xref: /openbmc/qemu/hw/i386/x86.c (revision ffe98631)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu/datadir.h"
29 #include "qemu/guest-random.h"
30 #include "qapi/error.h"
31 #include "qapi/qmp/qerror.h"
32 #include "qapi/qapi-visit-common.h"
33 #include "qapi/clone-visitor.h"
34 #include "qapi/qapi-visit-machine.h"
35 #include "qapi/visitor.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/whpx.h"
38 #include "sysemu/numa.h"
39 #include "sysemu/replay.h"
40 #include "sysemu/reset.h"
41 #include "sysemu/sysemu.h"
42 #include "sysemu/cpu-timers.h"
43 #include "sysemu/xen.h"
44 #include "trace.h"
45 
46 #include "hw/i386/x86.h"
47 #include "target/i386/cpu.h"
48 #include "hw/i386/topology.h"
49 #include "hw/i386/fw_cfg.h"
50 #include "hw/intc/i8259.h"
51 #include "hw/rtc/mc146818rtc.h"
52 #include "target/i386/sev.h"
53 
54 #include "hw/acpi/cpu_hotplug.h"
55 #include "hw/irq.h"
56 #include "hw/nmi.h"
57 #include "hw/loader.h"
58 #include "multiboot.h"
59 #include "elf.h"
60 #include "standard-headers/asm-x86/bootparam.h"
61 #include CONFIG_DEVICES
62 #include "kvm/kvm_i386.h"
63 
64 /* Physical Address of PVH entry point read from kernel ELF NOTE */
65 static size_t pvh_start_addr;
66 
67 inline void init_topo_info(X86CPUTopoInfo *topo_info,
68                            const X86MachineState *x86ms)
69 {
70     MachineState *ms = MACHINE(x86ms);
71 
72     topo_info->dies_per_pkg = ms->smp.dies;
73     topo_info->cores_per_die = ms->smp.cores;
74     topo_info->threads_per_core = ms->smp.threads;
75 }
76 
77 /*
78  * Calculates initial APIC ID for a specific CPU index
79  *
80  * Currently we need to be able to calculate the APIC ID from the CPU index
81  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
82  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
83  * all CPUs up to max_cpus.
84  */
85 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
86                                     unsigned int cpu_index)
87 {
88     X86CPUTopoInfo topo_info;
89 
90     init_topo_info(&topo_info, x86ms);
91 
92     return x86_apicid_from_cpu_idx(&topo_info, cpu_index);
93 }
94 
95 
96 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
97 {
98     Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
99 
100     if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
101         goto out;
102     }
103     qdev_realize(DEVICE(cpu), NULL, errp);
104 
105 out:
106     object_unref(cpu);
107 }
108 
109 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
110 {
111     int i;
112     const CPUArchIdList *possible_cpus;
113     MachineState *ms = MACHINE(x86ms);
114     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
115 
116     x86_cpu_set_default_version(default_cpu_version);
117 
118     /*
119      * Calculates the limit to CPU APIC ID values
120      *
121      * Limit for the APIC ID value, so that all
122      * CPU APIC IDs are < x86ms->apic_id_limit.
123      *
124      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
125      */
126     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
127                                                       ms->smp.max_cpus - 1) + 1;
128 
129     /*
130      * Can we support APIC ID 255 or higher?
131      *
132      * Under Xen: yes.
133      * With userspace emulated lapic: no
134      * With KVM's in-kernel lapic: only if X2APIC API is enabled.
135      */
136     if (x86ms->apic_id_limit > 255 && !xen_enabled() &&
137         (!kvm_irqchip_in_kernel() || !kvm_enable_x2apic())) {
138         error_report("current -smp configuration requires kernel "
139                      "irqchip and X2APIC API support.");
140         exit(EXIT_FAILURE);
141     }
142 
143     if (kvm_enabled()) {
144         kvm_set_max_apic_id(x86ms->apic_id_limit);
145     }
146 
147     possible_cpus = mc->possible_cpu_arch_ids(ms);
148     for (i = 0; i < ms->smp.cpus; i++) {
149         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
150     }
151 }
152 
153 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
154 {
155     if (cpus_count > 0xff) {
156         /*
157          * If the number of CPUs can't be represented in 8 bits, the
158          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
159          * to make old BIOSes fail more predictably.
160          */
161         rtc_set_memory(rtc, 0x5f, 0);
162     } else {
163         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
164     }
165 }
166 
167 static int x86_apic_cmp(const void *a, const void *b)
168 {
169    CPUArchId *apic_a = (CPUArchId *)a;
170    CPUArchId *apic_b = (CPUArchId *)b;
171 
172    return apic_a->arch_id - apic_b->arch_id;
173 }
174 
175 /*
176  * returns pointer to CPUArchId descriptor that matches CPU's apic_id
177  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
178  * entry corresponding to CPU's apic_id returns NULL.
