1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/option.h" 26 #include "qemu/cutils.h" 27 #include "qemu/units.h" 28 #include "qemu/datadir.h" 29 #include "qapi/error.h" 30 #include "qapi/qapi-visit-common.h" 31 #include "qapi/clone-visitor.h" 32 #include "qapi/qapi-visit-machine.h" 33 #include "qapi/visitor.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/whpx.h" 36 #include "sysemu/numa.h" 37 #include "sysemu/replay.h" 38 #include "sysemu/sysemu.h" 39 #include "sysemu/cpu-timers.h" 40 #include "sysemu/xen.h" 41 #include "trace.h" 42 43 #include "hw/i386/x86.h" 44 #include "target/i386/cpu.h" 45 #include "hw/i386/topology.h" 46 #include "hw/i386/fw_cfg.h" 47 #include "hw/intc/i8259.h" 48 #include "hw/rtc/mc146818rtc.h" 49 #include "target/i386/sev.h" 50 51 #include "hw/acpi/cpu_hotplug.h" 52 #include "hw/irq.h" 53 #include "hw/nmi.h" 54 #include "hw/loader.h" 55 #include "multiboot.h" 56 #include "elf.h" 57 #include "standard-headers/asm-x86/bootparam.h" 58 #include CONFIG_DEVICES 59 #include "kvm/kvm_i386.h" 60 61 #ifdef CONFIG_XEN_EMU 62 #include "hw/xen/xen.h" 63 #include "hw/i386/kvm/xen_evtchn.h" 64 #endif 65 66 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 67 static size_t pvh_start_addr; 68 69 static void init_topo_info(X86CPUTopoInfo *topo_info, 70 const X86MachineState *x86ms) 71 { 72 MachineState *ms = MACHINE(x86ms); 73 74 topo_info->dies_per_pkg = ms->smp.dies; 75 topo_info->cores_per_die = ms->smp.cores; 76 topo_info->threads_per_core = ms->smp.threads; 77 } 78 79 /* 80 * Calculates initial APIC ID for a specific CPU index 81 * 82 * Currently we need to be able to calculate the APIC ID from the CPU index 83 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 84 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 85 * all CPUs up to max_cpus. 86 */ 87 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, 88 unsigned int cpu_index) 89 { 90 X86CPUTopoInfo topo_info; 91 92 init_topo_info(&topo_info, x86ms); 93 94 return x86_apicid_from_cpu_idx(&topo_info, cpu_index); 95 } 96 97 98 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 99 { 100 Object *cpu = object_new(MACHINE(x86ms)->cpu_type); 101 102 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { 103 goto out; 104 } 105 qdev_realize(DEVICE(cpu), NULL, errp); 106 107 out: 108 object_unref(cpu); 109 } 110 111 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 112 { 113 int i; 114 const CPUArchIdList *possible_cpus; 115 MachineState *ms = MACHINE(x86ms); 116 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 117 118 x86_cpu_set_default_version(default_cpu_version); 119 120 /* 121 * Calculates the limit to CPU APIC ID values 122 * 123 * Limit for the APIC ID value, so that all 124 * CPU APIC IDs are < x86ms->apic_id_limit. 125 * 126 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 127 */ 128 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 129 ms->smp.max_cpus - 1) + 1; 130 131 /* 132 * Can we support APIC ID 255 or higher? With KVM, that requires 133 * both in-kernel lapic and X2APIC userspace API. 134 * 135 * kvm_enabled() must go first to ensure that kvm_* references are 136 * not emitted for the linker to consume (kvm_enabled() is 137 * a literal `0` in configurations where kvm_* aren't defined) 138 */ 139 if (kvm_enabled() && x86ms->apic_id_limit > 255 && 140 kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) { 141 error_report("current -smp configuration requires kernel " 142 "irqchip and X2APIC API support."); 143 exit(EXIT_FAILURE); 144 } 145 146 if (kvm_enabled()) { 147 kvm_set_max_apic_id(x86ms->apic_id_limit); 148 } 149 150 if (!kvm_irqchip_in_kernel()) { 151 apic_set_max_apic_id(x86ms->apic_id_limit); 152 } 153 154 possible_cpus = mc->possible_cpu_arch_ids(ms); 155 for (i = 0; i < ms->smp.cpus; i++) { 156 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 157 } 158 } 159 160 void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count) 161 { 162 MC146818RtcState *rtc = MC146818_RTC(s); 163 164 if (cpus_count > 0xff) { 165 /* 166 * If the number of CPUs can't be represented in 8 bits, the 167 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 168 * to make old BIOSes fail more predictably. 169 */ 170 mc146818rtc_set_cmos_data(rtc, 0x5f, 0); 171 } else { 172 mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1); 173 } 174 } 175 176 static int x86_apic_cmp(const void *a, const void *b) 177 { 178 CPUArchId *apic_a = (CPUArchId *)a; 179 CPUArchId *apic_b = (CPUArchId *)b; 180 181 return apic_a->arch_id - apic_b->arch_id; 182 } 183 184 /* 185 * returns pointer to CPUArchId descriptor that matches CPU's apic_id 186 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 187 * entry corresponding to CPU's apic_id returns NULL. 188 */ 189 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 190 { 191 CPUArchId apic_id, *found_cpu; 192 193 apic_id.arch_id = id; 194 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 195 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 196 x86_apic_cmp); 197 if (found_cpu && idx) { 198 *idx = found_cpu - ms->possible_cpus->cpus; 199 } 200 return found_cpu; 201 } 202 203 void x86_cpu_plug(HotplugHandler *hotplug_dev, 204 DeviceState *dev, Error **errp) 205 { 206 CPUArchId *found_cpu; 207 Error *local_err = NULL; 208 X86CPU *cpu = X86_CPU(dev); 209 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 210 211 if (x86ms->acpi_dev) { 212 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); 213 if (local_err) { 214 goto out; 215 } 216 } 217 218 /* increment the number of CPUs */ 219 x86ms->boot_cpus++; 