1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/option.h" 26 #include "qemu/cutils.h" 27 #include "qemu/units.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/qmp/qerror.h" 31 #include "qapi/qapi-visit-common.h" 32 #include "qapi/visitor.h" 33 #include "sysemu/qtest.h" 34 #include "sysemu/numa.h" 35 #include "sysemu/replay.h" 36 #include "sysemu/sysemu.h" 37 #include "trace.h" 38 39 #include "hw/i386/x86.h" 40 #include "target/i386/cpu.h" 41 #include "hw/i386/topology.h" 42 #include "hw/i386/fw_cfg.h" 43 #include "hw/intc/i8259.h" 44 45 #include "hw/acpi/cpu_hotplug.h" 46 #include "hw/irq.h" 47 #include "hw/nmi.h" 48 #include "hw/loader.h" 49 #include "multiboot.h" 50 #include "elf.h" 51 #include "standard-headers/asm-x86/bootparam.h" 52 #include CONFIG_DEVICES 53 #include "kvm_i386.h" 54 55 #define BIOS_FILENAME "bios.bin" 56 57 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 58 static size_t pvh_start_addr; 59 60 inline void init_topo_info(X86CPUTopoInfo *topo_info, 61 const X86MachineState *x86ms) 62 { 63 MachineState *ms = MACHINE(x86ms); 64 65 topo_info->nodes_per_pkg = ms->numa_state->num_nodes / ms->smp.sockets; 66 topo_info->dies_per_pkg = x86ms->smp_dies; 67 topo_info->cores_per_die = ms->smp.cores; 68 topo_info->threads_per_core = ms->smp.threads; 69 } 70 71 /* 72 * Set up with the new EPYC topology handlers 73 * 74 * AMD uses different apic id encoding for EPYC based cpus. Override 75 * the default topo handlers with EPYC encoding handlers. 76 */ 77 static void x86_set_epyc_topo_handlers(MachineState *machine) 78 { 79 X86MachineState *x86ms = X86_MACHINE(machine); 80 81 x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx_epyc; 82 x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid_epyc; 83 x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids_epyc; 84 x86ms->apicid_pkg_offset = apicid_pkg_offset_epyc; 85 } 86 87 /* 88 * Calculates initial APIC ID for a specific CPU index 89 * 90 * Currently we need to be able to calculate the APIC ID from the CPU index 91 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 92 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 93 * all CPUs up to max_cpus. 94 */ 95 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, 96 unsigned int cpu_index) 97 { 98 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms); 99 X86CPUTopoInfo topo_info; 100 uint32_t correct_id; 101 static bool warned; 102 103 init_topo_info(&topo_info, x86ms); 104 105 correct_id = x86ms->apicid_from_cpu_idx(&topo_info, cpu_index); 106 if (x86mc->compat_apic_id_mode) { 107 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 108 error_report("APIC IDs set in compatibility mode, " 109 "CPU topology won't match the configuration"); 110 warned = true; 111 } 112 return cpu_index; 113 } else { 114 return correct_id; 115 } 116 } 117 118 119 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 120 { 121 Object *cpu = object_new(MACHINE(x86ms)->cpu_type); 122 123 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { 124 goto out; 125 } 126 qdev_realize(DEVICE(cpu), NULL, errp); 127 128 out: 129 object_unref(cpu); 130 } 131 132 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 133 { 134 int i; 135 const CPUArchIdList *possible_cpus; 136 MachineState *ms = MACHINE(x86ms); 137 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 138 139 /* Check for apicid encoding */ 140 if (cpu_x86_use_epyc_apic_id_encoding(ms->cpu_type)) { 141 x86_set_epyc_topo_handlers(ms); 142 } 143 144 x86_cpu_set_default_version(default_cpu_version); 145 146 /* 147 * Calculates the limit to CPU APIC ID values 148 * 149 * Limit for the APIC ID value, so that all 150 * CPU APIC IDs are < x86ms->apic_id_limit. 