xref: /openbmc/qemu/hw/i386/x86.c (revision ff219dca)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
37 #include "trace.h"
38 
39 #include "hw/i386/x86.h"
40 #include "target/i386/cpu.h"
41 #include "hw/i386/topology.h"
42 #include "hw/i386/fw_cfg.h"
43 #include "hw/intc/i8259.h"
44 
45 #include "hw/acpi/cpu_hotplug.h"
46 #include "hw/irq.h"
47 #include "hw/nmi.h"
48 #include "hw/loader.h"
49 #include "multiboot.h"
50 #include "elf.h"
51 #include "standard-headers/asm-x86/bootparam.h"
52 #include CONFIG_DEVICES
53 #include "kvm_i386.h"
54 
55 #define BIOS_FILENAME "bios.bin"
56 
57 /* Physical Address of PVH entry point read from kernel ELF NOTE */
58 static size_t pvh_start_addr;
59 
60 inline void init_topo_info(X86CPUTopoInfo *topo_info,
61                            const X86MachineState *x86ms)
62 {
63     MachineState *ms = MACHINE(x86ms);
64 
65     topo_info->nodes_per_pkg = ms->numa_state->num_nodes / ms->smp.sockets;
66     topo_info->dies_per_pkg = x86ms->smp_dies;
67     topo_info->cores_per_die = ms->smp.cores;
68     topo_info->threads_per_core = ms->smp.threads;
69 }
70 
71 /*
72  * Set up with the new EPYC topology handlers
73  *
74  * AMD uses different apic id encoding for EPYC based cpus. Override
75  * the default topo handlers with EPYC encoding handlers.
76  */
77 static void x86_set_epyc_topo_handlers(MachineState *machine)
78 {
79     X86MachineState *x86ms = X86_MACHINE(machine);
80 
81     x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx_epyc;
82     x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid_epyc;
83     x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids_epyc;
84     x86ms->apicid_pkg_offset = apicid_pkg_offset_epyc;
85 }
86 
87 /*
88  * Calculates initial APIC ID for a specific CPU index
89  *
90  * Currently we need to be able to calculate the APIC ID from the CPU index
91  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
92  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
93  * all CPUs up to max_cpus.
94  */
95 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
96                                     unsigned int cpu_index)
97 {
98     X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
99     X86CPUTopoInfo topo_info;
100     uint32_t correct_id;
101     static bool warned;
102 
103     init_topo_info(&topo_info, x86ms);
104 
105     correct_id = x86ms->apicid_from_cpu_idx(&topo_info, cpu_index);
106     if (x86mc->compat_apic_id_mode) {
107         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
108             error_report("APIC IDs set in compatibility mode, "
109                          "CPU topology won't match the configuration");
110             warned = true;
111         }
112         return cpu_index;
113     } else {
114         return correct_id;
115     }
116 }
117 
118 
119 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
120 {
121     Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
122 
123     if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
124         goto out;
125     }
126     qdev_realize(DEVICE(cpu), NULL, errp);
127 
128 out:
129     object_unref(cpu);
130 }
131 
132 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
133 {
134     int i;
135     const CPUArchIdList *possible_cpus;
136     MachineState *ms = MACHINE(x86ms);
137     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
138 
139     /* Check for apicid encoding */
140     if (cpu_x86_use_epyc_apic_id_encoding(ms->cpu_type)) {
141         x86_set_epyc_topo_handlers(ms);
142     }
143 
144     x86_cpu_set_default_version(default_cpu_version);
145 
146     /*
147      * Calculates the limit to CPU APIC ID values
148      *
149      * Limit for the APIC ID value, so that all
150      * CPU APIC IDs are < x86ms->apic_id_limit.