220 if (x86ms->rtc) { 221 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 222 } 223 if (x86ms->fw_cfg) { 224 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 225 } 226 227 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 228 found_cpu->cpu = CPU(dev); 229 out: 230 error_propagate(errp, local_err); 231 } 232 233 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 234 DeviceState *dev, Error **errp) 235 { 236 int idx = -1; 237 X86CPU *cpu = X86_CPU(dev); 238 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 239 240 if (!x86ms->acpi_dev) { 241 error_setg(errp, "CPU hot unplug not supported without ACPI"); 242 return; 243 } 244 245 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 246 assert(idx != -1); 247 if (idx == 0) { 248 error_setg(errp, "Boot CPU is unpluggable"); 249 return; 250 } 251 252 hotplug_handler_unplug_request(x86ms->acpi_dev, dev, 253 errp); 254 } 255 256 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, 257 DeviceState *dev, Error **errp) 258 { 259 CPUArchId *found_cpu; 260 Error *local_err = NULL; 261 X86CPU *cpu = X86_CPU(dev); 262 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 263 264 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); 265 if (local_err) { 266 goto out; 267 } 268 269 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 270 found_cpu->cpu = NULL; 271 qdev_unrealize(dev); 272 273 /* decrement the number of CPUs */ 274 x86ms->boot_cpus--; 275 /* Update the number of CPUs in CMOS */ 276 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 277 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 278 out: 279 error_propagate(errp, local_err); 280 } 281 282 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, 283 DeviceState *dev, Error **errp) 284 { 285 int idx; 286 CPUState *cs; 287 CPUArchId *cpu_slot; 288 X86CPUTopoIDs topo_ids; 289 X86CPU *cpu = X86_CPU(dev); 290 CPUX86State *env = &cpu->env; 291 MachineState *ms = MACHINE(hotplug_dev); 292 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 293 unsigned int smp_cores = ms->smp.cores; 294 unsigned int smp_threads = ms->smp.threads; 295 X86CPUTopoInfo topo_info; 296 297 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 298 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 299 ms->cpu_type); 300 return; 301 } 302 303 if (x86ms->acpi_dev) { 304 Error *local_err = NULL; 305 306 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, 307 &local_err); 308 if (local_err) { 309 error_propagate(errp, local_err); 310 return; 311 } 312 } 313 314 init_topo_info(&topo_info, x86ms); 315 316 env->nr_dies = ms->smp.dies; 317 318 /* 319 * If APIC ID is not set, 320 * set it based on socket/die/core/thread properties. 321 */ 322 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 323 int max_socket = (ms->smp.max_cpus - 1) / 324 smp_threads / smp_cores / ms->smp.dies; 325 326 /* 327 * die-id was optional in QEMU 4.0 and older, so keep it optional 328 * if there's only one die per socket. 329 */ 330 if (cpu->die_id < 0 && ms->smp.dies == 1) { 331 cpu->die_id = 0; 332 } 333 334 if (cpu->socket_id < 0) { 335 error_setg(errp, "CPU socket-id is not set"); 336 return; 337 } else if (cpu->socket_id > max_socket) { 338 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 339 cpu->socket_id, max_socket); 340 return; 341 } 342 if (cpu->die_id < 0) { 343 error_setg(errp, "CPU die-id is not set"); 344 return; 345 } else if (cpu->die_id > ms->smp.dies - 1) { 346 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", 347 cpu->die_id, ms->smp.dies - 1); 348 return; 349 } 350 if (cpu->core_id < 0) { 351 error_setg(errp, "CPU core-id is not set"); 352 return; 353 } else if (cpu->core_id > (smp_cores - 1)) { 354 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 355 cpu->core_id, smp_cores - 1); 356 return; 357 } 358 if (cpu->thread_id < 0) { 359 error_setg(errp, "CPU thread-id is not set"); 360 return; 361 } else if (cpu->thread_id > (smp_threads - 1)) { 362 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 363 cpu->thread_id, smp_threads - 1); 364 return; 365 } 366 367 topo_ids.pkg_id = cpu->socket_id; 368 topo_ids.die_id = cpu->die_id; 369 topo_ids.core_id = cpu->core_id; 370 topo_ids.smt_id = cpu->thread_id; 371 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids); 372 } 373 374 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 375 if (!cpu_slot) { 376 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 377 error_setg(errp, 378 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with" 379 " APIC ID %" PRIu32 ", valid index range 0:%d", 380 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id, 381 cpu->apic_id, ms->possible_cpus->len - 1); 382 return; 383 } 384 385 if (cpu_slot->cpu) { 386 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 387 idx, cpu->apic_id); 388 return; 389 } 390 391 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 392 * so that machine_query_hotpluggable_cpus would show correct values 393 */ 394 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 395 * once -smp refactoring is complete and there will be CPU private 396 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 397 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 398 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { 399 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 400 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, 401 topo_ids.pkg_id); 402 return; 403 } 404 cpu->socket_id = topo_ids.pkg_id; 405 406 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { 407 error_setg(errp, "property die-id: %u