151 * 152 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 153 */ 154 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 155 ms->smp.max_cpus - 1) + 1; 156 possible_cpus = mc->possible_cpu_arch_ids(ms); 157 158 for (i = 0; i < ms->possible_cpus->len; i++) { 159 ms->possible_cpus->cpus[i].arch_id = 160 x86_cpu_apic_id_from_index(x86ms, i); 161 } 162 163 for (i = 0; i < ms->smp.cpus; i++) { 164 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 165 } 166 } 167 168 CpuInstanceProperties 169 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 170 { 171 MachineClass *mc = MACHINE_GET_CLASS(ms); 172 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 173 174 assert(cpu_index < possible_cpus->len); 175 return possible_cpus->cpus[cpu_index].props; 176 } 177 178 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) 179 { 180 X86CPUTopoIDs topo_ids; 181 X86MachineState *x86ms = X86_MACHINE(ms); 182 X86CPUTopoInfo topo_info; 183 184 init_topo_info(&topo_info, x86ms); 185 186 assert(idx < ms->possible_cpus->len); 187 x86_topo_ids_from_idx(&topo_info, idx, &topo_ids); 188 return topo_ids.pkg_id % ms->numa_state->num_nodes; 189 } 190 191 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) 192 { 193 X86MachineState *x86ms = X86_MACHINE(ms); 194 unsigned int max_cpus = ms->smp.max_cpus; 195 X86CPUTopoInfo topo_info; 196 int i; 197 198 if (ms->possible_cpus) { 199 /* 200 * make sure that max_cpus hasn't changed since the first use, i.e. 201 * -smp hasn't been parsed after it 202 */ 203 assert(ms->possible_cpus->len == max_cpus); 204 return ms->possible_cpus; 205 } 206 207 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 208 sizeof(CPUArchId) * max_cpus); 209 ms->possible_cpus->len = max_cpus; 210 211 init_topo_info(&topo_info, x86ms); 212 213 for (i = 0; i < ms->possible_cpus->len; i++) { 214 X86CPUTopoIDs topo_ids; 215 216 ms->possible_cpus->cpus[i].type = ms->cpu_type; 217 ms->possible_cpus->cpus[i].vcpus_count = 1; 218 x86_topo_ids_from_idx(&topo_info, i, &topo_ids); 219 ms->possible_cpus->cpus[i].props.has_socket_id = true; 220 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id; 221 if (x86ms->smp_dies > 1) { 222 ms->possible_cpus->cpus[i].props.has_die_id = true; 223 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id; 224 } 225 ms->possible_cpus->cpus[i].props.has_core_id = true; 226 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id; 227 ms->possible_cpus->cpus[i].props.has_thread_id = true; 228 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id; 229 } 230 return ms->possible_cpus; 231 } 232 233 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 234 { 235 /* cpu index isn't used */ 236 CPUState *cs; 237 238 CPU_FOREACH(cs) { 239 X86CPU *cpu = X86_CPU(cs); 240 241 if (!cpu->apic_state) { 242 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 243 } else { 244 apic_deliver_nmi(cpu->apic_state); 245 } 246 } 247 } 248 249 static long get_file_size(FILE *f) 250 { 251 long where, size; 252 253 /* XXX: on Unix systems, using fstat() probably makes more sense */ 254 255 where = ftell(f); 256 fseek(f, 0, SEEK_END); 257 size = ftell(f); 258 fseek(f, where, SEEK_SET); 259 260 return size; 261 } 262 263 /* TSC handling */ 264 uint64_t cpu_get_tsc(CPUX86State *env) 265 { 266 return cpu_get_ticks(); 267 } 268 269 /* IRQ handling */ 270 static void pic_irq_request(void *opaque, int irq, int level) 271 { 272 CPUState *cs = first_cpu; 273 X86CPU *cpu = X86_CPU(cs); 274 275 trace_x86_pic_interrupt(irq, level); 276 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 277 CPU_FOREACH(cs) { 278 cpu = X86_CPU(cs); 279 if (apic_accept_pic_intr(cpu->apic_state)) { 280 apic_deliver_pic_intr(cpu->apic_state, level); 281 } 282 } 283 } else { 284 if (level) { 285 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 286 } else { 287 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 288 } 289 } 290 } 291 292 qemu_irq x86_allocate_cpu_irq(void) 293 { 294 return qemu_allocate_irq(pic_irq_request, NULL, 0); 295 } 296 297 int cpu_get_pic_interrupt(CPUX86State *env) 298 { 299 X86CPU *cpu = env_archcpu(env); 300 int intno; 301 302 if (!kvm_irqchip_in_kernel()) { 303 intno = apic_get_interrupt(cpu->apic_state); 304 if (intno >= 0) { 