151      *
152      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
153      */
154     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
155                                                       ms->smp.max_cpus - 1) + 1;
156     possible_cpus = mc->possible_cpu_arch_ids(ms);
157 
158     for (i = 0; i < ms->possible_cpus->len; i++) {
159         ms->possible_cpus->cpus[i].arch_id =
160             x86_cpu_apic_id_from_index(x86ms, i);
161     }
162 
163     for (i = 0; i < ms->smp.cpus; i++) {
164         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
165     }
166 }
167 
168 CpuInstanceProperties
169 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
170 {
171     MachineClass *mc = MACHINE_GET_CLASS(ms);
172     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
173 
174     assert(cpu_index < possible_cpus->len);
175     return possible_cpus->cpus[cpu_index].props;
176 }
177 
178 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
179 {
180    X86CPUTopoIDs topo_ids;
181    X86MachineState *x86ms = X86_MACHINE(ms);
182    X86CPUTopoInfo topo_info;
183 
184    init_topo_info(&topo_info, x86ms);
185 
186    assert(idx < ms->possible_cpus->len);
187    x86_topo_ids_from_idx(&topo_info, idx, &topo_ids);
188    return topo_ids.pkg_id % ms->numa_state->num_nodes;
189 }
190 
191 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
192 {
193     X86MachineState *x86ms = X86_MACHINE(ms);
194     unsigned int max_cpus = ms->smp.max_cpus;
195     X86CPUTopoInfo topo_info;
196     int i;
197 
198     if (ms->possible_cpus) {
199         /*
200          * make sure that max_cpus hasn't changed since the first use, i.e.
201          * -smp hasn't been parsed after it
202          */
203         assert(ms->possible_cpus->len == max_cpus);
204         return ms->possible_cpus;
205     }
206 
207     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
208                                   sizeof(CPUArchId) * max_cpus);
209     ms->possible_cpus->len = max_cpus;
210 
211     init_topo_info(&topo_info, x86ms);
212 
213     for (i = 0; i < ms->possible_cpus->len; i++) {
214         X86CPUTopoIDs topo_ids;
215 
216         ms->possible_cpus->cpus[i].type = ms->cpu_type;
217         ms->possible_cpus->cpus[i].vcpus_count = 1;
218         x86_topo_ids_from_idx(&topo_info, i, &topo_ids);
219         ms->possible_cpus->cpus[i].props.has_socket_id = true;
220         ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
221         if (x86ms->smp_dies > 1) {
222             ms->possible_cpus->cpus[i].props.has_die_id = true;
223             ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
224         }
225         ms->possible_cpus->cpus[i].props.has_core_id = true;
226         ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
227         ms->possible_cpus->cpus[i].props.has_thread_id = true;
228         ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
229     }
230     return ms->possible_cpus;
231 }
232 
233 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
234 {
235     /* cpu index isn't used */
236     CPUState *cs;
237 
238     CPU_FOREACH(cs) {
239         X86CPU *cpu = X86_CPU(cs);
240 
241         if (!cpu->apic_state) {
242             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
243         } else {
244             apic_deliver_nmi(cpu->apic_state);
245         }
246     }
247 }
248 
249 static long get_file_size(FILE *f)
250 {
251     long where, size;
252 
253     /* XXX: on Unix systems, using fstat() probably makes more sense */
254 
255     where = ftell(f);
256     fseek(f, 0, SEEK_END);
257     size = ftell(f);
258     fseek(f, where, SEEK_SET);
259 
260     return size;
261 }
262 
263 /* TSC handling */
264 uint64_t cpu_get_tsc(CPUX86State *env)
265 {
266     return cpu_get_ticks();
267 }
268 
269 /* IRQ handling */
270 static void pic_irq_request(void *opaque, int irq, int level)
271 {
272     CPUState *cs = first_cpu;
273     X86CPU *cpu = X86_CPU(cs);
274 
275     trace_x86_pic_interrupt(irq, level);
276     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
277         CPU_FOREACH(cs) {
278             cpu = X86_CPU(cs);
279             if (apic_accept_pic_intr(cpu->apic_state)) {
280                 apic_deliver_pic_intr(cpu->apic_state, level);
281             }
282         }
283     } else {
284         if (level) {
285             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
286         } else {
287             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
288         }
289     }
290 }
291 
292 qemu_irq x86_allocate_cpu_irq(void)
293 {
294     return qemu_allocate_irq(pic_irq_request, NULL, 0);
295 }
296 