doesn't match set apic-id:" 408 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); 409 return; 410 } 411 cpu->die_id = topo_ids.die_id; 412 413 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { 414 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 415 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, 416 topo_ids.core_id); 417 return; 418 } 419 cpu->core_id = topo_ids.core_id; 420 421 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { 422 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 423 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, 424 topo_ids.smt_id); 425 return; 426 } 427 cpu->thread_id = topo_ids.smt_id; 428 429 /* 430 * kvm_enabled() must go first to ensure that kvm_* references are 431 * not emitted for the linker to consume (kvm_enabled() is 432 * a literal `0` in configurations where kvm_* aren't defined) 433 */ 434 if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && 435 !kvm_hv_vpindex_settable()) { 436 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 437 return; 438 } 439 440 cs = CPU(cpu); 441 cs->cpu_index = idx; 442 443 numa_cpu_pre_plug(cpu_slot, dev, errp); 444 } 445 446 CpuInstanceProperties 447 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 448 { 449 MachineClass *mc = MACHINE_GET_CLASS(ms); 450 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 451 452 assert(cpu_index < possible_cpus->len); 453 return possible_cpus->cpus[cpu_index].props; 454 } 455 456 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) 457 { 458 X86CPUTopoIDs topo_ids; 459 X86MachineState *x86ms = X86_MACHINE(ms); 460 X86CPUTopoInfo topo_info; 461 462 init_topo_info(&topo_info, x86ms); 463 464 assert(idx < ms->possible_cpus->len); 465 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 466 &topo_info, &topo_ids); 467 return topo_ids.pkg_id % ms->numa_state->num_nodes; 468 } 469 470 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) 471 { 472 X86MachineState *x86ms = X86_MACHINE(ms); 473 unsigned int max_cpus = ms->smp.max_cpus; 474 X86CPUTopoInfo topo_info; 475 int i; 476 477 if (ms->possible_cpus) { 478 /* 479 * make sure that max_cpus hasn't changed since the first use, i.e. 480 * -smp hasn't been parsed after it 481 */ 482 assert(ms->possible_cpus->len == max_cpus); 483 return ms->possible_cpus; 484 } 485 486 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 487 sizeof(CPUArchId) * max_cpus); 488 ms->possible_cpus->len = max_cpus; 489 490 init_topo_info(&topo_info, x86ms); 491 492 for (i = 0; i < ms->possible_cpus->len; i++) { 493 X86CPUTopoIDs topo_ids; 494 495 ms->possible_cpus->cpus[i].type = ms->cpu_type; 496 ms->possible_cpus->cpus[i].vcpus_count = 1; 497 ms->possible_cpus->cpus[i].arch_id = 498 x86_cpu_apic_id_from_index(x86ms, i); 499 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 500 &topo_info, &topo_ids); 501 ms->possible_cpus->cpus[i].props.has_socket_id = true; 502 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id; 503 if (ms->smp.dies > 1) { 504 ms->possible_cpus->cpus[i].props.has_die_id = true; 505 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id; 506 } 507 ms->possible_cpus->cpus[i].props.has_core_id = true; 508 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id; 509 ms->possible_cpus->cpus[i].props.has_thread_id = true; 510 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id; 511 } 512 return ms->possible_cpus; 513 } 514 515 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 516 { 517 /* cpu index isn't used */ 518 CPUState *cs; 519 520 CPU_FOREACH(cs) { 521 X86CPU *cpu = X86_CPU(cs); 522 523 if (cpu_is_apic_enabled(cpu->apic_state)) { 524 apic_deliver_nmi(cpu->apic_state); 525 } else { 526 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 527 } 528 } 529 } 530 531 static long get_file_size(FILE *f) 532 { 533 long where, size; 534 535 /* XXX: on Unix systems, using fstat() probably makes more sense */ 536 537 where = ftell(f); 538 fseek(f, 0, SEEK_END); 539 size = ftell(f); 540 fseek(f, where, SEEK_SET); 541 542 return size; 543 } 544 545 /* TSC handling */ 546 uint64_t cpu_get_tsc(CPUX86State *env) 547 { 548 return cpus_get_elapsed_ticks(); 549 } 550 551 /* IRQ handling */ 552 static void pic_irq_request(void *opaque, int irq, int level) 553 { 554 CPUState *cs = first_cpu; 555 X86CPU *cpu = X86_CPU(cs); 556 557 trace_x86_pic_interrupt(irq, level); 558 if (cpu_is_apic_enabled(cpu->apic_state) && !kvm_irqchip_in_kernel() && 559 !whpx_apic_in_platform()) { 560 CPU_FOREACH(cs) { 561 cpu = X86_CPU(cs); 562 if (apic_accept_pic_intr(cpu->apic_state)) { 563 apic_deliver_pic_intr(cpu->apic_state, level); 564 } 565 } 566 } else { 567 if (level) { 568 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 569 } else { 570 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 571 } 572 } 573 } 574 575 qemu_irq x86_allocate_cpu_irq(void) 576 { 577 return qemu_allocate_irq(pic_irq_request, NULL, 0); 578 } 579 580 int cpu_get_pic_interrupt(CPUX86State *env) 581 { 582 X86CPU *cpu = env_archcpu(env); 583 int intno; 584 585 if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) { 586 intno = apic_get_interrupt(cpu->apic_state); 587 if (intno >= 0) { 588 return intno; 589 } 590 /* read the irq from the PIC */ 591 if (!apic_accept_pic_intr(cpu->apic_state)) { 592 return -1; 593 } 594 } 595 596 intno = pic_read_irq(isa_pic); 597 return intno; 598 } 599 600 DeviceState *cpu_get_current_apic(void) 601 { 602 if (current_cpu) { 603 X86CPU *cpu = X86_CPU(current_cpu); 604 return cpu->apic_state; 605 } else { 606 return NULL; 607 } 608 } 609 610 void gsi_handler(void *opaque, int n, int level) 611 { 612 GSIState *s = opaque; 613 614 trace_x86_gsi_interrupt(n, level); 615 switch (n) { 616 case 0 ... ISA_NUM_IRQS - 1: 617 if (s->i8259_irq[n]) { 618 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 619 qemu_set_irq(s->i8259_irq[n], level); 620 } 621 /* fall through */ 622 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1: 623 #ifdef CONFIG_XEN_EMU 624 /* 625 * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC 626 * routing actually works properly under Xen). And then to 627 * *either* the PIRQ handling or the I/OAPIC depending on 628 * whether the former wants it. 629 */ 630 if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) { 631 break; 632 } 633 #endif 634 qemu_set_irq(s->ioapic_irq[n], level); 635 break; 636 case IO_APIC_SECONDARY_IRQBASE 637 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1: 638 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level); 639 break; 640 } 641 } 642 643 void ioapic_init_gsi(GSIState *gsi_state, Object *parent) 644 { 645 DeviceState *dev; 646 SysBusDevice *d; 647 unsigned int i; 648 649 assert(parent); 650 if (kvm_ioapic_in_kernel()) { 651 dev = qdev_new(TYPE_KVM_IOAPIC); 652 } else { 653 dev = qdev_new(TYPE_IOAPIC); 654 } 655 object_property_add_child(parent, "ioapic", OBJECT(dev)); 656 d = SYS_BUS_DEVICE(dev); 657 sysbus_realize_and_unref(d, &error_fatal); 658 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 659 660 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 661 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 662 } 663 } 664 665 DeviceState *ioapic_init_secondary(GSIState *gsi_state) 666 { 667 DeviceState *dev; 668 SysBusDevice *d; 669 unsigned int i; 670 671 dev = qdev_new(TYPE_IOAPIC); 672 d = SYS_BUS_DEVICE(dev); 673 sysbus_realize_and_unref(d, &error_fatal); 674 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS); 675 676 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 677 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i); 678 } 679 return dev; 680 } 681 682 /* 683 * The entry point into the kernel for PVH boot is different from 684 * the native entry point. The PVH entry is defined by the x86/HVM 685 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 686 * 687 * This function is passed to load_elf() when it is called from 688 * load_elfboot() which then additionally checks for an ELF Note of 689 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 690 * parse the PVH entry address from the ELF Note. 691 * 692 * Due to trickery in elf_opts.h, load_elf() is actually available as 693 * load_elf32() or load_elf64() and this routine needs to be able 694 * to deal with being called as 32 or 64 bit. 695 * 696 * The address of the PVH entry point is saved to the 'pvh_start_addr' 697 * global variable. (although the entry point is 32-bit, the kernel 698 * binary can be either 32-bit or 64-bit). 699 */ 700 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 701 { 702 size_t *elf_note_data_addr; 703 704 /* Check if ELF Note header passed in is valid */ 705 if (arg1 == NULL) { 706 return 0; 707 } 708 709 if (is64) { 710 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 711 uint64_t nhdr_size64 = sizeof(struct elf64_note); 712 uint64_t phdr_align = *(uint64_t *)arg2; 713 uint64_t nhdr_namesz = nhdr64->n_namesz; 714 715 elf_note_data_addr = 716 ((void *)nhdr64) + nhdr_size64 + 717 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 718 719 pvh_start_addr = *elf_note_data_addr; 720 } else { 721 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 722 uint32_t nhdr_size32 = sizeof(struct elf32_note); 723 uint32_t phdr_align = *(uint32_t *)arg2; 724 uint32_t nhdr_namesz = nhdr32->n_namesz; 725 726 elf_note_data_addr = 727 ((void *)nhdr32) + nhdr_size32 + 728 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 729 730 pvh_start_addr = *(uint32_t *)elf_note_data_addr; 731 } 732 733 return pvh_start_addr; 734 } 735 736 static bool load_elfboot(const char *kernel_filename, 737 int kernel_file_size, 738 uint8_t *header, 739 size_t pvh_xen_start_addr, 740 FWCfgState *fw_cfg) 741 { 742 uint32_t flags = 0; 743 uint32_t mh_load_addr = 0; 744 uint32_t elf_kernel_size = 0; 745 uint64_t elf_entry; 746 uint64_t elf_low, elf_high; 747 int kernel_size; 748 749 if (ldl_p(header) != 0x464c457f) { 750 return false; /* no elfboot */ 751 } 752 753 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 754 flags = elf_is64 ? 755 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 756 757 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 758 error_report("elfboot unsupported flags = %x", flags); 759 exit(1); 760 } 761 762 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 763 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 764 NULL, &elf_note_type, &elf_entry, 765 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 766 0, 0); 767 768 if (kernel_size < 0) { 769 error_report("Error while loading elf kernel"); 770 exit(1); 771 } 772 mh_load_addr = elf_low; 773 elf_kernel_size = elf_high - elf_low; 774 775 if (pvh_start_addr == 0) { 776 error_report("Error loading uncompressed kernel without PVH ELF Note"); 777 exit(1); 778 } 779 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 780 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 781 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 782 783 return true; 784 } 785 786 void x86_load_linux(X86MachineState *x86ms, 787 FWCfgState *fw_cfg, 788 int acpi_data_size, 789 bool pvh_enabled) 790 { 791 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled; 792 uint16_t