179  */
180 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
181 {
182     CPUArchId apic_id, *found_cpu;
183 
184     apic_id.arch_id = id;
185     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
186         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
187         x86_apic_cmp);
188     if (found_cpu && idx) {
189         *idx = found_cpu - ms->possible_cpus->cpus;
190     }
191     return found_cpu;
192 }
193 
194 void x86_cpu_plug(HotplugHandler *hotplug_dev,
195                   DeviceState *dev, Error **errp)
196 {
197     CPUArchId *found_cpu;
198     Error *local_err = NULL;
199     X86CPU *cpu = X86_CPU(dev);
200     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
201 
202     if (x86ms->acpi_dev) {
203         hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
204         if (local_err) {
205             goto out;
206         }
207     }
208 
209     /* increment the number of CPUs */
210     x86ms->boot_cpus++;
211     if (x86ms->rtc) {
212         x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
213     }
214     if (x86ms->fw_cfg) {
215         fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
216     }
217 
218     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
219     found_cpu->cpu = OBJECT(dev);
220 out:
221     error_propagate(errp, local_err);
222 }
223 
224 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
225                                DeviceState *dev, Error **errp)
226 {
227     int idx = -1;
228     X86CPU *cpu = X86_CPU(dev);
229     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
230 
231     if (!x86ms->acpi_dev) {
232         error_setg(errp, "CPU hot unplug not supported without ACPI");
233         return;
234     }
235 
236     x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
237     assert(idx != -1);
238     if (idx == 0) {
239         error_setg(errp, "Boot CPU is unpluggable");
240         return;
241     }
242 
243     hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
244                                    errp);
245 }
246 
247 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
248                        DeviceState *dev, Error **errp)
249 {
250     CPUArchId *found_cpu;
251     Error *local_err = NULL;
252     X86CPU *cpu = X86_CPU(dev);
253     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
254 
255     hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
256     if (local_err) {
257         goto out;
258     }
259 
260     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
261     found_cpu->cpu = NULL;
262     qdev_unrealize(dev);
263 
264     /* decrement the number of CPUs */
265     x86ms->boot_cpus--;
266     /* Update the number of CPUs in CMOS */
267     x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
268     fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
269  out:
270     error_propagate(errp, local_err);
271 }
272 
273 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
274                       DeviceState *dev, Error **errp)
275 {
276     int idx;
277     CPUState *cs;
278     CPUArchId *cpu_slot;
279     X86CPUTopoIDs topo_ids;
280     X86CPU *cpu = X86_CPU(dev);
281     CPUX86State *env = &cpu->env;
282     MachineState *ms = MACHINE(hotplug_dev);
283     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
284     unsigned int smp_cores = ms->smp.cores;
285     unsigned int smp_threads = ms->smp.threads;
286     X86CPUTopoInfo topo_info;
287 
288     if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
289         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
290                    ms->cpu_type);
291         return;
292     }
293 
294     if (x86ms->acpi_dev) {
295         Error *local_err = NULL;
296 
297         hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
298                                  &local_err);
299         if (local_err) {
300             error_propagate(errp, local_err);
301             return;
302         }
303     }
304 
305     init_topo_info(&topo_info, x86ms);
306 
307     env->nr_dies = ms->smp.dies;
308 
309     /*
310      * If APIC ID is not set,
311      * set it based on socket/die/core/thread properties.
312      */
313     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
314         int max_socket = (ms->smp.max_cpus - 1) /
315                                 smp_threads / smp_cores / ms->smp.dies;
316 
317         /*
318          * die-id was optional in QEMU 4.0 and older, so keep it optional
319          * if there's only one die per socket.
320          */
321         if (cpu->die_id < 0 && ms->smp.dies == 1) {
322             cpu->die_id = 0;
323         }
324 
325         if (cpu->socket_id < 0) {
326             error_setg(errp, "CPU socket-id is not set");
327             return;
328         } else if (cpu->socket_id > max_socket) {
329             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
330                        cpu->socket_id, max_socket);
331             return;
332         }
333         if (cpu->die_id < 0) {
334             error_setg(errp, "CPU die-id is not set");
335             return;
336         } else if (cpu->die_id > ms->smp.dies - 1) {
337             error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
338                        cpu->die_id, ms->smp.dies - 1);
339             return;
340         }
341         if (cpu->core_id < 0) {
342             error_setg(errp, "CPU core-id is not set");
343             return;
344         } else if (cpu->core_id > (smp_cores - 1)) {
345             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
346                        cpu->core_id, smp_cores - 1);
347             return;
348         }
349         if (cpu->thread_id < 0) {
350             error_setg(errp, "CPU thread-id is not set");
351             return;
352         } else if (cpu->thread_id > (smp_threads - 1)) {
353             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
354                        cpu->thread_id, smp_threads - 1);
355             return;
356         }
357 
358         topo_ids.pkg_id = cpu->socket_id;
359         topo_ids.die_id = cpu->die_id;
360         topo_ids.core_id = cpu->core_id;
361         topo_ids.smt_id = cpu->thread_id;
362         cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
363     }
364 
365     cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
366     if (!cpu_slot) {
367         MachineState *ms = MACHINE(x86ms);
368 
369         x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
370         error_setg(errp,
371             "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
372             " APIC ID %" PRIu32 ", valid index range 0:%d",
373             topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
374             cpu->apic_id, ms->possible_cpus->len - 1);
375         return;
376     }
377 
378     if (cpu_slot->cpu) {
379         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
380                    idx, cpu->apic_id);
381         return;
382     }
383 
384     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
385      * so that machine_query_hotpluggable_cpus would show correct values
386      */
387     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
388      * once -smp refactoring is complete and there will be CPU private
389      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
390     x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
391     if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
392         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
393             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
394             topo_ids.pkg_id);
395         return;
396     }
397     cpu->socket_id = topo_ids.pkg_id;
398 
399     if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
400         error_setg(errp, "property die-id: %u doesn't match set apic-id:"
401             " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
402         return;
403     }
404     cpu->die_id = topo_ids.die_id;
405 
406     if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
407         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
408             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
409             topo_ids.core_id);
410         return;
411     }
412     cpu->core_id = topo_ids.core_id;
413 
414     if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
415         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
416             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
417             topo_ids.smt_id);
418         return;
419     }
420     cpu->thread_id = topo_ids.smt_id;
421 
422     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
423         !kvm_hv_vpindex_settable()) {
424         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
425         return;
426     }
427 
428     cs = CPU(cpu);
429     cs->cpu_index = idx;
430 
431     numa_cpu_pre_plug(cpu_slot, dev, errp);
432 }
433 
434 CpuInstanceProperties
435 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
436 {
437     MachineClass *mc = MACHINE_GET_CLASS(ms);
438     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
439 
440     assert(cpu_index < possible_cpus->len);
441     return possible_cpus->cpus[cpu_index].props;
442 }
443 
444 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
445 {
446    X86CPUTopoIDs topo_ids;
447    X86MachineState *x86ms = X86_MACHINE(ms);
448    X86CPUTopoInfo topo_info;
449 
450    init_topo_info(&topo_info, x86ms);
451 
452    assert(idx < ms->possible_cpus->len);
453    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
454                             &topo_info, &topo_ids);
455    return topo_ids.pkg_id % ms->numa_state->num_nodes;
456 }
457 
458 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
459 {
460     X86MachineState *x86ms = X86_MACHINE(ms);
461     unsigned int max_cpus = ms->smp.max_cpus;
462     X86CPUTopoInfo topo_info;
463     int i;
464 
465     if (ms->possible_cpus) {
466         /*
467          * make sure that max_cpus hasn't changed since the first use, i.e.