297 int cpu_get_pic_interrupt(CPUX86State *env)
298 {
299     X86CPU *cpu = env_archcpu(env);
300     int intno;
301 
302     if (!kvm_irqchip_in_kernel()) {
303         intno = apic_get_interrupt(cpu->apic_state);
304         if (intno >= 0) {
305             return intno;
306         }
307         /* read the irq from the PIC */
308         if (!apic_accept_pic_intr(cpu->apic_state)) {
309             return -1;
310         }
311     }
312 
313     intno = pic_read_irq(isa_pic);
314     return intno;
315 }
316 
317 DeviceState *cpu_get_current_apic(void)
318 {
319     if (current_cpu) {
320         X86CPU *cpu = X86_CPU(current_cpu);
321         return cpu->apic_state;
322     } else {
323         return NULL;
324     }
325 }
326 
327 void gsi_handler(void *opaque, int n, int level)
328 {
329     GSIState *s = opaque;
330 
331     trace_x86_gsi_interrupt(n, level);
332     if (n < ISA_NUM_IRQS) {
333         /* Under KVM, Kernel will forward to both PIC and IOAPIC */
334         qemu_set_irq(s->i8259_irq[n], level);
335     }
336     qemu_set_irq(s->ioapic_irq[n], level);
337 }
338 
339 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
340 {
341     DeviceState *dev;
342     SysBusDevice *d;
343     unsigned int i;
344 
345     assert(parent_name);
346     if (kvm_ioapic_in_kernel()) {
347         dev = qdev_new(TYPE_KVM_IOAPIC);
348     } else {
349         dev = qdev_new(TYPE_IOAPIC);
350     }
351     object_property_add_child(object_resolve_path(parent_name, NULL),
352                               "ioapic", OBJECT(dev));
353     d = SYS_BUS_DEVICE(dev);
354     sysbus_realize_and_unref(d, &error_fatal);
355     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
356 
357     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
358         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
359     }
360 }
361 
362 struct setup_data {
363     uint64_t next;
364     uint32_t type;
365     uint32_t len;
366     uint8_t data[];
367 } __attribute__((packed));
368 
369 
370 /*
371  * The entry point into the kernel for PVH boot is different from
372  * the native entry point.  The PVH entry is defined by the x86/HVM
373  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
374  *
375  * This function is passed to load_elf() when it is called from
376  * load_elfboot() which then additionally checks for an ELF Note of
377  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
378  * parse the PVH entry address from the ELF Note.
379  *
380  * Due to trickery in elf_opts.h, load_elf() is actually available as
381  * load_elf32() or load_elf64() and this routine needs to be able
382  * to deal with being called as 32 or 64 bit.
383  *
384  * The address of the PVH entry point is saved to the 'pvh_start_addr'
385  * global variable.  (although the entry point is 32-bit, the kernel
386  * binary can be either 32-bit or 64-bit).
387  */
388 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
389 {
390     size_t *elf_note_data_addr;
391 
392     /* Check if ELF Note header passed in is valid */
393     if (arg1 == NULL) {
394         return 0;
395     }
396 
397     if (is64) {
398         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
399         uint64_t nhdr_size64 = sizeof(struct elf64_note);
400         uint64_t phdr_align = *(uint64_t *)arg2;
401         uint64_t nhdr_namesz = nhdr64->n_namesz;
402 
403         elf_note_data_addr =
404             ((void *)nhdr64) + nhdr_size64 +
405             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
406     } else {
407         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
408         uint32_t nhdr_size32 = sizeof(struct elf32_note);
409         uint32_t phdr_align = *(uint32_t *)arg2;
410         uint32_t nhdr_namesz = nhdr32->n_namesz;
411 
412         elf_note_data_addr =
413             ((void *)nhdr32) + nhdr_size32 +
414             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
415     }
416 
417     pvh_start_addr = *elf_note_data_addr;
418 
419     return pvh_start_addr;
420 }
421 
422 static bool load_elfboot(const char *kernel_filename,
423                          int kernel_file_size,
424                          uint8_t *header,
425                          size_t pvh_xen_start_addr,
426                          FWCfgState *fw_cfg)
427 {
428     uint32_t flags = 0;
429     uint32_t mh_load_addr = 0;
430     uint32_t elf_kernel_size = 0;
431     uint64_t elf_entry;
432     uint64_t elf_low, elf_high;
433     int kernel_size;
434 
435     if (ldl_p(header) != 0x464c457f) {
436         return false; /* no elfboot */
437     }
438 
439     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
440     flags = elf_is64 ?
