* use poll to get the port notification */ 760 /* ioreq_vec--out,the */ 761 /* retval--the number of ioreq packet */ 762 static ioreq_t *cpu_get_ioreq(XenIOState *state) 763 { 764 MachineState *ms = MACHINE(qdev_get_machine()); 765 unsigned int max_cpus = ms->smp.max_cpus; 766 int i; 767 evtchn_port_t port; 768 769 port = xenevtchn_pending(state->xce_handle); 770 if (port == state->bufioreq_local_port) { 771 timer_mod(state->buffered_io_timer, 772 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 773 return NULL; 774 } 775 776 if (port != -1) { 777 for (i = 0; i < max_cpus; i++) { 778 if (state->ioreq_local_port[i] == port) { 779 break; 780 } 781 } 782 783 if (i == max_cpus) { 784 hw_error("Fatal error while trying to get io event!\n"); 785 } 786 787 /* unmask the wanted port again */ 788 xenevtchn_unmask(state->xce_handle, port); 789 790 /* get the io packet from shared memory */ 791 state->send_vcpu = i; 792 return cpu_get_ioreq_from_shared_memory(state, i); 793 } 794 795 /* read error or read nothing */ 796 return NULL; 797 } 798 799 static uint32_t do_inp(uint32_t addr, unsigned long size) 800 { 801 switch (size) { 802 case 1: 803 return cpu_inb(addr); 804 case 2: 805 return cpu_inw(addr); 806 case 4: 807 return cpu_inl(addr); 808 default: 809 hw_error("inp: bad size: %04x %lx", addr, size); 810 } 811 } 812 813 static void do_outp(uint32_t addr, 814 unsigned long size, uint32_t val) 815 { 816 switch (size) { 817 case 1: 818 return cpu_outb(addr, val); 819 case 2: 820 return cpu_outw(addr, val); 821 case 4: 822 return cpu_outl(addr, val); 823 default: 824 hw_error("outp: bad size: %04x %lx", addr, size); 825 } 826 } 827 828 /* 829 * Helper functions which read/write an object from/to physical guest 830 * memory, as part of the implementation of an ioreq. 831 * 832 * Equivalent to 833 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, 834 * val, req->size, 0/1) 835 * except without the integer overflow problems. 836 */ 837 static void rw_phys_req_item(hwaddr addr, 838 ioreq_t *req, uint32_t i, void *val, int rw) 839 { 840 /* Do everything unsigned so overflow just results in a truncated result 841 * and accesses to undesired parts of guest memory, which is up 842 * to the guest */ 843 hwaddr offset = (hwaddr)req->size * i; 844 if (req->df) { 845 addr -= offset; 846 } else { 847 addr += offset; 848 } 849 cpu_physical_memory_rw(addr, val, req->size, rw); 850 } 851 852 static inline void read_phys_req_item(hwaddr addr, 853 ioreq_t *req, uint32_t i, void *val) 854 { 855 rw_phys_req_item(addr, req, i, val, 0); 856 } 857 static inline void write_phys_req_item(hwaddr addr, 858 ioreq_t *req, uint32_t i, void *val) 859 { 860 rw_phys_req_item(addr, req, i, val, 1); 861 } 862 863 864 static void cpu_ioreq_pio(ioreq_t *req) 865 { 866 uint32_t i; 867 868 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, 869 req->data, req->count, req->size); 870 871 if (req->size > sizeof(uint32_t)) { 872 hw_error("PIO: bad size (%u)", req->size); 873 } 874 875 if (req->dir == IOREQ_READ) { 876 if (!req->data_is_ptr) { 877 req->data = do_inp(req->addr, req->size); 878 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, 879 req->size); 880 } else { 881 uint32_t tmp; 882 883 for (i = 0; i < req->count; i++) { 884 tmp = do_inp(req->addr, req->size); 885 write_phys_req_item(req->data, req, i, &tmp); 886 } 887 } 888 } else if (req->dir == IOREQ_WRITE) { 889 if (!req->data_is_ptr) { 890 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, 891 req->size); 892 do_outp(req->addr, req->size, req->data); 893 } else { 894 for (i = 0; i < req->count; i++) { 895 uint32_t tmp = 0; 896 897 read_phys_req_item(req->data, req, i, &tmp); 898 do_outp(req->addr, req->size, tmp); 899 } 900 } 901 } 902 } 903 904 static void cpu_ioreq_move(ioreq_t *req) 905 { 906 uint32_t i; 907 908 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, 909 req->data, req->count, req->size); 910 911 if (req->size > sizeof(req->data)) { 912 hw_error("MMIO: bad size (%u)", req->size); 913 } 914 915 if (!req->data_is_ptr) { 916 if (req->dir == IOREQ_READ) { 917 for (i = 0; i < req->count; i++) { 918 read_phys_req_item(req->addr, req, i, &req->data); 919 } 920 } else if (req->dir == IOREQ_WRITE) { 921 for (i = 0; i < req->count; i++) { 922 write_phys_req_item(req->addr, req, i, &req->data); 923 } 924 } 925 } else { 926 uint64_t tmp; 927 928 if (req->dir == IOREQ_READ) { 929 for (i = 0; i < req->count; i++) { 930 read_phys_req_item(req->addr, req, i, &tmp); 931 write_phys_req_item(req->data, req, i, &tmp); 932 } 933 } else if (req->dir == IOREQ_WRITE) { 934 for (i = 0; i < req->count; i++) { 935 read_phys_req_item(req->data, req, i, &tmp); 936 write_phys_req_item(req->addr, req, i, &tmp); 937 } 938 } 939 } 940 } 941 942 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req) 943 { 944 uint32_t sbdf = req->addr >> 32; 945 uint32_t reg = req->addr; 946 XenPciDevice *xendev; 947 948 if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) && 949 req->size != sizeof(uint32_t)) { 950 hw_error("PCI config access: bad size (%u)", req->size); 951 } 952 953 if (req->count != 1) { 954 hw_error("PCI config access: bad count (%u)", req->count); 955 } 956 957 QLIST_FOREACH(xendev, &state->dev_list, entry) { 958 if (xendev->sbdf != sbdf) { 959 continue; 960 } 961 962 if (!req->data_is_ptr) { 963 if (req->dir == IOREQ_READ) { 964 req->data = pci_host_config_read_common( 965 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 966 req->size); 967 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 968 req->size, req->data); 969 } else if (req->dir == IOREQ_WRITE) { 970 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 971 req->size, req->data); 972 pci_host_config_write_common( 973 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 974 req->data, req->size); 975 } 976 } else { 977 uint32_t tmp; 978 979 if (req->dir == IOREQ_READ) { 980 tmp = pci_host_config_read_common( 981 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 982 req->size); 983 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 984 req->size, tmp); 985 write_phys_req_item(req->data, req, 0, &tmp); 986 } else if (req->dir == IOREQ_WRITE) { 987 read_phys_req_item(req->data, req, 0, &tmp); 988 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 989 req->size, tmp); 990 pci_host_config_write_common( 991 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 992 tmp, req->size); 993 } 994 } 995 } 996 } 997 998 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) 999 { 1000 X86CPU *cpu; 1001 CPUX86State *env; 1002 1003 cpu = X86_CPU(current_cpu); 1004 env = &cpu->env; 1005 env->regs[R_EAX] = req->data; 1006 env->regs[R_EBX] = vmport_regs->ebx; 1007 env->regs[R_ECX] = vmport_regs->ecx; 1008 env->regs[R_EDX] = vmport_regs->edx; 1009 env->regs[R_ESI] = vmport_regs->esi; 1010 