468          * -smp hasn't been parsed after it
469          */
470         assert(ms->possible_cpus->len == max_cpus);
471         return ms->possible_cpus;
472     }
473 
474     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
475                                   sizeof(CPUArchId) * max_cpus);
476     ms->possible_cpus->len = max_cpus;
477 
478     init_topo_info(&topo_info, x86ms);
479 
480     for (i = 0; i < ms->possible_cpus->len; i++) {
481         X86CPUTopoIDs topo_ids;
482 
483         ms->possible_cpus->cpus[i].type = ms->cpu_type;
484         ms->possible_cpus->cpus[i].vcpus_count = 1;
485         ms->possible_cpus->cpus[i].arch_id =
486             x86_cpu_apic_id_from_index(x86ms, i);
487         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
488                                  &topo_info, &topo_ids);
489         ms->possible_cpus->cpus[i].props.has_socket_id = true;
490         ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
491         if (ms->smp.dies > 1) {
492             ms->possible_cpus->cpus[i].props.has_die_id = true;
493             ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
494         }
495         ms->possible_cpus->cpus[i].props.has_core_id = true;
496         ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
497         ms->possible_cpus->cpus[i].props.has_thread_id = true;
498         ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
499     }
500     return ms->possible_cpus;
501 }
502 
503 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
504 {
505     /* cpu index isn't used */
506     CPUState *cs;
507 
508     CPU_FOREACH(cs) {
509         X86CPU *cpu = X86_CPU(cs);
510 
511         if (!cpu->apic_state) {
512             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
513         } else {
514             apic_deliver_nmi(cpu->apic_state);
515         }
516     }
517 }
518 
519 static long get_file_size(FILE *f)
520 {
521     long where, size;
522 
523     /* XXX: on Unix systems, using fstat() probably makes more sense */
524 
525     where = ftell(f);
526     fseek(f, 0, SEEK_END);
527     size = ftell(f);
528     fseek(f, where, SEEK_SET);
529 
530     return size;
531 }
532 
533 /* TSC handling */
534 uint64_t cpu_get_tsc(CPUX86State *env)
535 {
536     return cpus_get_elapsed_ticks();
537 }
538 
539 /* IRQ handling */
540 static void pic_irq_request(void *opaque, int irq, int level)
541 {
542     CPUState *cs = first_cpu;
543     X86CPU *cpu = X86_CPU(cs);
544 
545     trace_x86_pic_interrupt(irq, level);
546     if (cpu->apic_state && !kvm_irqchip_in_kernel() &&
547         !whpx_apic_in_platform()) {
548         CPU_FOREACH(cs) {
549             cpu = X86_CPU(cs);
550             if (apic_accept_pic_intr(cpu->apic_state)) {
551                 apic_deliver_pic_intr(cpu->apic_state, level);
552             }
553         }
554     } else {
555         if (level) {
556             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
557         } else {
558             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
559         }
560     }
561 }
562 
563 qemu_irq x86_allocate_cpu_irq(void)
564 {
565     return qemu_allocate_irq(pic_irq_request, NULL, 0);
566 }
567 
568 int cpu_get_pic_interrupt(CPUX86State *env)
569 {
570     X86CPU *cpu = env_archcpu(env);
571     int intno;
572 
573     if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
574         intno = apic_get_interrupt(cpu->apic_state);
575         if (intno >= 0) {
576             return intno;
577         }
578         /* read the irq from the PIC */
579         if (!apic_accept_pic_intr(cpu->apic_state)) {
580             return -1;
581         }
582     }
583 
584     intno = pic_read_irq(isa_pic);
585     return intno;
586 }
587 
588 DeviceState *cpu_get_current_apic(void)
589 {
590     if (current_cpu) {
591         X86CPU *cpu = X86_CPU(current_cpu);
592         return cpu->apic_state;
593     } else {
594         return NULL;
595     }
596 }
597 
598 void gsi_handler(void *opaque, int n, int level)
599 {
600     GSIState *s = opaque;
601 
602     trace_x86_gsi_interrupt(n, level);
603     switch (n) {
604     case 0 ... ISA_NUM_IRQS - 1:
605         if (s->i8259_irq[n]) {
606             /* Under KVM, Kernel will forward to both PIC and IOAPIC */
607             qemu_set_irq(s->i8259_irq[n], level);
608         }
609         /* fall through */
610     case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
611         qemu_set_irq(s->ioapic_irq[n], level);
612         break;
613     case IO_APIC_SECONDARY_IRQBASE
614         ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
615         qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
616         break;
617     }
618 }
619 
620 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
621 {
622     DeviceState *dev;
623     SysBusDevice *d;
624     unsigned int i;
625 
626     assert(parent_name);
627     if (kvm_ioapic_in_kernel()) {
628         dev = qdev_new(TYPE_KVM_IOAPIC);
629     } else {
630         dev = qdev_new(TYPE_IOAPIC);
631     }
632     object_property_add_child(object_resolve_path(parent_name, NULL),
633                               "ioapic", OBJECT(dev));
634     d = SYS_BUS_DEVICE(dev);
635     sysbus_realize_and_unref(d, &error_fatal);
636     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
637 
638     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
639         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
640     }
641 }
642 
643 DeviceState *ioapic_init_secondary(GSIState *gsi_state)
644 {
645     DeviceState *dev;
646     SysBusDevice *d;
647     unsigned int i;
648 
649     dev = qdev_new(TYPE_IOAPIC);
650     d = SYS_BUS_DEVICE(dev);
651     sysbus_realize_and_unref(d, &error_fatal);
652     sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
653 
654     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
655         gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
656     }
657     return dev;
658 }
659 
660 typedef struct SetupData {
661     uint64_t next;
662     uint32_t type;
663     uint32_t len;
664     uint8_t data[];
665 } __attribute__((packed)) SetupData;
666 
667 
668 /*
669  * The entry point into the kernel for PVH boot is different from
670  * the native entry point.  The PVH entry is defined by the x86/HVM
671  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
672  *
673  * This function is passed to load_elf() when it is called from
674  * load_elfboot() which then additionally checks for an ELF Note of
675  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
676  * parse the PVH entry address from the ELF Note.