305 return intno; 306 } 307 /* read the irq from the PIC */ 308 if (!apic_accept_pic_intr(cpu->apic_state)) { 309 return -1; 310 } 311 } 312 313 intno = pic_read_irq(isa_pic); 314 return intno; 315 } 316 317 DeviceState *cpu_get_current_apic(void) 318 { 319 if (current_cpu) { 320 X86CPU *cpu = X86_CPU(current_cpu); 321 return cpu->apic_state; 322 } else { 323 return NULL; 324 } 325 } 326 327 void gsi_handler(void *opaque, int n, int level) 328 { 329 GSIState *s = opaque; 330 331 trace_x86_gsi_interrupt(n, level); 332 if (n < ISA_NUM_IRQS) { 333 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 334 qemu_set_irq(s->i8259_irq[n], level); 335 } 336 qemu_set_irq(s->ioapic_irq[n], level); 337 } 338 339 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 340 { 341 DeviceState *dev; 342 SysBusDevice *d; 343 unsigned int i; 344 345 assert(parent_name); 346 if (kvm_ioapic_in_kernel()) { 347 dev = qdev_new(TYPE_KVM_IOAPIC); 348 } else { 349 dev = qdev_new(TYPE_IOAPIC); 350 } 351 object_property_add_child(object_resolve_path(parent_name, NULL), 352 "ioapic", OBJECT(dev)); 353 d = SYS_BUS_DEVICE(dev); 354 sysbus_realize_and_unref(d, &error_fatal); 355 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 356 357 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 358 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 359 } 360 } 361 362 struct setup_data { 363 uint64_t next; 364 uint32_t type; 365 uint32_t len; 366 uint8_t data[]; 367 } __attribute__((packed)); 368 369 370 /* 371 * The entry point into the kernel for PVH boot is different from 372 * the native entry point. The PVH entry is defined by the x86/HVM 373 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 374 * 375 * This function is passed to load_elf() when it is called from 376 * load_elfboot() which then additionally checks for an ELF Note of 377 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 378 * parse the PVH entry address from the ELF Note. 379 * 380 * Due to trickery in elf_opts.h, load_elf() is actually available as 381 * load_elf32() or load_elf64() and this routine needs to be able 382 * to deal with being called as 32 or 64 bit. 383 * 384 * The address of the PVH entry point is saved to the 'pvh_start_addr' 385 * global variable. (although the entry point is 32-bit, the kernel 386 * binary can be either 32-bit or 64-bit). 387 */ 388 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 389 { 390 size_t *elf_note_data_addr; 391 392 /* Check if ELF Note header passed in is valid */ 393 if (arg1 == NULL) { 394 return 0; 395 } 396 397 if (is64) { 398 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 399 uint64_t nhdr_size64 = sizeof(struct elf64_note); 400 uint64_t phdr_align = *(uint64_t *)arg2; 401 uint64_t nhdr_namesz = nhdr64->n_namesz; 402 403 elf_note_data_addr = 404 ((void *)nhdr64) + nhdr_size64 + 405 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 406 } else { 407 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 408 uint32_t nhdr_size32 = sizeof(struct elf32_note); 409 uint32_t phdr_align = *(uint32_t *)arg2; 410 uint32_t nhdr_namesz = nhdr32->n_namesz; 411 412 elf_note_data_addr = 413 ((void *)nhdr32) + nhdr_size32 + 414 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 415 } 416 417 pvh_start_addr = *elf_note_data_addr; 418 419 return pvh_start_addr; 420 } 421 422 static bool load_elfboot(const char *kernel_filename, 423 int kernel_file_size, 424 uint8_t *header, 425 size_t pvh_xen_start_addr, 426 FWCfgState *fw_cfg) 427 { 428 uint32_t flags = 0; 429 uint32_t mh_load_addr = 0; 430 uint32_t elf_kernel_size = 0; 431 uint64_t elf_entry; 432 uint64_t elf_low, elf_high; 433 int kernel_size; 434 435 if (ldl_p(header) != 0x464c457f) { 436 return false; /* no elfboot */ 437 } 438 439 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 440 flags = elf_is64 ? 