env->regs[R_EDI] = vmport_regs->edi; 1011 } 1012 1013 static void regs_from_cpu(vmware_regs_t *vmport_regs) 1014 { 1015 X86CPU *cpu = X86_CPU(current_cpu); 1016 CPUX86State *env = &cpu->env; 1017 1018 vmport_regs->ebx = env->regs[R_EBX]; 1019 vmport_regs->ecx = env->regs[R_ECX]; 1020 vmport_regs->edx = env->regs[R_EDX]; 1021 vmport_regs->esi = env->regs[R_ESI]; 1022 vmport_regs->edi = env->regs[R_EDI]; 1023 } 1024 1025 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) 1026 { 1027 vmware_regs_t *vmport_regs; 1028 1029 assert(state->shared_vmport_page); 1030 vmport_regs = 1031 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; 1032 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); 1033 1034 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; 1035 regs_to_cpu(vmport_regs, req); 1036 cpu_ioreq_pio(req); 1037 regs_from_cpu(vmport_regs); 1038 current_cpu = NULL; 1039 } 1040 1041 static void handle_ioreq(XenIOState *state, ioreq_t *req) 1042 { 1043 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, 1044 req->addr, req->data, req->count, req->size); 1045 1046 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && 1047 (req->size < sizeof (target_ulong))) { 1048 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; 1049 } 1050 1051 if (req->dir == IOREQ_WRITE) 1052 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, 1053 req->addr, req->data, req->count, req->size); 1054 1055 switch (req->type) { 1056 case IOREQ_TYPE_PIO: 1057 cpu_ioreq_pio(req); 1058 break; 1059 case IOREQ_TYPE_COPY: 1060 cpu_ioreq_move(req); 1061 break; 1062 case IOREQ_TYPE_VMWARE_PORT: 1063 handle_vmport_ioreq(state, req); 1064 break; 1065 case IOREQ_TYPE_TIMEOFFSET: 1066 break; 1067 case IOREQ_TYPE_INVALIDATE: 1068 xen_invalidate_map_cache(); 1069 break; 1070 case IOREQ_TYPE_PCI_CONFIG: 1071 cpu_ioreq_config(state, req); 1072 break; 1073 default: 1074 hw_error("Invalid ioreq type 0x%x\n", req->type); 1075 } 1076 if (req->dir == IOREQ_READ) { 1077 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, 1078 req->addr, req->data, req->count, req->size); 1079 } 1080 } 1081 1082 static int handle_buffered_iopage(XenIOState *state) 1083 { 1084 buffered_iopage_t *buf_page = state->buffered_io_page; 1085 buf_ioreq_t *buf_req = NULL; 1086 ioreq_t req; 1087 int qw; 1088 1089 if (!buf_page) { 1090 return 0; 1091 } 1092 1093 memset(&req, 0x00, sizeof(req)); 1094 req.state = STATE_IOREQ_READY; 1095 req.count = 1; 1096 req.dir = IOREQ_WRITE; 1097 1098 for (;;) { 1099 uint32_t rdptr = buf_page->read_pointer, wrptr; 1100 1101 xen_rmb(); 1102 wrptr = buf_page->write_pointer; 1103 xen_rmb(); 1104 if (rdptr != buf_page->read_pointer) { 1105 continue; 1106 } 1107 if (rdptr == wrptr) { 1108 break; 1109 } 1110 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; 1111 req.size = 1U << buf_req->size; 1112 req.addr = buf_req->addr; 1113 req.data = buf_req->data; 1114 req.type = buf_req->type; 1115 xen_rmb(); 1116 qw = (req.size == 8); 1117 if (qw) { 1118 if (rdptr + 1 == wrptr) { 1119 hw_error("Incomplete quad word buffered ioreq"); 1120 } 1121 buf_req = &buf_page->buf_ioreq[(rdptr + 1) % 1122 IOREQ_BUFFER_SLOT_NUM]; 1123 req.data |= ((uint64_t)buf_req->data) << 32; 1124 xen_rmb(); 1125 } 1126 1127 handle_ioreq(state, &req); 1128 1129 /* Only req.data may get updated by handle_ioreq(), albeit even that 1130 * should not happen as such data would never make it to the guest (we 1131 * can only usefully see writes here after all). 