677  *
678  * Due to trickery in elf_opts.h, load_elf() is actually available as
679  * load_elf32() or load_elf64() and this routine needs to be able
680  * to deal with being called as 32 or 64 bit.
681  *
682  * The address of the PVH entry point is saved to the 'pvh_start_addr'
683  * global variable.  (although the entry point is 32-bit, the kernel
684  * binary can be either 32-bit or 64-bit).
685  */
686 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
687 {
688     size_t *elf_note_data_addr;
689 
690     /* Check if ELF Note header passed in is valid */
691     if (arg1 == NULL) {
692         return 0;
693     }
694 
695     if (is64) {
696         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
697         uint64_t nhdr_size64 = sizeof(struct elf64_note);
698         uint64_t phdr_align = *(uint64_t *)arg2;
699         uint64_t nhdr_namesz = nhdr64->n_namesz;
700 
701         elf_note_data_addr =
702             ((void *)nhdr64) + nhdr_size64 +
703             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
704 
705         pvh_start_addr = *elf_note_data_addr;
706     } else {
707         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
708         uint32_t nhdr_size32 = sizeof(struct elf32_note);
709         uint32_t phdr_align = *(uint32_t *)arg2;
710         uint32_t nhdr_namesz = nhdr32->n_namesz;
711 
712         elf_note_data_addr =
713             ((void *)nhdr32) + nhdr_size32 +
714             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
715 
716         pvh_start_addr = *(uint32_t *)elf_note_data_addr;
717     }
718 
719     return pvh_start_addr;
720 }
721 
722 static bool load_elfboot(const char *kernel_filename,
723                          int kernel_file_size,
724                          uint8_t *header,
725                          size_t pvh_xen_start_addr,
726                          FWCfgState *fw_cfg)
727 {
728     uint32_t flags = 0;
729     uint32_t mh_load_addr = 0;
730     uint32_t elf_kernel_size = 0;
731     uint64_t elf_entry;
732     uint64_t elf_low, elf_high;
733     int kernel_size;
734 
735     if (ldl_p(header) != 0x464c457f) {
736         return false; /* no elfboot */
737     }
738 
739     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
740     flags = elf_is64 ?
741         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
742 
743     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
744         error_report("elfboot unsupported flags = %x", flags);
745         exit(1);
746     }
747 
748     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
749     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
750                            NULL, &elf_note_type, &elf_entry,
751                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
752                            0, 0);
753 
754     if (kernel_size < 0) {
755         error_report("Error while loading elf kernel");
756         exit(1);
757     }
758     mh_load_addr = elf_low;
759     elf_kernel_size = elf_high - elf_low;
760 
761     if (pvh_start_addr == 0) {
762         error_report("Error loading uncompressed kernel without PVH ELF Note");
763         exit(1);
764     }
765     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
766     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
767     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
768 
769     return true;
770 }
771 
772 typedef struct SetupDataFixup {
773     void *pos;
774     hwaddr orig_val, new_val;
775     uint32_t addr;
776 } SetupDataFixup;
777 
778 static void fixup_setup_data(void *opaque)
779 {
780     SetupDataFixup *fixup = opaque;
781     stq_p(fixup->pos, fixup->new_val);
782 }
783 
784 static void reset_setup_data(void *opaque)
785 {
786     SetupDataFixup *fixup = opaque;
787     stq_p(fixup->pos, fixup->orig_val);
788 }
789 
790 static void reset_rng_seed(void *opaque)
791 {
792     SetupData *setup_data = opaque;
793     qemu_guest_getrandom_nofail(setup_data->data, le32_to_cpu(setup_data->len));
794 }
795 
796 void x86_load_linux(X86MachineState *x86ms,
797                     FWCfgState *fw_cfg,
798                     int acpi_data_size,
799                     bool pvh_enabled,
800                     bool legacy_no_rng_seed)
801 {
802     bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
803     uint16_t protocol;
804     int setup_size, kernel_size, cmdline_size;
805     int dtb_size, setup_data_offset;
806     uint32_t initrd_max;
807     uint8_t header[8192], *setup, *kernel;
808     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0, first_setup_data = 0;
809     FILE *f;
810     char *vmode;
811     MachineState *machine = MACHINE(x86ms);
812     SetupData *setup_data;
813     const char *kernel_filename = machine->kernel_filename;
814     const char *initrd_filename = machine->initrd_filename;
815     const char *dtb_filename = machine->dtb;
816     const char *kernel_cmdline = machine->kernel_cmdline;
817     SevKernelLoaderContext sev_load_ctx = {};
818     enum { RNG_SEED_LENGTH = 32 };
819 
820     /* Align to 16 bytes as a paranoia measure */
821     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
822 
823     /* load the kernel header */
824     f = fopen(kernel_filename, "rb");
825     if (!f) {
826         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
827                 kernel_filename, strerror(errno));
828         exit(1);
829     }
830 
831     kernel_size = get_file_size(f);
832     if (!kernel_size ||
833         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
834         MIN(ARRAY_SIZE(header), kernel_size)) {
835         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
836                 kernel_filename, strerror(errno));
837         exit(1);
838     }
839 
840     /* kernel protocol version */
841     if (ldl_p(header + 0x202) == 0x53726448) {
842         protocol = lduw_p(header + 0x206);
843     } else {
844         /*
845          * This could be a multiboot kernel. If it is, let's stop treating it
846          * like a Linux kernel.