441 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 442 443 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 444 error_report("elfboot unsupported flags = %x", flags); 445 exit(1); 446 } 447 448 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 449 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 450 NULL, &elf_note_type, &elf_entry, 451 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 452 0, 0); 453 454 if (kernel_size < 0) { 455 error_report("Error while loading elf kernel"); 456 exit(1); 457 } 458 mh_load_addr = elf_low; 459 elf_kernel_size = elf_high - elf_low; 460 461 if (pvh_start_addr == 0) { 462 error_report("Error loading uncompressed kernel without PVH ELF Note"); 463 exit(1); 464 } 465 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 466 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 467 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 468 469 return true; 470 } 471 472 void x86_load_linux(X86MachineState *x86ms, 473 FWCfgState *fw_cfg, 474 int acpi_data_size, 475 bool pvh_enabled, 476 bool linuxboot_dma_enabled) 477 { 478 uint16_t protocol; 479 int setup_size, kernel_size, cmdline_size; 480 int dtb_size, setup_data_offset; 481 uint32_t initrd_max; 482 uint8_t header[8192], *setup, *kernel; 483 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 484 FILE *f; 485 char *vmode; 486 MachineState *machine = MACHINE(x86ms); 487 struct setup_data *setup_data; 488 const char *kernel_filename = machine->kernel_filename; 489 const char *initrd_filename = machine->initrd_filename; 490 const char *dtb_filename = machine->dtb; 491 const char *kernel_cmdline = machine->kernel_cmdline; 492 493 /* Align to 16 bytes as a paranoia measure */ 494 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 495 496 /* load the kernel header */ 497 f = fopen(kernel_filename, "rb"); 498 if (!f) { 499 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 500 kernel_filename, strerror(errno)); 501 exit(1); 502 } 503 504 kernel_size = get_file_size(f); 505 if (!kernel_size || 506 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 507 MIN(ARRAY_SIZE(header), kernel_size)) { 508 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 509 kernel_filename, strerror(errno)); 510 exit(1); 511 } 512 513 /* kernel protocol version */ 514 if (ldl_p(header + 0x202) == 0x53726448) { 515 protocol = lduw_p(header + 0x206); 516 } else { 517 /* 518 * This could be a multiboot kernel. If it is, let's stop treating it 519 * like a Linux kernel. 520 * Note: some multiboot images could be in the ELF format (the same of 521 * PVH), so we try multiboot first since we check the multiboot magic 522 * header before to load it. 523 */ 524 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 525 kernel_cmdline, kernel_size, header)) { 526 return; 527 } 528 /* 529 * Check if the file is an uncompressed kernel file (ELF) and load it, 530 * saving the PVH entry point used by the x86/HVM direct boot ABI. 531 * If load_elfboot() is successful, populate the fw_cfg info. 532 */ 533 if (pvh_enabled && 534 load_elfboot(kernel_filename, kernel_size, 535 header, pvh_start_addr, fw_cfg)) { 536 fclose(f); 537 538 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 539 strlen(kernel_cmdline) + 1); 540 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 541 542 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 543 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 544 header, sizeof(header)); 545 546 /* load initrd */ 547 if (initrd_filename) { 548 GMappedFile *mapped_file; 549 gsize initrd_size; 550 gchar *initrd_data; 551 GError *gerr = NULL; 552 553 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 554 if (!mapped_file) { 555 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 556 initrd_filename, gerr->message); 557 exit(1); 558 } 559 x86ms->initrd_mapped_file = mapped_file; 560 561 initrd_data = g_mapped_file_get_contents(mapped_file); 562 initrd_size = g_mapped_file_get_length(mapped_file); 563 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 564 if (initrd_size >= initrd_max) { 565 fprintf(stderr, "qemu: initrd is too large, cannot support." 