441         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
442 
443     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
444         error_report("elfboot unsupported flags = %x", flags);
445         exit(1);
446     }
447 
448     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
449     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
450                            NULL, &elf_note_type, &elf_entry,
451                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
452                            0, 0);
453 
454     if (kernel_size < 0) {
455         error_report("Error while loading elf kernel");
456         exit(1);
457     }
458     mh_load_addr = elf_low;
459     elf_kernel_size = elf_high - elf_low;
460 
461     if (pvh_start_addr == 0) {
462         error_report("Error loading uncompressed kernel without PVH ELF Note");
463         exit(1);
464     }
465     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
466     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
467     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
468 
469     return true;
470 }
471 
472 void x86_load_linux(X86MachineState *x86ms,
473                     FWCfgState *fw_cfg,
474                     int acpi_data_size,
475                     bool pvh_enabled,
476                     bool linuxboot_dma_enabled)
477 {
478     uint16_t protocol;
479     int setup_size, kernel_size, cmdline_size;
480     int dtb_size, setup_data_offset;
481     uint32_t initrd_max;
482     uint8_t header[8192], *setup, *kernel;
483     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
484     FILE *f;
485     char *vmode;
486     MachineState *machine = MACHINE(x86ms);
487     struct setup_data *setup_data;
488     const char *kernel_filename = machine->kernel_filename;
489     const char *initrd_filename = machine->initrd_filename;
490     const char *dtb_filename = machine->dtb;
491     const char *kernel_cmdline = machine->kernel_cmdline;
492 
493     /* Align to 16 bytes as a paranoia measure */
494     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
495 
496     /* load the kernel header */
497     f = fopen(kernel_filename, "rb");
498     if (!f) {
499         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
500                 kernel_filename, strerror(errno));
501         exit(1);
502     }
503 
504     kernel_size = get_file_size(f);
505     if (!kernel_size ||
506         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
507         MIN(ARRAY_SIZE(header), kernel_size)) {
508         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
509                 kernel_filename, strerror(errno));
510         exit(1);
511     }
512 
513     /* kernel protocol version */
514     if (ldl_p(header + 0x202) == 0x53726448) {
515         protocol = lduw_p(header + 0x206);
516     } else {
517         /*
518          * This could be a multiboot kernel. If it is, let's stop treating it
519          * like a Linux kernel.
520          * Note: some multiboot images could be in the ELF format (the same of
521          * PVH), so we try multiboot first since we check the multiboot magic
522          * header before to load it.
523          */
524         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
525                            kernel_cmdline, kernel_size, header)) {
526             return;
527         }
528         /*
529          * Check if the file is an uncompressed kernel file (ELF) and load it,
530          * saving the PVH entry point used by the x86/HVM direct boot ABI.
531          * If load_elfboot() is successful, populate the fw_cfg info.
532          */
533         if (pvh_enabled &&
534             load_elfboot(kernel_filename, kernel_size,
535                          header, pvh_start_addr, fw_cfg)) {
536             fclose(f);
537 
538             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
539                 strlen(kernel_cmdline) + 1);
540             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
541 
542             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
543             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
544                              header, sizeof(header));
545 
546             /* load initrd */
547             if (initrd_filename) {
548                 GMappedFile *mapped_file;
549                 gsize initrd_size;
550                 gchar *initrd_data;
551                 GError *gerr = NULL;
552 
553                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
554                 if (!mapped_file) {
555                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
556                             initrd_filename, gerr->message);
557                     exit(1);
558                 }
559                 x86ms->initrd_mapped_file = mapped_file;
560 
561                 initrd_data = g_mapped_file_get_contents(mapped_file);
562                 initrd_size = g_mapped_file_get_length(mapped_file);
563                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
564                 if (initrd_size >= initrd_max) {
565                     fprintf(stderr, "qemu: initrd is too large, cannot support."