847          * Note: some multiboot images could be in the ELF format (the same of
848          * PVH), so we try multiboot first since we check the multiboot magic
849          * header before to load it.
850          */
851         if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
852                            kernel_cmdline, kernel_size, header)) {
853             return;
854         }
855         /*
856          * Check if the file is an uncompressed kernel file (ELF) and load it,
857          * saving the PVH entry point used by the x86/HVM direct boot ABI.
858          * If load_elfboot() is successful, populate the fw_cfg info.
859          */
860         if (pvh_enabled &&
861             load_elfboot(kernel_filename, kernel_size,
862                          header, pvh_start_addr, fw_cfg)) {
863             fclose(f);
864 
865             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
866                 strlen(kernel_cmdline) + 1);
867             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
868 
869             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
870             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
871                              header, sizeof(header));
872 
873             /* load initrd */
874             if (initrd_filename) {
875                 GMappedFile *mapped_file;
876                 gsize initrd_size;
877                 gchar *initrd_data;
878                 GError *gerr = NULL;
879 
880                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
881                 if (!mapped_file) {
882                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
883                             initrd_filename, gerr->message);
884                     exit(1);
885                 }
886                 x86ms->initrd_mapped_file = mapped_file;
887 
888                 initrd_data = g_mapped_file_get_contents(mapped_file);
889                 initrd_size = g_mapped_file_get_length(mapped_file);
890                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
891                 if (initrd_size >= initrd_max) {
892                     fprintf(stderr, "qemu: initrd is too large, cannot support."
893                             "(max: %"PRIu32", need %"PRId64")\n",
894                             initrd_max, (uint64_t)initrd_size);
895                     exit(1);
896                 }
897 
898                 initrd_addr = (initrd_max - initrd_size) & ~4095;
899 
900                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
901                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
902                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
903                                  initrd_size);
904             }
905 
906             option_rom[nb_option_roms].bootindex = 0;
907             option_rom[nb_option_roms].name = "pvh.bin";
908             nb_option_roms++;
909 
910             return;
911         }
912         protocol = 0;
913     }
914 
915     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
916         /* Low kernel */
917         real_addr    = 0x90000;
918         cmdline_addr = 0x9a000 - cmdline_size;
919         prot_addr    = 0x10000;
920     } else if (protocol < 0x202) {
921         /* High but ancient kernel */
922         real_addr    = 0x90000;
923         cmdline_addr = 0x9a000 - cmdline_size;
924         prot_addr    = 0x100000;
925     } else {
926         /* High and recent kernel */
927         real_addr    = 0x10000;
928         cmdline_addr = 0x20000;
929         prot_addr    = 0x100000;
930     }
931 
932     /* highest address for loading the initrd */
933     if (protocol >= 0x20c &&
934         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
935         /*
936          * Linux has supported initrd up to 4 GB for a very long time (2007,
937          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
938          * though it only sets initrd_max to 2 GB to "work around bootloader
939          * bugs". Luckily, QEMU firmware(which does something like bootloader)
940          * has supported this.
941          *
942          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
943          * be loaded into any address.
944          *
945          * In addition, initrd_max is uint32_t simply because QEMU doesn't
946          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
947          * field).
948          *
949          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
950          */
951         initrd_max = UINT32_MAX;
952     } else if (protocol >= 0x203) {
953         initrd_max = ldl_p(header + 0x22c);
954     } else {
955         initrd_max = 0x37ffffff;
956     }
957 
958     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
959         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
960     }
961 
962     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
963     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
964     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
965     sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
966     sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
967 
968     if (protocol >= 0x202) {
969         stl_p(header + 0x228, cmdline_addr);
970     } else {
971         stw_p(header + 0x20, 0xA33F);
972         stw_p(header + 0x22, cmdline_addr - real_addr);
973     }
974 
975     /* handle vga= parameter */
976     vmode = strstr(kernel_cmdline, "vga=");
977     if (vmode) {
978         unsigned int video_mode;
979         const char *end;
980         int ret;
981         /* skip "vga=" */
982         vmode += 4;
983         if (!strncmp(vmode, "normal", 6)) {
984             video_mode = 0xffff;
985         } else if (!strncmp(vmode, "ext", 3)) {
986             video_mode = 0xfffe;
987         } else if (!strncmp(vmode, "ask", 3)) {
988             video_mode = 0xfffd;
989         } else {
990             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
991             if (ret != 0 || (*end && *end != ' ')) {
992                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
993                 exit(1);
994             }
995         }
996         stw_p(header + 0x1fa, video_mode);
997     }
998 
999     /* loader type */
1000     /*
1001      * High nybble = B reserved for QEMU; low nybble is revision number.
1002      * If this code is substantially changed, you may want to consider
1003      * incrementing the revision.
1004      */
1005     if (protocol >= 0x200) {
1006         header[0x210] = 0xB0;
1007     }
1008     /* heap */
1009     if (protocol >= 0x201) {
1010         header[0x211] |= 0x80; /* CAN_USE_HEAP */
1011         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
1012     }
1013 
1014     /* load initrd */
1015     if (initrd_filename) {
1016         GMappedFile *mapped_file;
1017         gsize initrd_size;
1018         gchar *initrd_data;
1019         GError *gerr = NULL;
1020 
1021         if (protocol < 0x200) {
1022             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1023             exit(1);
1024         }
1025 
1026         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
1027         if (!mapped_file) {
1028             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1029                     initrd_filename, gerr->message);
1030             exit(1);
1031         }
1032         x86ms->initrd_mapped_file = mapped_file;
1033 
1034         initrd_data = g_mapped_file_get_contents(mapped_file);
1035         initrd_size = g_mapped_file_get_length(mapped_file);
1036         if (initrd_size >= initrd_max) {
1037             fprintf(stderr, "qemu: initrd is too large, cannot support."