1132 */ 1133 assert(req.state == STATE_IOREQ_READY); 1134 assert(req.count == 1); 1135 assert(req.dir == IOREQ_WRITE); 1136 assert(!req.data_is_ptr); 1137 1138 atomic_add(&buf_page->read_pointer, qw + 1); 1139 } 1140 1141 return req.count; 1142 } 1143 1144 static void handle_buffered_io(void *opaque) 1145 { 1146 XenIOState *state = opaque; 1147 1148 if (handle_buffered_iopage(state)) { 1149 timer_mod(state->buffered_io_timer, 1150 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 1151 } else { 1152 timer_del(state->buffered_io_timer); 1153 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port); 1154 } 1155 } 1156 1157 static void cpu_handle_ioreq(void *opaque) 1158 { 1159 XenIOState *state = opaque; 1160 ioreq_t *req = cpu_get_ioreq(state); 1161 1162 handle_buffered_iopage(state); 1163 if (req) { 1164 ioreq_t copy = *req; 1165 1166 xen_rmb(); 1167 handle_ioreq(state, ©); 1168 req->data = copy.data; 1169 1170 if (req->state != STATE_IOREQ_INPROCESS) { 1171 fprintf(stderr, "Badness in I/O request ... not in service?!: " 1172 "%x, ptr: %x, port: %"PRIx64", " 1173 "data: %"PRIx64", count: %u, size: %u, type: %u\n", 1174 req->state, req->data_is_ptr, req->addr, 1175 req->data, req->count, req->size, req->type); 1176 destroy_hvm_domain(false); 1177 return; 1178 } 1179 1180 xen_wmb(); /* Update ioreq contents /then/ update state. */ 1181 1182 /* 1183 * We do this before we send the response so that the tools 1184 * have the opportunity to pick up on the reset before the 1185 * guest resumes and does a hlt with interrupts disabled which 1186 * causes Xen to powerdown the domain. 1187 */ 1188 if (runstate_is_running()) { 1189 ShutdownCause request; 1190 1191 if (qemu_shutdown_requested_get()) { 1192 destroy_hvm_domain(false); 1193 } 1194 request = qemu_reset_requested_get(); 1195 if (request) { 1196 qemu_system_reset(request); 1197 destroy_hvm_domain(true); 1198 } 1199 } 1200 1201 req->state = STATE_IORESP_READY; 1202 xenevtchn_notify(state->xce_handle, 1203 state->ioreq_local_port[state->send_vcpu]); 1204 } 1205 } 1206 1207 static void xen_main_loop_prepare(XenIOState *state) 1208 { 1209 int evtchn_fd = -1; 1210 1211 if (state->xce_handle != NULL) { 1212 evtchn_fd = xenevtchn_fd(state->xce_handle); 1213 } 1214 1215 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, 1216 state); 1217 1218 if (evtchn_fd != -1) { 1219 CPUState *cpu_state; 1220 1221 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); 1222 CPU_FOREACH(cpu_state) { 1223 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", 1224 __func__, cpu_state->cpu_index, cpu_state); 1225 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; 1226 } 1227 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); 1228 } 1229 } 1230 1231 1232 static void xen_hvm_change_state_handler(void *opaque, int running, 1233 RunState rstate) 1234 { 1235 XenIOState *state = opaque; 1236 1237 if (running) { 1238 xen_main_loop_prepare(state); 1239 } 1240 1241 xen_set_ioreq_server_state(xen_domid, 1242 state->ioservid, 1243 (rstate == RUN_STATE_RUNNING)); 1244 } 1245 1246 static void xen_exit_notifier(Notifier *n, void *data) 1247 { 1248 XenIOState *state = container_of(n, XenIOState, exit); 1249 1250 xen_destroy_ioreq_server(xen_domid, state->ioservid); 1251 1252 xenevtchn_close(state->xce_handle); 1253 xs_daemon_close(state->xenstore); 1254 } 1255 1256 #ifdef XEN_COMPAT_PHYSMAP 1257 