566                             "(max: %"PRIu32", need %"PRId64")\n",
567                             initrd_max, (uint64_t)initrd_size);
568                     exit(1);
569                 }
570 
571                 initrd_addr = (initrd_max - initrd_size) & ~4095;
572 
573                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
574                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
575                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
576                                  initrd_size);
577             }
578 
579             option_rom[nb_option_roms].bootindex = 0;
580             option_rom[nb_option_roms].name = "pvh.bin";
581             nb_option_roms++;
582 
583             return;
584         }
585         protocol = 0;
586     }
587 
588     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
589         /* Low kernel */
590         real_addr    = 0x90000;
591         cmdline_addr = 0x9a000 - cmdline_size;
592         prot_addr    = 0x10000;
593     } else if (protocol < 0x202) {
594         /* High but ancient kernel */
595         real_addr    = 0x90000;
596         cmdline_addr = 0x9a000 - cmdline_size;
597         prot_addr    = 0x100000;
598     } else {
599         /* High and recent kernel */
600         real_addr    = 0x10000;
601         cmdline_addr = 0x20000;
602         prot_addr    = 0x100000;
603     }
604 
605     /* highest address for loading the initrd */
606     if (protocol >= 0x20c &&
607         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
608         /*
609          * Linux has supported initrd up to 4 GB for a very long time (2007,
610          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
611          * though it only sets initrd_max to 2 GB to "work around bootloader
612          * bugs". Luckily, QEMU firmware(which does something like bootloader)
613          * has supported this.
614          *
615          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
616          * be loaded into any address.
617          *
618          * In addition, initrd_max is uint32_t simply because QEMU doesn't
619          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
620          * field).
621          *
622          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
623          */
624         initrd_max = UINT32_MAX;
625     } else if (protocol >= 0x203) {
626         initrd_max = ldl_p(header + 0x22c);
627     } else {
628         initrd_max = 0x37ffffff;
629     }
630 
631     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
632         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
633     }
634 
635     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
636     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
637     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
638 
639     if (protocol >= 0x202) {
640         stl_p(header + 0x228, cmdline_addr);
641     } else {
642         stw_p(header + 0x20, 0xA33F);
643         stw_p(header + 0x22, cmdline_addr - real_addr);
644     }
645 
646     /* handle vga= parameter */
647     vmode = strstr(kernel_cmdline, "vga=");
648     if (vmode) {
649         unsigned int video_mode;
650         const char *end;
651         int ret;
652         /* skip "vga=" */
653         vmode += 4;
654         if (!strncmp(vmode, "normal", 6)) {
655             video_mode = 0xffff;
656         } else if (!strncmp(vmode, "ext", 3)) {
657             video_mode = 0xfffe;
658         } else if (!strncmp(vmode, "ask", 3)) {
659             video_mode = 0xfffd;
660         } else {
661             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
662             if (ret != 0 || (*end && *end != ' ')) {
663                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
664                 exit(1);
665             }
666         }
667         stw_p(header + 0x1fa, video_mode);
668     }
669 
670     /* loader type */
671     /*
672      * High nybble = B reserved for QEMU; low nybble is revision number.
673      * If this code is substantially changed, you may want to consider
674      * incrementing the revision.
675      */
676     if (protocol >= 0x200) {
677         header[0x210] = 0xB0;
678     }
679     /* heap */
680     if (protocol >= 0x201) {
681         header[0x211] |= 0x80; /* CAN_USE_HEAP */
682         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
683     }
684 
685     /* load initrd */
686     if (initrd_filename) {
687         GMappedFile *mapped_file;
688         gsize initrd_size;
689         gchar *initrd_data;
690         GError *gerr = NULL;
691 
692         if (protocol < 0x200) {
693             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
694             exit(1);
695         }
696 
697         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
698         if (!mapped_file) {
699             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
700                     initrd_filename, gerr->message);
701             exit(1);
702         }
703         x86ms->initrd_mapped_file = mapped_file;
704 
705         initrd_data = g_mapped_file_get_contents(mapped_file);
706         initrd_size = g_mapped_file_get_length(mapped_file);
707         if (initrd_size >= initrd_max) {
708             fprintf(stderr, "qemu: initrd is too large, cannot support."