1038                     "(max: %"PRIu32", need %"PRId64")\n",
1039                     initrd_max, (uint64_t)initrd_size);
1040             exit(1);
1041         }
1042 
1043         initrd_addr = (initrd_max - initrd_size) & ~4095;
1044 
1045         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1046         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1047         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1048         sev_load_ctx.initrd_data = initrd_data;
1049         sev_load_ctx.initrd_size = initrd_size;
1050 
1051         stl_p(header + 0x218, initrd_addr);
1052         stl_p(header + 0x21c, initrd_size);
1053     }
1054 
1055     /* load kernel and setup */
1056     setup_size = header[0x1f1];
1057     if (setup_size == 0) {
1058         setup_size = 4;
1059     }
1060     setup_size = (setup_size + 1) * 512;
1061     if (setup_size > kernel_size) {
1062         fprintf(stderr, "qemu: invalid kernel header\n");
1063         exit(1);
1064     }
1065     kernel_size -= setup_size;
1066 
1067     setup  = g_malloc(setup_size);
1068     kernel = g_malloc(kernel_size);
1069     fseek(f, 0, SEEK_SET);
1070     if (fread(setup, 1, setup_size, f) != setup_size) {
1071         fprintf(stderr, "fread() failed\n");
1072         exit(1);
1073     }
1074     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1075         fprintf(stderr, "fread() failed\n");
1076         exit(1);
1077     }
1078     fclose(f);
1079 
1080     /* append dtb to kernel */
1081     if (dtb_filename) {
1082         if (protocol < 0x209) {
1083             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1084             exit(1);
1085         }
1086 
1087         dtb_size = get_image_size(dtb_filename);
1088         if (dtb_size <= 0) {
1089             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1090                     dtb_filename, strerror(errno));
1091             exit(1);
1092         }
1093 
1094         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1095         kernel_size = setup_data_offset + sizeof(SetupData) + dtb_size;
1096         kernel = g_realloc(kernel, kernel_size);
1097 
1098 
1099         setup_data = (SetupData *)(kernel + setup_data_offset);
1100         setup_data->next = cpu_to_le64(first_setup_data);
1101         first_setup_data = prot_addr + setup_data_offset;
1102         setup_data->type = cpu_to_le32(SETUP_DTB);
1103         setup_data->len = cpu_to_le32(dtb_size);
1104 
1105         load_image_size(dtb_filename, setup_data->data, dtb_size);
1106     }
1107 
1108     if (!legacy_no_rng_seed) {
1109         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1110         kernel_size = setup_data_offset + sizeof(SetupData) + RNG_SEED_LENGTH;
1111         kernel = g_realloc(kernel, kernel_size);
1112         setup_data = (SetupData *)(kernel + setup_data_offset);
1113         setup_data->next = cpu_to_le64(first_setup_data);
1114         first_setup_data = prot_addr + setup_data_offset;
1115         setup_data->type = cpu_to_le32(SETUP_RNG_SEED);
1116         setup_data->len = cpu_to_le32(RNG_SEED_LENGTH);
1117         qemu_guest_getrandom_nofail(setup_data->data, RNG_SEED_LENGTH);
1118         qemu_register_reset_nosnapshotload(reset_rng_seed, setup_data);
1119         fw_cfg_add_bytes_callback(fw_cfg, FW_CFG_KERNEL_DATA, reset_rng_seed, NULL,
1120                                   setup_data, kernel, kernel_size, true);
1121     } else {
1122         fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1123     }
1124 
1125     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1126     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1127     sev_load_ctx.kernel_data = (char *)kernel;
1128     sev_load_ctx.kernel_size = kernel_size;
1129 
1130     /*
1131      * If we're starting an encrypted VM, it will be OVMF based, which uses the
1132      * efi stub for booting and doesn't require any values to be placed in the
1133      * kernel header.  We therefore don't update the header so the hash of the
1134      * kernel on the other side of the fw_cfg interface matches the hash of the
1135      * file the user passed in.
1136      */
1137     if (!sev_enabled()) {
1138         SetupDataFixup *fixup = g_malloc(sizeof(*fixup));
1139 
1140         memcpy(setup, header, MIN(sizeof(header), setup_size));
1141         /* Offset 0x250 is a pointer to the first setup_data link. */
1142         fixup->pos = setup + 0x250;
1143         fixup->orig_val = ldq_p(fixup->pos);
1144         fixup->new_val = first_setup_data;
1145         fixup->addr = cpu_to_le32(real_addr);
1146         fw_cfg_add_bytes_callback(fw_cfg, FW_CFG_SETUP_ADDR, fixup_setup_data, NULL,
1147                                   fixup, &fixup->addr, sizeof(fixup->addr), true);
1148         qemu_register_reset(reset_setup_data, fixup);
1149     } else {
1150         fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1151     }
1152     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1153     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1154     sev_load_ctx.setup_data = (char *)setup;
1155     sev_load_ctx.setup_size = setup_size;
1156 
1157     if (sev_enabled()) {
1158         sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
1159     }
1160 
1161     option_rom[nb_option_roms].bootindex = 0;
1162     option_rom[nb_option_roms].name = "linuxboot.bin";
1163     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1164         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1165     }
1166     nb_option_roms++;
1167 }
1168 
1169 void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
1170                        MemoryRegion *rom_memory, bool isapc_ram_fw)
1171 {
1172     const char *bios_name;
1173     char *filename;
1174     MemoryRegion *bios, *isa_bios;
1175     int bios_size, isa_bios_size;
1176     ssize_t ret;
1177 
1178     /* BIOS load */
1179     bios_name = ms->firmware ?: default_firmware;
1180     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1181     if (filename) {
1182         bios_size = get_image_size(filename);
1183     } else {
1184         bios_size = -1;
1185     }
1186     if (bios_size <= 0 ||
1187         (bios_size % 65536) != 0) {
1188         goto bios_error;
1189     }
1190     bios = g_malloc(sizeof(*bios));
1191     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1192     if (sev_enabled()) {
1193         /*
1194          * The concept of a "reset" simply doesn't exist for
1195          * confidential computing guests, we have to destroy and
1196          * re-launch them instead.  So there is no need to register
1197          * the firmware as rom to properly re-initialize on reset.