protocol; 793 int setup_size, kernel_size, cmdline_size; 794 int dtb_size, setup_data_offset; 795 uint32_t initrd_max; 796 uint8_t header[8192], *setup, *kernel; 797 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 798 FILE *f; 799 char *vmode; 800 MachineState *machine = MACHINE(x86ms); 801 struct setup_data *setup_data; 802 const char *kernel_filename = machine->kernel_filename; 803 const char *initrd_filename = machine->initrd_filename; 804 const char *dtb_filename = machine->dtb; 805 const char *kernel_cmdline = machine->kernel_cmdline; 806 SevKernelLoaderContext sev_load_ctx = {}; 807 808 /* Align to 16 bytes as a paranoia measure */ 809 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 810 811 /* load the kernel header */ 812 f = fopen(kernel_filename, "rb"); 813 if (!f) { 814 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 815 kernel_filename, strerror(errno)); 816 exit(1); 817 } 818 819 kernel_size = get_file_size(f); 820 if (!kernel_size || 821 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 822 MIN(ARRAY_SIZE(header), kernel_size)) { 823 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 824 kernel_filename, strerror(errno)); 825 exit(1); 826 } 827 828 /* kernel protocol version */ 829 if (ldl_p(header + 0x202) == 0x53726448) { 830 protocol = lduw_p(header + 0x206); 831 } else { 832 /* 833 * This could be a multiboot kernel. If it is, let's stop treating it 834 * like a Linux kernel. 835 * Note: some multiboot images could be in the ELF format (the same of 836 * PVH), so we try multiboot first since we check the multiboot magic 837 * header before to load it. 838 */ 839 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename, 840 kernel_cmdline, kernel_size, header)) { 841 return; 842 } 843 /* 844 * Check if the file is an uncompressed kernel file (ELF) and load it, 845 * saving the PVH entry point used by the x86/HVM direct boot ABI. 846 * If load_elfboot() is successful, populate the fw_cfg info. 847 */ 848 if (pvh_enabled && 849 load_elfboot(kernel_filename, kernel_size, 850 header, pvh_start_addr, fw_cfg)) { 851 fclose(f); 852 853 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 854 strlen(kernel_cmdline) + 1); 855 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 856 857 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 858 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 859 header, sizeof(header)); 860 861 /* load initrd */ 862 if (initrd_filename) { 863 GMappedFile *mapped_file; 864 gsize initrd_size; 865 gchar *initrd_data; 866 GError *gerr = NULL; 867 868 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 869 if (!mapped_file) { 870 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 871 initrd_filename, gerr->message); 872 exit(1); 873 } 874 x86ms->initrd_mapped_file = mapped_file; 875 876 initrd_data = g_mapped_file_get_contents(mapped_file); 877 initrd_size = g_mapped_file_get_length(mapped_file); 878 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 879 if (initrd_size >= initrd_max) { 880 fprintf(stderr, "qemu: initrd is too large, cannot support." 881 "(max: %"PRIu32", need %"PRId64")\n", 882 initrd_max, (uint64_t)initrd_size); 883 exit(1); 884 } 885 886 initrd_addr = (initrd_max - initrd_size) & ~4095; 887 888 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 889 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 890 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 891 initrd_size); 892 } 893 894 option_rom[nb_option_roms].bootindex = 0; 895 option_rom[nb_option_roms].name = "pvh.bin"; 896 nb_option_roms++; 897 898 return; 899 } 900 protocol = 0; 901 } 902 903 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 904 /* Low kernel */ 905 real_addr = 0x90000; 906 cmdline_addr = 0x9a000 - cmdline_size; 907 prot_addr = 0x10000; 908 } else if (protocol < 0x202) { 909 /* High but ancient kernel */ 910 real_addr = 0x90000; 911 cmdline_addr = 0x9a000 - cmdline_size; 912 prot_addr = 0x100000; 913 } else { 914 /* High and recent kernel */ 915 real_addr = 0x10000; 916 cmdline_addr = 0x20000; 917 prot_addr = 0x100000; 918 } 919 920 /* highest address for loading the initrd */ 921 if (protocol >= 0x20c && 922 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 923 /* 924 * Linux has supported initrd up to 4 GB for a very long time (2007, 925 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 926 * though it only sets initrd_max to 2 GB to "work around bootloader 927 * bugs". Luckily, QEMU firmware(which does something like bootloader) 928 * has supported this. 929 * 930 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 931 * be loaded into any address. 932 * 933 * In addition, initrd_max is uint32_t simply because QEMU doesn't 934 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 935 * field). 