566 "(max: %"PRIu32", need %"PRId64")\n", 567 initrd_max, (uint64_t)initrd_size); 568 exit(1); 569 } 570 571 initrd_addr = (initrd_max - initrd_size) & ~4095; 572 573 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 574 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 575 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 576 initrd_size); 577 } 578 579 option_rom[nb_option_roms].bootindex = 0; 580 option_rom[nb_option_roms].name = "pvh.bin"; 581 nb_option_roms++; 582 583 return; 584 } 585 protocol = 0; 586 } 587 588 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 589 /* Low kernel */ 590 real_addr = 0x90000; 591 cmdline_addr = 0x9a000 - cmdline_size; 592 prot_addr = 0x10000; 593 } else if (protocol < 0x202) { 594 /* High but ancient kernel */ 595 real_addr = 0x90000; 596 cmdline_addr = 0x9a000 - cmdline_size; 597 prot_addr = 0x100000; 598 } else { 599 /* High and recent kernel */ 600 real_addr = 0x10000; 601 cmdline_addr = 0x20000; 602 prot_addr = 0x100000; 603 } 604 605 /* highest address for loading the initrd */ 606 if (protocol >= 0x20c && 607 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 608 /* 609 * Linux has supported initrd up to 4 GB for a very long time (2007, 610 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 611 * though it only sets initrd_max to 2 GB to "work around bootloader 612 * bugs". Luckily, QEMU firmware(which does something like bootloader) 613 * has supported this. 614 * 615 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 616 * be loaded into any address. 617 * 618 * In addition, initrd_max is uint32_t simply because QEMU doesn't 619 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 620 * field). 621 * 622 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 623 */ 624 initrd_max = UINT32_MAX; 625 } else if (protocol >= 0x203) { 626 initrd_max = ldl_p(header + 0x22c); 627 } else { 628 initrd_max = 0x37ffffff; 629 } 630 631 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 632 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 633 } 634 635 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 636 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 637 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 638 639 if (protocol >= 0x202) { 640 stl_p(header + 0x228, cmdline_addr); 641 } else { 642 stw_p(header + 0x20, 0xA33F); 643 stw_p(header + 0x22, cmdline_addr - real_addr); 644 } 645 646 /* handle vga= parameter */ 647 vmode = strstr(kernel_cmdline, "vga="); 648 if (vmode) { 649 unsigned int video_mode; 650 const char *end; 651 int ret; 652 /* skip "vga=" */ 653 vmode += 4; 654 if (!strncmp(vmode, "normal", 6)) { 655 video_mode = 0xffff; 656 } else if (!strncmp(vmode, "ext", 3)) { 657 video_mode = 0xfffe; 658 } else if (!strncmp(vmode, "ask", 3)) { 659 video_mode = 0xfffd; 660 } else { 661 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 662 if (ret != 0 || (*end && *end != ' ')) { 663 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 664 exit(1); 665 } 666 } 667 stw_p(header + 0x1fa, video_mode); 668 } 669 670 /* loader type */ 671 /* 672 * High nybble = B reserved for QEMU; low nybble is revision number. 673 * If this code is substantially changed, you may want to consider 674 * incrementing the revision. 675 */ 676 if (protocol >= 0x200) { 677 header[0x210] = 0xB0; 678 } 679 /* heap */ 680 if (protocol >= 0x201) { 681 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 682 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 683 } 684 685 /* load initrd */ 686 if (initrd_filename) { 687 GMappedFile *mapped_file; 688 gsize initrd_size; 689 gchar *initrd_data; 690 GError *gerr = NULL; 691 692 if (protocol < 0x200) { 693 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 694 exit(1); 695 } 696 697 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 698 if (!mapped_file) { 699 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 700 initrd_filename, gerr->message); 701 exit(1); 702 } 703 x86ms->initrd_mapped_file = mapped_file; 704 705 initrd_data = g_mapped_file_get_contents(mapped_file); 706 initrd_size = g_mapped_file_get_length(mapped_file); 707 if (initrd_size >= initrd_max) { 708 fprintf(stderr, "qemu: initrd is too large, cannot support." 