1198          * Just go for a straight file load instead.
1199          */
1200         void *ptr = memory_region_get_ram_ptr(bios);
1201         load_image_size(filename, ptr, bios_size);
1202         x86_firmware_configure(ptr, bios_size);
1203     } else {
1204         if (!isapc_ram_fw) {
1205             memory_region_set_readonly(bios, true);
1206         }
1207         ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1208         if (ret != 0) {
1209             goto bios_error;
1210         }
1211     }
1212     g_free(filename);
1213 
1214     /* map the last 128KB of the BIOS in ISA space */
1215     isa_bios_size = MIN(bios_size, 128 * KiB);
1216     isa_bios = g_malloc(sizeof(*isa_bios));
1217     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1218                              bios_size - isa_bios_size, isa_bios_size);
1219     memory_region_add_subregion_overlap(rom_memory,
1220                                         0x100000 - isa_bios_size,
1221                                         isa_bios,
1222                                         1);
1223     if (!isapc_ram_fw) {
1224         memory_region_set_readonly(isa_bios, true);
1225     }
1226 
1227     /* map all the bios at the top of memory */
1228     memory_region_add_subregion(rom_memory,
1229                                 (uint32_t)(-bios_size),
1230                                 bios);
1231     return;
1232 
1233 bios_error:
1234     fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1235     exit(1);
1236 }
1237 
1238 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1239 {
1240     bool smm_available = false;
1241 
1242     if (x86ms->smm == ON_OFF_AUTO_OFF) {
1243         return false;
1244     }
1245 
1246     if (tcg_enabled() || qtest_enabled()) {
1247         smm_available = true;
1248     } else if (kvm_enabled()) {
1249         smm_available = kvm_has_smm();
1250     }
1251 
1252     if (smm_available) {
1253         return true;
1254     }
1255 
1256     if (x86ms->smm == ON_OFF_AUTO_ON) {
1257         error_report("System Management Mode not supported by this hypervisor.");
1258         exit(1);
1259     }
1260     return false;
1261 }
1262 
1263 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1264                                void *opaque, Error **errp)
1265 {
1266     X86MachineState *x86ms = X86_MACHINE(obj);
1267     OnOffAuto smm = x86ms->smm;
1268 
1269     visit_type_OnOffAuto(v, name, &smm, errp);
1270 }
1271 
1272 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1273                                void *opaque, Error **errp)
1274 {
1275     X86MachineState *x86ms = X86_MACHINE(obj);
1276 
1277     visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1278 }
1279 
1280 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1281 {
1282     if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1283         return false;
1284     }
1285     return true;
1286 }
1287 
1288 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1289                                  void *opaque, Error **errp)
1290 {
1291     X86MachineState *x86ms = X86_MACHINE(obj);
1292     OnOffAuto acpi = x86ms->acpi;
1293 
1294     visit_type_OnOffAuto(v, name, &acpi, errp);
1295 }
1296 
1297 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1298                                  void *opaque, Error **errp)
1299 {
1300     X86MachineState *x86ms = X86_MACHINE(obj);
1301 
1302     visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1303 }
1304 
1305 static void x86_machine_get_pit(Object *obj, Visitor *v, const char *name,
1306                                     void *opaque, Error **errp)
1307 {
1308     X86MachineState *x86ms = X86_MACHINE(obj);
1309     OnOffAuto pit = x86ms->pit;
1310 
1311     visit_type_OnOffAuto(v, name, &pit, errp);
1312 }
1313 
1314 static void x86_machine_set_pit(Object *obj, Visitor *v, const char *name,
1315                                     void *opaque, Error **errp)
1316 {
1317     X86MachineState *x86ms = X86_MACHINE(obj);;
1318 
1319     visit_type_OnOffAuto(v, name, &x86ms->pit, errp);
1320 }
1321 
1322 static void x86_machine_get_pic(Object *obj, Visitor *v, const char *name,
1323                                 void *opaque, Error **errp)
1324 {
1325     X86MachineState *x86ms = X86_MACHINE(obj);
1326     OnOffAuto pic = x86ms->pic;
1327 
1328     visit_type_OnOffAuto(v, name, &pic, errp);
1329 }
1330 
1331 static void x86_machine_set_pic(Object *obj, Visitor *v, const char *name,
1332                                 void *opaque, Error **errp)
1333 {
1334     X86MachineState *x86ms = X86_MACHINE(obj);
1335 
1336     visit_type_OnOffAuto(v, name, &x86ms->pic, errp);
1337 }
1338 
1339 static char *x86_machine_get_oem_id(Object *obj, Error **errp)
1340 {
1341     X86MachineState *x86ms = X86_MACHINE(obj);
1342 
1343     return g_strdup(x86ms->oem_id);
1344 }
1345 
1346 static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp)
1347 {
1348     X86MachineState *x86ms = X86_MACHINE(obj);
1349     size_t len = strlen(value);
1350 
1351     if (len > 6) {
1352         error_setg(errp,
1353                    "User specified "X86_MACHINE_OEM_ID" value is bigger than "
1354                    "6 bytes in size");
1355         return;
1356     }
1357 
1358     strncpy(x86ms->oem_id, value, 6);
1359 }
1360 
1361 static char *x86_machine_get_oem_table_id(Object *obj, Error **errp)
1362 {
1363     X86MachineState *x86ms = X86_MACHINE(obj);
1364 
1365     return g_strdup(x86ms->oem_table_id);
1366 }
1367 
1368 static void x86_machine_set_oem_table_id(Object *obj, const char *value,
1369                                          Error **errp)
1370 {
1371     X86MachineState *x86ms = X86_MACHINE(obj);
1372     size_t len = strlen(value);
1373 
1374     if (len > 8) {
1375         error_setg(errp,
1376                    "User specified "X86_MACHINE_OEM_TABLE_ID
1377                    " value is bigger than "
1378                    "8 bytes in size");
1379         return;
1380     }