static void xen_read_physmap(XenIOState *state) 1258 { 1259 XenPhysmap *physmap = NULL; 1260 unsigned int len, num, i; 1261 char path[80], *value = NULL; 1262 char **entries = NULL; 1263 1264 snprintf(path, sizeof(path), 1265 "/local/domain/0/device-model/%d/physmap", xen_domid); 1266 entries = xs_directory(state->xenstore, 0, path, &num); 1267 if (entries == NULL) 1268 return; 1269 1270 for (i = 0; i < num; i++) { 1271 physmap = g_malloc(sizeof (XenPhysmap)); 1272 physmap->phys_offset = strtoull(entries[i], NULL, 16); 1273 snprintf(path, sizeof(path), 1274 "/local/domain/0/device-model/%d/physmap/%s/start_addr", 1275 xen_domid, entries[i]); 1276 value = xs_read(state->xenstore, 0, path, &len); 1277 if (value == NULL) { 1278 g_free(physmap); 1279 continue; 1280 } 1281 physmap->start_addr = strtoull(value, NULL, 16); 1282 free(value); 1283 1284 snprintf(path, sizeof(path), 1285 "/local/domain/0/device-model/%d/physmap/%s/size", 1286 xen_domid, entries[i]); 1287 value = xs_read(state->xenstore, 0, path, &len); 1288 if (value == NULL) { 1289 g_free(physmap); 1290 continue; 1291 } 1292 physmap->size = strtoull(value, NULL, 16); 1293 free(value); 1294 1295 snprintf(path, sizeof(path), 1296 "/local/domain/0/device-model/%d/physmap/%s/name", 1297 xen_domid, entries[i]); 1298 physmap->name = xs_read(state->xenstore, 0, path, &len); 1299 1300 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 1301 } 1302 free(entries); 1303 } 1304 #else 1305 static void xen_read_physmap(XenIOState *state) 1306 { 1307 } 1308 #endif 1309 1310 static void xen_wakeup_notifier(Notifier *notifier, void *data) 1311 { 1312 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); 1313 } 1314 1315 static int xen_map_ioreq_server(XenIOState *state) 1316 { 1317 void *addr = NULL; 1318 xenforeignmemory_resource_handle *fres; 1319 xen_pfn_t ioreq_pfn; 1320 xen_pfn_t bufioreq_pfn; 1321 evtchn_port_t bufioreq_evtchn; 1322 int rc; 1323 1324 /* 1325 * Attempt to map using the resource API and fall back to normal 1326 * foreign mapping if this is not supported. 1327 */ 1328 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0); 1329 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1); 1330 fres = xenforeignmemory_map_resource(xen_fmem, xen_domid, 1331 XENMEM_resource_ioreq_server, 1332 state->ioservid, 0, 2, 1333 &addr, 1334 PROT_READ | PROT_WRITE, 0); 1335 if (fres != NULL) { 1336 trace_xen_map_resource_ioreq(state->ioservid, addr); 1337 state->buffered_io_page = addr; 1338 state->shared_page = addr + TARGET_PAGE_SIZE; 1339 } else if (errno != EOPNOTSUPP) { 1340 error_report("failed to map ioreq server resources: error %d handle=%p", 1341 errno, xen_xc); 1342 return -1; 1343 } 1344 1345 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid, 1346 (state->shared_page == NULL) ? 1347 &ioreq_pfn : NULL, 1348 (state->buffered_io_page == NULL) ? 1349 &bufioreq_pfn : NULL, 1350 &bufioreq_evtchn); 1351 if (rc < 0) { 1352 error_report("failed to get ioreq server info: error %d handle=%p", 1353 errno, xen_xc); 1354 return rc; 1355 } 1356 1357 if (state->shared_page == NULL) { 1358 DPRINTF("shared page at pfn %lx\n", ioreq_pfn); 1359 1360 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, 1361 PROT_READ | PROT_WRITE, 1362 1, &ioreq_pfn, NULL); 1363 if (state->shared_page == NULL) { 1364 error_report("map shared IO page returned error %d handle=%p", 1365 errno, xen_xc); 1366 } 1367 } 1368 1369 