709                     "(max: %"PRIu32", need %"PRId64")\n",
710                     initrd_max, (uint64_t)initrd_size);
711             exit(1);
712         }
713 
714         initrd_addr = (initrd_max - initrd_size) & ~4095;
715 
716         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
717         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
718         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
719 
720         stl_p(header + 0x218, initrd_addr);
721         stl_p(header + 0x21c, initrd_size);
722     }
723 
724     /* load kernel and setup */
725     setup_size = header[0x1f1];
726     if (setup_size == 0) {
727         setup_size = 4;
728     }
729     setup_size = (setup_size + 1) * 512;
730     if (setup_size > kernel_size) {
731         fprintf(stderr, "qemu: invalid kernel header\n");
732         exit(1);
733     }
734     kernel_size -= setup_size;
735 
736     setup  = g_malloc(setup_size);
737     kernel = g_malloc(kernel_size);
738     fseek(f, 0, SEEK_SET);
739     if (fread(setup, 1, setup_size, f) != setup_size) {
740         fprintf(stderr, "fread() failed\n");
741         exit(1);
742     }
743     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
744         fprintf(stderr, "fread() failed\n");
745         exit(1);
746     }
747     fclose(f);
748 
749     /* append dtb to kernel */
750     if (dtb_filename) {
751         if (protocol < 0x209) {
752             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
753             exit(1);
754         }
755 
756         dtb_size = get_image_size(dtb_filename);
757         if (dtb_size <= 0) {
758             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
759                     dtb_filename, strerror(errno));
760             exit(1);
761         }
762 
763         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
764         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
765         kernel = g_realloc(kernel, kernel_size);
766 
767         stq_p(header + 0x250, prot_addr + setup_data_offset);
768 
769         setup_data = (struct setup_data *)(kernel + setup_data_offset);
770         setup_data->next = 0;
771         setup_data->type = cpu_to_le32(SETUP_DTB);
772         setup_data->len = cpu_to_le32(dtb_size);
773 
774         load_image_size(dtb_filename, setup_data->data, dtb_size);
775     }
776 
777     memcpy(setup, header, MIN(sizeof(header), setup_size));
778 
779     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
780     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
781     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
782 
783     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
784     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
785     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
786 
787     option_rom[nb_option_roms].bootindex = 0;
788     option_rom[nb_option_roms].name = "linuxboot.bin";
789     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
790         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
791     }
792     nb_option_roms++;
793 }
794 
795 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
796 {
797     char *filename;
798     MemoryRegion *bios, *isa_bios;
799     int bios_size, isa_bios_size;
800     int ret;
801 
802     /* BIOS load */
803     if (bios_name == NULL) {
804         bios_name = BIOS_FILENAME;
805     }
806     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
807     if (filename) {
808         bios_size = get_image_size(filename);
809     } else {
810         bios_size = -1;
811     }
812     if (bios_size <= 0 ||
813         (bios_size % 65536) != 0) {
814         goto bios_error;
815     }
816     bios = g_malloc(sizeof(*bios));
817     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
818     if (!isapc_ram_fw) {
819         memory_region_set_readonly(bios, true);
820     }
821     ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
822     if (ret != 0) {
823     bios_error:
824         fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
825         exit(1);
826     }
827     g_free(filename);
828 
829     /* map the last 128KB of the BIOS in ISA space */
830     isa_bios_size = MIN(bios_size, 128 * KiB);
831     isa_bios = g_malloc(sizeof(*isa_bios));
832     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
833                              bios_size - isa_bios_size, isa_bios_size);
834     memory_region_add_subregion_overlap(rom_memory,