936 * 937 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 938 */ 939 initrd_max = UINT32_MAX; 940 } else if (protocol >= 0x203) { 941 initrd_max = ldl_p(header + 0x22c); 942 } else { 943 initrd_max = 0x37ffffff; 944 } 945 946 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 947 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 948 } 949 950 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 951 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 952 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 953 sev_load_ctx.cmdline_data = (char *)kernel_cmdline; 954 sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1; 955 956 if (protocol >= 0x202) { 957 stl_p(header + 0x228, cmdline_addr); 958 } else { 959 stw_p(header + 0x20, 0xA33F); 960 stw_p(header + 0x22, cmdline_addr - real_addr); 961 } 962 963 /* handle vga= parameter */ 964 vmode = strstr(kernel_cmdline, "vga="); 965 if (vmode) { 966 unsigned int video_mode; 967 const char *end; 968 int ret; 969 /* skip "vga=" */ 970 vmode += 4; 971 if (!strncmp(vmode, "normal", 6)) { 972 video_mode = 0xffff; 973 } else if (!strncmp(vmode, "ext", 3)) { 974 video_mode = 0xfffe; 975 } else if (!strncmp(vmode, "ask", 3)) { 976 video_mode = 0xfffd; 977 } else { 978 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 979 if (ret != 0 || (*end && *end != ' ')) { 980 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 981 exit(1); 982 } 983 } 984 stw_p(header + 0x1fa, video_mode); 985 } 986 987 /* loader type */ 988 /* 989 * High nybble = B reserved for QEMU; low nybble is revision number. 990 * If this code is substantially changed, you may want to consider 991 * incrementing the revision. 992 */ 993 if (protocol >= 0x200) { 994 header[0x210] = 0xB0; 995 } 996 /* heap */ 997 if (protocol >= 0x201) { 998 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 999 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 1000 } 1001 1002 /* load initrd */ 1003 if (initrd_filename) { 1004 GMappedFile *mapped_file; 1005 gsize initrd_size; 1006 gchar *initrd_data; 1007 GError *gerr = NULL; 1008 1009 if (protocol < 0x200) { 1010 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 1011 exit(1); 1012 } 1013 1014 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 1015 if (!mapped_file) { 1016 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 1017 initrd_filename, gerr->message); 1018 exit(1); 1019 } 1020 x86ms->initrd_mapped_file = mapped_file; 1021 1022 initrd_data = g_mapped_file_get_contents(mapped_file); 1023 initrd_size = g_mapped_file_get_length(mapped_file); 1024 if (initrd_size >= initrd_max) { 1025 fprintf(stderr, "qemu: initrd is too large, cannot support." 1026 "(max: %"PRIu32", need %"PRId64")\n", 1027 initrd_max, (uint64_t)initrd_size); 1028 exit(1); 1029 } 1030 1031 initrd_addr = (initrd_max - initrd_size) & ~4095; 1032 1033 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 1034 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1035 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 1036 sev_load_ctx.initrd_data = initrd_data; 1037 sev_load_ctx.initrd_size = initrd_size; 1038 1039 stl_p(header + 0x218, initrd_addr); 1040 stl_p(header + 0x21c, initrd_size); 1041 } 1042 1043 /* load kernel and setup */ 1044 setup_size = header[0x1f1]; 1045 if (setup_size == 0) { 1046 setup_size = 4; 1047 } 1048 setup_size = (setup_size + 1) * 512; 1049 if (setup_size > kernel_size) { 1050 fprintf(stderr, "qemu: invalid kernel header\n"); 1051 exit(1); 1052 } 1053 kernel_size -= setup_size; 1054 1055 setup = g_malloc(setup_size); 1056 kernel = g_malloc(kernel_size); 1057 fseek(f, 0, SEEK_SET); 1058 if (fread(setup, 1, setup_size, f) != setup_size) { 1059 fprintf(stderr, "fread() failed\n"); 1060 exit(1); 1061 } 1062 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1063 fprintf(stderr, "fread() failed\n"); 1064 exit(1); 1065 } 1066 fclose(f); 1067 1068 /* append dtb to kernel */ 1069 if (dtb_filename) { 1070 if (protocol < 0x209) { 1071 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1072 exit(1); 1073 } 1074 1075 dtb_size = get_image_size(dtb_filename); 1076 if (dtb_size <= 0) { 1077 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1078 dtb_filename, strerror(errno)); 1079 exit(1); 1080 } 1081 1082 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1083 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1084 kernel = g_realloc(kernel, kernel_size); 1085 1086 stq_p(header + 0x250, prot_addr + setup_data_offset); 1087 1088 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1089 setup_data->next = 0; 1090 setup_data->type = cpu_to_le32(SETUP_DTB); 1091 setup_data->len = cpu_to_le32(dtb_size); 1092 1093 load_image_size(dtb_filename, setup_data->data, dtb_size); 1094 } 1095 1096 /* 1097 * If we're starting an encrypted VM, it will be OVMF based, which uses the 1098 * efi stub for booting and doesn't require any values to be placed in the 1099 * kernel header. We therefore don't update the header so the hash of the 1100 * kernel on the other side of the fw_cfg interface matches the hash of the 1101 * file the user passed in. 1102 */ 1103 if (!sev_enabled()) { 1104 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1105 } 1106 1107 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1108 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1109 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1110 sev_load_ctx.kernel_data = (char *)kernel; 1111 sev_load_ctx.kernel_size = kernel_size; 1112 1113 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1114 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1115 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1116 sev_load_ctx.setup_data = (char *)setup; 1117 sev_load_ctx.setup_size = setup_size; 1118 1119 if (sev_enabled()) { 1120 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal); 1121 } 1122 1123 option_rom[nb_option_roms].bootindex = 0; 1124 option_rom[nb_option_roms].name = "linuxboot.bin"; 1125 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1126 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1127 } 1128 nb_option_roms++; 1129 } 1130 1131 void x86_isa_bios_init(MemoryRegion *isa_bios, MemoryRegion *isa_memory, 1132 MemoryRegion *bios, bool read_only) 1133 { 1134 uint64_t bios_size = memory_region_size(bios); 1135 uint64_t isa_bios_size = MIN(bios_size, 128 * KiB); 