if (state->buffered_io_page == NULL) { 1370 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); 1371 1372 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, 1373 PROT_READ | PROT_WRITE, 1374 1, &bufioreq_pfn, 1375 NULL); 1376 if (state->buffered_io_page == NULL) { 1377 error_report("map buffered IO page returned error %d", errno); 1378 return -1; 1379 } 1380 } 1381 1382 if (state->shared_page == NULL || state->buffered_io_page == NULL) { 1383 return -1; 1384 } 1385 1386 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); 1387 1388 state->bufioreq_remote_port = bufioreq_evtchn; 1389 1390 return 0; 1391 } 1392 1393 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory) 1394 { 1395 MachineState *ms = MACHINE(pcms); 1396 unsigned int max_cpus = ms->smp.max_cpus; 1397 int i, rc; 1398 xen_pfn_t ioreq_pfn; 1399 XenIOState *state; 1400 1401 state = g_malloc0(sizeof (XenIOState)); 1402 1403 state->xce_handle = xenevtchn_open(NULL, 0); 1404 if (state->xce_handle == NULL) { 1405 perror("xen: event channel open"); 1406 goto err; 1407 } 1408 1409 state->xenstore = xs_daemon_open(); 1410 if (state->xenstore == NULL) { 1411 perror("xen: xenstore open"); 1412 goto err; 1413 } 1414 1415 xen_create_ioreq_server(xen_domid, &state->ioservid); 1416 1417 state->exit.notify = xen_exit_notifier; 1418 qemu_add_exit_notifier(&state->exit); 1419 1420 state->suspend.notify = xen_suspend_notifier; 1421 qemu_register_suspend_notifier(&state->suspend); 1422 1423 state->wakeup.notify = xen_wakeup_notifier; 1424 qemu_register_wakeup_notifier(&state->wakeup); 1425 1426 /* 1427 * Register wake-up support in QMP query-current-machine API 1428 */ 1429 qemu_register_wakeup_support(); 1430 1431 rc = xen_map_ioreq_server(state); 1432 if (rc < 0) { 1433 goto err; 1434 } 1435 1436 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); 1437 if (!rc) { 1438 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); 1439 state->shared_vmport_page = 1440 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1441 1, &ioreq_pfn, NULL); 1442 if (state->shared_vmport_page == NULL) { 1443 error_report("map shared vmport IO page returned error %d handle=%p", 1444 errno, xen_xc); 1445 goto err; 1446 } 1447 } else if (rc != -ENOSYS) { 1448 error_report("get vmport regs pfn returned error %d, rc=%d", 1449 errno, rc); 1450 goto err; 1451 } 1452 1453 /* Note: cpus is empty at this point in init */ 1454 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *)); 1455 1456 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true); 1457 if (rc < 0) { 1458 error_report("failed to enable ioreq server info: error %d handle=%p", 1459 errno, xen_xc); 1460 goto err; 1461 } 1462 1463 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t)); 1464 1465 /* FIXME: how about if we overflow the page here? */ 1466 for (i = 0; i < max_cpus; i++) { 1467 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1468 xen_vcpu_eport(state->shared_page, i)); 1469 if (rc == -1) { 1470 error_report("shared evtchn %d bind error %d", i, errno); 1471 goto err; 1472 } 1473 state->ioreq_local_port[i] = rc; 1474 } 1475 1476 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1477 state->bufioreq_remote_port); 1478 if (rc == -1) { 1479 error_report("buffered evtchn bind error %d", errno); 1480 goto err; 1481 } 1482 state->bufioreq_local_port = rc; 1483 1484 /* Init RAM management */ 1485 #ifdef XEN_COMPAT_PHYSMAP 1486 