1381     strncpy(x86ms->oem_table_id, value, 8);
1382 }
1383 
1384 static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v,
1385                                 const char *name, void *opaque, Error **errp)
1386 {
1387     X86MachineState *x86ms = X86_MACHINE(obj);
1388     uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit;
1389 
1390     visit_type_uint64(v, name, &bus_lock_ratelimit, errp);
1391 }
1392 
1393 static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v,
1394                                const char *name, void *opaque, Error **errp)
1395 {
1396     X86MachineState *x86ms = X86_MACHINE(obj);
1397 
1398     visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp);
1399 }
1400 
1401 static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name,
1402                                 void *opaque, Error **errp)
1403 {
1404     X86MachineState *x86ms = X86_MACHINE(obj);
1405     SgxEPCList *list = x86ms->sgx_epc_list;
1406 
1407     visit_type_SgxEPCList(v, name, &list, errp);
1408 }
1409 
1410 static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name,
1411                                 void *opaque, Error **errp)
1412 {
1413     X86MachineState *x86ms = X86_MACHINE(obj);
1414     SgxEPCList *list;
1415 
1416     list = x86ms->sgx_epc_list;
1417     visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp);
1418 
1419     qapi_free_SgxEPCList(list);
1420 }
1421 
1422 static void x86_machine_initfn(Object *obj)
1423 {
1424     X86MachineState *x86ms = X86_MACHINE(obj);
1425 
1426     x86ms->smm = ON_OFF_AUTO_AUTO;
1427     x86ms->acpi = ON_OFF_AUTO_AUTO;
1428     x86ms->pit = ON_OFF_AUTO_AUTO;
1429     x86ms->pic = ON_OFF_AUTO_AUTO;
1430     x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
1431     x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
1432     x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
1433     x86ms->bus_lock_ratelimit = 0;
1434     x86ms->above_4g_mem_start = 4 * GiB;
1435 }
1436 
1437 static void x86_machine_class_init(ObjectClass *oc, void *data)
1438 {
1439     MachineClass *mc = MACHINE_CLASS(oc);
1440     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1441     NMIClass *nc = NMI_CLASS(oc);
1442 
1443     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1444     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1445     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1446     x86mc->save_tsc_khz = true;
1447     x86mc->fwcfg_dma_enabled = true;
1448     nc->nmi_monitor_handler = x86_nmi;
1449 
1450     object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1451         x86_machine_get_smm, x86_machine_set_smm,
1452         NULL, NULL);
1453     object_class_property_set_description(oc, X86_MACHINE_SMM,
1454         "Enable SMM");
1455 
1456     object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1457         x86_machine_get_acpi, x86_machine_set_acpi,
1458         NULL, NULL);
1459     object_class_property_set_description(oc, X86_MACHINE_ACPI,
1460         "Enable ACPI");
1461 
1462     object_class_property_add(oc, X86_MACHINE_PIT, "OnOffAuto",
1463                               x86_machine_get_pit,
1464                               x86_machine_set_pit,
1465                               NULL, NULL);
1466     object_class_property_set_description(oc, X86_MACHINE_PIT,
1467         "Enable i8254 PIT");
1468 
1469     object_class_property_add(oc, X86_MACHINE_PIC, "OnOffAuto",
1470                               x86_machine_get_pic,
1471                               x86_machine_set_pic,
1472                               NULL, NULL);
1473     object_class_property_set_description(oc, X86_MACHINE_PIC,
1474         "Enable i8259 PIC");
1475 
1476     object_class_property_add_str(oc, X86_MACHINE_OEM_ID,
1477                                   x86_machine_get_oem_id,
1478                                   x86_machine_set_oem_id);
1479     object_class_property_set_description(oc, X86_MACHINE_OEM_ID,
1480                                           "Override the default value of field OEMID "
1481                                           "in ACPI table header."
1482                                           "The string may be up to 6 bytes in size");
1483 
1484 
1485     object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID,
1486                                   x86_machine_get_oem_table_id,
1487                                   x86_machine_set_oem_table_id);
1488     object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID,
1489                                           "Override the default value of field OEM Table ID "
1490                                           "in ACPI table header."
1491                                           "The string may be up to 8 bytes in size");
1492 
1493     object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t",
1494                                 x86_machine_get_bus_lock_ratelimit,
1495                                 x86_machine_set_bus_lock_ratelimit, NULL, NULL);
1496     object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT,
1497             "Set the ratelimit for the bus locks acquired in VMs");
1498 
1499     object_class_property_add(oc, "sgx-epc", "SgxEPC",
1500         machine_get_sgx_epc, machine_set_sgx_epc,
1501         NULL, NULL);
1502     object_class_property_set_description(oc, "sgx-epc",
1503         "SGX EPC device");
1504 }
1505 
1506 static const TypeInfo x86_machine_info = {
1507     .name = TYPE_X86_MACHINE,
1508     .parent = TYPE_MACHINE,
1509     .abstract = true,
1510     .instance_size = sizeof(X86MachineState),
1511     .instance_init = x86_machine_initfn,
1512     .class_size = sizeof(X86MachineClass),
1513     .class_init = x86_machine_class_init,
1514     .interfaces = (InterfaceInfo[]) {
1515          { TYPE_NMI },
1516          { }
1517     },
1518 };
1519 
1520 static void x86_machine_register_types(void)
1521 {
1522     type_register_static(&x86_machine_info);
1523 }
1524 
1525 type_init(x86_machine_register_types)
1526