1136 1137 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 1138 bios_size - isa_bios_size, isa_bios_size); 1139 memory_region_add_subregion_overlap(isa_memory, 1 * MiB - isa_bios_size, 1140 isa_bios, 1); 1141 memory_region_set_readonly(isa_bios, read_only); 1142 } 1143 1144 void x86_bios_rom_init(X86MachineState *x86ms, const char *default_firmware, 1145 MemoryRegion *rom_memory, bool isapc_ram_fw) 1146 { 1147 const char *bios_name; 1148 char *filename; 1149 int bios_size; 1150 ssize_t ret; 1151 1152 /* BIOS load */ 1153 bios_name = MACHINE(x86ms)->firmware ?: default_firmware; 1154 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1155 if (filename) { 1156 bios_size = get_image_size(filename); 1157 } else { 1158 bios_size = -1; 1159 } 1160 if (bios_size <= 0 || 1161 (bios_size % 65536) != 0) { 1162 goto bios_error; 1163 } 1164 memory_region_init_ram(&x86ms->bios, NULL, "pc.bios", bios_size, 1165 &error_fatal); 1166 if (sev_enabled()) { 1167 /* 1168 * The concept of a "reset" simply doesn't exist for 1169 * confidential computing guests, we have to destroy and 1170 * re-launch them instead. So there is no need to register 1171 * the firmware as rom to properly re-initialize on reset. 1172 * Just go for a straight file load instead. 1173 */ 1174 void *ptr = memory_region_get_ram_ptr(&x86ms->bios); 1175 load_image_size(filename, ptr, bios_size); 1176 x86_firmware_configure(ptr, bios_size); 1177 } else { 1178 memory_region_set_readonly(&x86ms->bios, !isapc_ram_fw); 1179 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 1180 if (ret != 0) { 1181 goto bios_error; 1182 } 1183 } 1184 g_free(filename); 1185 1186 /* map the last 128KB of the BIOS in ISA space */ 1187 x86_isa_bios_init(&x86ms->isa_bios, rom_memory, &x86ms->bios, 1188 !isapc_ram_fw); 1189 1190 /* map all the bios at the top of memory */ 1191 memory_region_add_subregion(rom_memory, 1192 (uint32_t)(-bios_size), 1193 &x86ms->bios); 1194 return; 1195 1196 bios_error: 1197 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 1198 exit(1); 1199 } 1200 1201 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms) 1202 { 1203 bool smm_available = false; 1204 1205 if (x86ms->smm == ON_OFF_AUTO_OFF) { 1206 return false; 1207 } 1208 1209 if (tcg_enabled() || qtest_enabled()) { 1210 smm_available = true; 1211 } else if (kvm_enabled()) { 1212 smm_available = kvm_has_smm(); 1213 } 1214 1215 if (smm_available) { 1216 return true; 1217 } 1218 1219 if (x86ms->smm == ON_OFF_AUTO_ON) { 1220 error_report("System Management Mode not supported by this hypervisor."); 1221 exit(1); 1222 } 1223 return false; 1224 } 1225 1226 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name, 1227 void *opaque, Error **errp) 1228 { 1229 X86MachineState *x86ms = X86_MACHINE(obj); 1230 OnOffAuto smm = x86ms->smm; 1231 1232 visit_type_OnOffAuto(v, name, &smm, errp); 1233 } 1234 1235 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name, 1236 void *opaque, Error **errp) 1237 { 1238 X86MachineState *x86ms = X86_MACHINE(obj); 1239 1240 visit_type_OnOffAuto(v, name, &x86ms->smm, errp); 1241 } 1242 1243 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms) 1244 { 1245 if (x86ms->acpi == ON_OFF_AUTO_OFF) { 1246 return false; 1247 } 1248 return true; 1249 } 1250 1251 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name, 1252 void *opaque, Error **errp) 1253 { 1254 X86MachineState *x86ms = X86_MACHINE(obj); 1255 OnOffAuto acpi = x86ms->acpi; 1256 1257 visit_type_OnOffAuto(v, name, &acpi, errp); 1258 } 1259 1260 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name, 1261 void *opaque, Error **errp) 1262 { 1263 X86MachineState *x86ms = X86_MACHINE(obj); 1264 1265 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp); 1266 } 1267 1268 static void x86_machine_get_pit(Object *obj, Visitor *v, const char *name, 1269 void *opaque, Error **errp) 1270 { 1271 X86MachineState *x86ms = X86_MACHINE(obj); 1272 OnOffAuto pit = x86ms->pit; 1273 1274 visit_type_OnOffAuto(v, name, &pit, errp); 1275 } 1276 1277 static void x86_machine_set_pit(Object *obj, Visitor *v, const char *name, 1278 void *opaque, Error **errp) 1279 { 1280 X86MachineState *x86ms = X86_MACHINE(obj);; 1281 1282 visit_type_OnOffAuto(v, name, &x86ms->pit, errp); 1283 } 1284 1285 static void x86_machine_get_pic(Object *obj, Visitor *v, const char *name, 1286 void *opaque, Error **errp) 1287 { 1288 X86MachineState *x86ms = X86_MACHINE(obj); 1289 OnOffAuto pic = x86ms->pic; 1290 1291 visit_type_OnOffAuto(v, name, &pic, errp); 1292 } 1293 1294 static void x86_machine_set_pic(Object *obj, Visitor *v, const char *name, 1295 void *opaque, Error **errp) 1296 { 1297 X86MachineState *x86ms = X86_MACHINE(obj); 1298 1299 visit_type_OnOffAuto(v, name, &x86ms->pic, errp); 1300 } 1301 1302 static char *x86_machine_get_oem_id(Object *obj, Error **errp) 1303 { 1304 X86MachineState *x86ms = X86_MACHINE(obj); 1305 1306 return g_strdup(x86ms->oem_id); 1307 } 1308 1309 static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp) 1310 { 1311 X86MachineState *x86ms = X86_MACHINE(obj); 1312 size_t len = strlen(value); 1313 1314 if (len > 6) { 1315 error_setg(errp, 1316 "User specified "X86_MACHINE_OEM_ID" value is bigger than " 1317 "6 bytes in size"); 1318 return; 1319 } 1320 1321 strncpy(x86ms->oem_id, value, 6); 1322 } 1323 1324 static char *x86_machine_get_oem_table_id(Object *obj, Error **errp) 1325 { 1326 X86MachineState *x86ms = X86_MACHINE(obj); 1327 1328 return g_strdup(x86ms->oem_table_id); 1329 } 1330 1331 static void x86_machine_set_oem_table_id(Object *obj, const char *value, 1332 Error **errp) 1333 { 1334 X86MachineState *x86ms = X86_MACHINE(obj); 1335 size_t len = strlen(value); 1336 1337 if (len > 8) { 1338 error_setg(errp, 1339 "User specified "X86_MACHINE_OEM_TABLE_ID 1340 " value is bigger than " 1341 "8 bytes in size"); 1342 return; 1343 } 1344 strncpy(x86ms->oem_table_id, value, 8); 1345 } 1346 1347 static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v, 1348 const char *name, void *opaque, Error **errp) 1349 { 1350 X86MachineState *x86ms = X86_MACHINE(obj); 1351 uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit; 1352 1353 visit_type_uint64(v, name, &bus_lock_ratelimit, errp); 1354 } 1355 1356 static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v, 1357 const char *name, void *opaque, Error **errp) 1358 { 1359 X86MachineState *x86ms = X86_MACHINE(obj); 1360 1361 visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp); 1362 } 1363 1364 static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name, 1365 void *opaque, Error **errp) 1366 { 1367 X86MachineState *x86ms = X86_MACHINE(obj); 1368 SgxEPCList *list = x86ms->sgx_epc_list; 1369 1370 visit_type_SgxEPCList(v, name, &list, errp); 1371 } 1372 1373 static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name, 1374 void *opaque, Error **errp) 1375 { 1376 X86MachineState *x86ms = X86_MACHINE(obj); 1377 SgxEPCList *list; 1378 1379 list = x86ms->sgx_epc_list; 1380 visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp); 1381 1382 qapi_free_SgxEPCList(list); 1383 } 1384 1385 static int x86_kvm_type(MachineState *ms, const char *vm_type) 1386 { 1387 /* 1388 * No x86 machine has a kvm-type property. If one is added that has 1389 * it, it should call kvm_get_vm_type() directly or not use it at all. 1390 */ 1391 assert(vm_type == NULL); 1392 return kvm_enabled() ? kvm_get_vm_type(ms) : 0; 1393 } 1394 1395 static void x86_machine_initfn(Object *obj) 1396 { 1397 X86MachineState *x86ms = X86_MACHINE(obj); 1398 1399 x86ms->smm = ON_OFF_AUTO_AUTO; 1400 x86ms->acpi = ON_OFF_AUTO_AUTO; 1401 x86ms->pit = ON_OFF_AUTO_AUTO; 1402 x86ms->pic = ON_OFF_AUTO_AUTO; 1403 x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS; 1404 x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 1405 x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 1406 x86ms->bus_lock_ratelimit = 0; 1407 x86ms->above_4g_mem_start = 4 * GiB; 1408 } 1409 1410 static void x86_machine_class_init(ObjectClass *oc, void *data) 1411 { 1412 MachineClass *mc = MACHINE_CLASS(oc); 1413 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); 1414 NMIClass *nc = NMI_CLASS(oc); 1415 1416 mc->cpu_index_to_instance_props = x86_cpu_index_to_props; 1417 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; 1418 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; 1419 mc->kvm_type = x86_kvm_type; 1420 x86mc->save_tsc_khz = true; 1421 x86mc->fwcfg_dma_enabled = true; 1422 nc->nmi_monitor_handler = x86_nmi; 1423 1424 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto", 1425 x86_machine_get_smm, x86_machine_set_smm, 1426 NULL, NULL); 1427 object_class_property_set_description(oc, X86_MACHINE_SMM, 1428 "Enable SMM"); 1429 1430 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto", 1431 x86_machine_get_acpi, x86_machine_set_acpi, 1432 NULL, NULL); 1433 object_class_property_set_description(oc, X86_MACHINE_ACPI, 1434 "Enable ACPI"); 1435 1436 object_class_property_add(oc, X86_MACHINE_PIT, "OnOffAuto", 1437 x86_machine_get_pit, 1438 x86_machine_set_pit, 1439 NULL, NULL); 1440 object_class_property_set_description(oc, X86_MACHINE_PIT, 1441 "Enable i8254 PIT"); 1442 1443 object_class_property_add(oc, X86_MACHINE_PIC, "OnOffAuto", 1444 x86_machine_get_pic, 1445 x86_machine_set_pic, 1446 NULL, NULL); 1447 object_class_property_set_description(oc, X86_MACHINE_PIC, 1448 "Enable i8259 PIC"); 1449 1450 object_class_property_add_str(oc, X86_MACHINE_OEM_ID, 1451 x86_machine_get_oem_id, 1452 x86_machine_set_oem_id); 1453 object_class_property_set_description(oc, X86_MACHINE_OEM_ID, 1454 "Override the default value of field OEMID " 1455 "in ACPI table header." 1456 "The string may be up to 6 bytes in size"); 1457 1458 1459 object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID, 1460 x86_machine_get_oem_table_id, 1461 x86_machine_set_oem_table_id); 1462 object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID, 1463 "Override the default value of field OEM Table ID " 1464 "in ACPI table header." 1465 "The string may be up to 8 bytes in size"); 1466 1467 object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t", 1468 x86_machine_get_bus_lock_ratelimit, 1469 x86_machine_set_bus_lock_ratelimit, NULL, NULL); 1470 object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, 1471 "Set the ratelimit for the bus locks acquired in VMs"); 1472 1473 object_class_property_add(oc, "sgx-epc", "SgxEPC", 1474 machine_get_sgx_epc, machine_set_sgx_epc, 1475 NULL, NULL); 1476 object_class_property_set_description(oc, "sgx-epc", 1477 "SGX EPC device"); 1478 } 1479 1480 static const TypeInfo x86_machine_info = { 1481 .name = TYPE_X86_MACHINE, 1482 .parent = TYPE_MACHINE, 1483 .abstract = true, 1484 .instance_size = sizeof(X86MachineState), 1485 .instance_init = x86_machine_initfn, 1486 .class_size = sizeof(X86MachineClass), 1487 .class_init = x86_machine_class_init, 1488 .interfaces = (InterfaceInfo[]) { 1489 { TYPE_NMI }, 1490 { } 1491 }, 1492 }; 1493 1494 static void x86_machine_register_types(void) 1495 { 1496 type_register_static(&x86_machine_info); 1497 } 1498 1499 type_init(x86_machine_register_types) 1500