835                                         0x100000 - isa_bios_size,
836                                         isa_bios,
837                                         1);
838     if (!isapc_ram_fw) {
839         memory_region_set_readonly(isa_bios, true);
840     }
841 
842     /* map all the bios at the top of memory */
843     memory_region_add_subregion(rom_memory,
844                                 (uint32_t)(-bios_size),
845                                 bios);
846 }
847 
848 bool x86_machine_is_smm_enabled(X86MachineState *x86ms)
849 {
850     bool smm_available = false;
851 
852     if (x86ms->smm == ON_OFF_AUTO_OFF) {
853         return false;
854     }
855 
856     if (tcg_enabled() || qtest_enabled()) {
857         smm_available = true;
858     } else if (kvm_enabled()) {
859         smm_available = kvm_has_smm();
860     }
861 
862     if (smm_available) {
863         return true;
864     }
865 
866     if (x86ms->smm == ON_OFF_AUTO_ON) {
867         error_report("System Management Mode not supported by this hypervisor.");
868         exit(1);
869     }
870     return false;
871 }
872 
873 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
874                                void *opaque, Error **errp)
875 {
876     X86MachineState *x86ms = X86_MACHINE(obj);
877     OnOffAuto smm = x86ms->smm;
878 
879     visit_type_OnOffAuto(v, name, &smm, errp);
880 }
881 
882 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
883                                void *opaque, Error **errp)
884 {
885     X86MachineState *x86ms = X86_MACHINE(obj);
886 
887     visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
888 }
889 
890 bool x86_machine_is_acpi_enabled(X86MachineState *x86ms)
891 {
892     if (x86ms->acpi == ON_OFF_AUTO_OFF) {
893         return false;
894     }
895     return true;
896 }
897 
898 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
899                                  void *opaque, Error **errp)
900 {
901     X86MachineState *x86ms = X86_MACHINE(obj);
902     OnOffAuto acpi = x86ms->acpi;
903 
904     visit_type_OnOffAuto(v, name, &acpi, errp);
905 }
906 
907 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
908                                  void *opaque, Error **errp)
909 {
910     X86MachineState *x86ms = X86_MACHINE(obj);
911 
912     visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
913 }
914 
915 static void x86_machine_initfn(Object *obj)
916 {
917     X86MachineState *x86ms = X86_MACHINE(obj);
918 
919     x86ms->smm = ON_OFF_AUTO_AUTO;
920     x86ms->acpi = ON_OFF_AUTO_AUTO;
921     x86ms->smp_dies = 1;
922 
923     x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx;
924     x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid;
925     x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids;
926     x86ms->apicid_pkg_offset = apicid_pkg_offset;
927 }
928 
929 static void x86_machine_class_init(ObjectClass *oc, void *data)
930 {
931     MachineClass *mc = MACHINE_CLASS(oc);
932     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
933     NMIClass *nc = NMI_CLASS(oc);
934 
935     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
936     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
937     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
938     x86mc->compat_apic_id_mode = false;
939     x86mc->save_tsc_khz = true;
940     nc->nmi_monitor_handler = x86_nmi;
941 
942     object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
943         x86_machine_get_smm, x86_machine_set_smm,
944         NULL, NULL);
945     object_class_property_set_description(oc, X86_MACHINE_SMM,
946         "Enable SMM");
947 
948     object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
949         x86_machine_get_acpi, x86_machine_set_acpi,
950         NULL, NULL);
951     object_class_property_set_description(oc, X86_MACHINE_ACPI,
952         "Enable ACPI");
953 }
954 
955 static const TypeInfo x86_machine_info = {
956     .name = TYPE_X86_MACHINE,
957     .parent = TYPE_MACHINE,
958     .abstract = true,
959     .instance_size = sizeof(X86MachineState),
960     .instance_init = x86_machine_initfn,
961     .class_size = sizeof(X86MachineClass),
962     .class_init = x86_machine_class_init,
963     .interfaces = (InterfaceInfo[]) {
964          { TYPE_NMI },
965          { }
966     },
967 };
968 
969 static void x86_machine_register_types(void)
970 {
971     type_register_static(&x86_machine_info);
972 }
973 
974 type_init(x86_machine_register_types)
975