709 "(max: %"PRIu32", need %"PRId64")\n", 710 initrd_max, (uint64_t)initrd_size); 711 exit(1); 712 } 713 714 initrd_addr = (initrd_max - initrd_size) & ~4095; 715 716 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 717 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 718 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 719 720 stl_p(header + 0x218, initrd_addr); 721 stl_p(header + 0x21c, initrd_size); 722 } 723 724 /* load kernel and setup */ 725 setup_size = header[0x1f1]; 726 if (setup_size == 0) { 727 setup_size = 4; 728 } 729 setup_size = (setup_size + 1) * 512; 730 if (setup_size > kernel_size) { 731 fprintf(stderr, "qemu: invalid kernel header\n"); 732 exit(1); 733 } 734 kernel_size -= setup_size; 735 736 setup = g_malloc(setup_size); 737 kernel = g_malloc(kernel_size); 738 fseek(f, 0, SEEK_SET); 739 if (fread(setup, 1, setup_size, f) != setup_size) { 740 fprintf(stderr, "fread() failed\n"); 741 exit(1); 742 } 743 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 744 fprintf(stderr, "fread() failed\n"); 745 exit(1); 746 } 747 fclose(f); 748 749 /* append dtb to kernel */ 750 if (dtb_filename) { 751 if (protocol < 0x209) { 752 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 753 exit(1); 754 } 755 756 dtb_size = get_image_size(dtb_filename); 757 if (dtb_size <= 0) { 758 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 759 dtb_filename, strerror(errno)); 760 exit(1); 761 } 762 763 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 764 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 765 kernel = g_realloc(kernel, kernel_size); 766 767 stq_p(header + 0x250, prot_addr + setup_data_offset); 768 769 setup_data = (struct setup_data *)(kernel + setup_data_offset); 770 setup_data->next = 0; 771 setup_data->type = cpu_to_le32(SETUP_DTB); 772 setup_data->len = cpu_to_le32(dtb_size); 773 774 load_image_size(dtb_filename, setup_data->data, dtb_size); 775 } 776 777 memcpy(setup, header, MIN(sizeof(header), setup_size)); 778 779 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 780 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 781 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 782 783 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 784 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 785 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 786 787 option_rom[nb_option_roms].bootindex = 0; 788 option_rom[nb_option_roms].name = "linuxboot.bin"; 789 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 790 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 791 } 792 nb_option_roms++; 793 } 794 795 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw) 796 { 797 char *filename; 798 MemoryRegion *bios, *isa_bios; 799 int bios_size, isa_bios_size; 800 int ret; 801 802 /* BIOS load */ 803 if (bios_name == NULL) { 804 bios_name = BIOS_FILENAME; 805 } 806 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 807 if (filename) { 808 bios_size = get_image_size(filename); 809 } else { 810 bios_size = -1; 811 } 812 if (bios_size <= 0 || 813 (bios_size % 65536) != 0) { 814 goto bios_error; 815 } 816 bios = g_malloc(sizeof(*bios)); 817 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); 818 if (!isapc_ram_fw) { 819 memory_region_set_readonly(bios, true); 820 } 821 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 822 if (ret != 0) { 823 bios_error: 824 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 825 exit(1); 826 } 827 g_free(filename); 828 829 /* map the last 128KB of the BIOS in ISA space */ 830 isa_bios_size = MIN(bios_size, 128 * KiB); 831 isa_bios = g_malloc(sizeof(*isa_bios)); 832 