xen_map_cache_init(xen_phys_offset_to_gaddr, state); 1487 #else 1488 xen_map_cache_init(NULL, state); 1489 #endif 1490 xen_ram_init(pcms, ram_size, ram_memory); 1491 1492 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); 1493 1494 state->memory_listener = xen_memory_listener; 1495 memory_listener_register(&state->memory_listener, &address_space_memory); 1496 state->log_for_dirtybit = NULL; 1497 1498 state->io_listener = xen_io_listener; 1499 memory_listener_register(&state->io_listener, &address_space_io); 1500 1501 state->device_listener = xen_device_listener; 1502 QLIST_INIT(&state->dev_list); 1503 device_listener_register(&state->device_listener); 1504 1505 xen_bus_init(); 1506 1507 /* Initialize backend core & drivers */ 1508 if (xen_be_init() != 0) { 1509 error_report("xen backend core setup failed"); 1510 goto err; 1511 } 1512 xen_be_register_common(); 1513 1514 QLIST_INIT(&xen_physmap); 1515 xen_read_physmap(state); 1516 1517 /* Disable ACPI build because Xen handles it */ 1518 pcms->acpi_build_enabled = false; 1519 1520 return; 1521 1522 err: 1523 error_report("xen hardware virtual machine initialisation failed"); 1524 exit(1); 1525 } 1526 1527 void destroy_hvm_domain(bool reboot) 1528 { 1529 xc_interface *xc_handle; 1530 int sts; 1531 int rc; 1532 1533 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff; 1534 1535 if (xen_dmod) { 1536 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason); 1537 if (!rc) { 1538 return; 1539 } 1540 if (errno != ENOTTY /* old Xen */) { 1541 perror("xendevicemodel_shutdown failed"); 1542 } 1543 /* well, try the old thing then */ 1544 } 1545 1546 xc_handle = xc_interface_open(0, 0, 0); 1547 if (xc_handle == NULL) { 1548 fprintf(stderr, "Cannot acquire xenctrl handle\n"); 1549 } else { 1550 sts = xc_domain_shutdown(xc_handle, xen_domid, reason); 1551 if (sts != 0) { 1552 fprintf(stderr, "xc_domain_shutdown failed to issue %s, " 1553 "sts %d, %s\n", reboot ? "reboot" : "poweroff", 1554 sts, strerror(errno)); 1555 } else { 1556 fprintf(stderr, "Issued domain %d %s\n", xen_domid, 1557 reboot ? "reboot" : "poweroff"); 1558 } 1559 xc_interface_close(xc_handle); 1560 } 1561 } 1562 1563 void xen_register_framebuffer(MemoryRegion *mr) 1564 { 1565 framebuffer = mr; 1566 } 1567 1568 void xen_shutdown_fatal_error(const char *fmt, ...) 1569 { 1570 va_list ap; 1571 1572 va_start(ap, fmt); 1573 vfprintf(stderr, fmt, ap); 1574 va_end(ap); 1575 fprintf(stderr, "Will destroy the domain.\n"); 1576 /* destroy the domain */ 1577 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR); 1578 } 1579 1580 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length) 1581 { 1582 if (unlikely(xen_in_migration)) { 1583 int rc; 1584 ram_addr_t start_pfn, nb_pages; 1585 1586 start = xen_phys_offset_to_gaddr(start, length); 1587 1588 if (length == 0) { 1589 length = TARGET_PAGE_SIZE; 1590 } 1591 start_pfn = start >> TARGET_PAGE_BITS; 1592 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) 1593 - start_pfn; 1594 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages); 1595 if (rc) { 1596 fprintf(stderr, 1597 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", 1598 __func__, start, nb_pages, errno, strerror(errno)); 1599 } 1600 } 1601 } 1602 1603 void qmp_xen_set_global_dirty_log(bool enable, Error **errp) 1604 { 1605 if (enable) { 1606 memory_global_dirty_log_start(); 1607 } else { 1608 memory_global_dirty_log_stop(); 1609 } 1610 } 1611