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 833 bios_size - isa_bios_size, isa_bios_size); 834 memory_region_add_subregion_overlap(rom_memory, 835 0x100000 - isa_bios_size, 836 isa_bios, 837 1); 838 if (!isapc_ram_fw) { 839 memory_region_set_readonly(isa_bios, true); 840 } 841 842 /* map all the bios at the top of memory */ 843 memory_region_add_subregion(rom_memory, 844 (uint32_t)(-bios_size), 845 bios); 846 } 847 848 bool x86_machine_is_smm_enabled(X86MachineState *x86ms) 849 { 850 bool smm_available = false; 851 852 if (x86ms->smm == ON_OFF_AUTO_OFF) { 853 return false; 854 } 855 856 if (tcg_enabled() || qtest_enabled()) { 857 smm_available = true; 858 } else if (kvm_enabled()) { 859 smm_available = kvm_has_smm(); 860 } 861 862 if (smm_available) { 863 return true; 864 } 865 866 if (x86ms->smm == ON_OFF_AUTO_ON) { 867 error_report("System Management Mode not supported by this hypervisor."); 868 exit(1); 869 } 870 return false; 871 } 872 873 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name, 874 void *opaque, Error **errp) 875 { 876 X86MachineState *x86ms = X86_MACHINE(obj); 877 OnOffAuto smm = x86ms->smm; 878 879 visit_type_OnOffAuto(v, name, &smm, errp); 880 } 881 882 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name, 883 void *opaque, Error **errp) 884 { 885 X86MachineState *x86ms = X86_MACHINE(obj); 886 887 visit_type_OnOffAuto(v, name, &x86ms->smm, errp); 888 } 889 890 bool x86_machine_is_acpi_enabled(X86MachineState *x86ms) 891 { 892 if (x86ms->acpi == ON_OFF_AUTO_OFF) { 893 return false; 894 } 895 return true; 896 } 897 898 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name, 899 void *opaque, Error **errp) 900 { 901 X86MachineState *x86ms = X86_MACHINE(obj); 902 OnOffAuto acpi = x86ms->acpi; 903 904 visit_type_OnOffAuto(v, name, &acpi, errp); 905 } 906 907 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name, 908 void *opaque, Error **errp) 909 { 910 X86MachineState *x86ms = X86_MACHINE(obj); 911 912 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp); 913 } 914 915 static void x86_machine_initfn(Object *obj) 916 { 917 X86MachineState *x86ms = X86_MACHINE(obj); 918 919 x86ms->smm = ON_OFF_AUTO_AUTO; 920 x86ms->acpi = ON_OFF_AUTO_AUTO; 921 x86ms->smp_dies = 1; 922 923 x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx; 924 x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid; 925 x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids; 926 x86ms->apicid_pkg_offset = apicid_pkg_offset; 927 } 928 929 static void x86_machine_class_init(ObjectClass *oc, void *data) 930 { 931 MachineClass *mc = MACHINE_CLASS(oc); 932 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); 933 NMIClass *nc = NMI_CLASS(oc); 934 935 mc->cpu_index_to_instance_props = x86_cpu_index_to_props; 936 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; 937 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; 938 x86mc->compat_apic_id_mode = false; 939 x86mc->save_tsc_khz = true; 940 nc->nmi_monitor_handler = x86_nmi; 941 942 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto", 943 x86_machine_get_smm, x86_machine_set_smm, 944 NULL, NULL); 945 object_class_property_set_description(oc, X86_MACHINE_SMM, 946 "Enable SMM"); 947 948 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto", 949 x86_machine_get_acpi, x86_machine_set_acpi, 950 NULL, NULL); 951 object_class_property_set_description(oc, X86_MACHINE_ACPI, 952 "Enable ACPI"); 953 } 954 955 static const TypeInfo x86_machine_info = { 956 .name = TYPE_X86_MACHINE, 957 .parent = TYPE_MACHINE, 958 .abstract = true, 959 .instance_size = sizeof(X86MachineState), 960 .instance_init = x86_machine_initfn, 961 .class_size = sizeof(X86MachineClass), 962 .class_init = x86_machine_class_init, 963 .interfaces = (InterfaceInfo[]) { 964 { TYPE_NMI }, 965 { } 966 }, 967 }; 968 969 static void x86_machine_register_types(void) 970 { 971 type_register_static(&x86_machine_info); 972 } 973 974 type_init(x86_machine_register_types) 975