xref: /openbmc/qemu/hw/i386/x86.c (revision f0bb276bf8d5b3df57697357b802ca76e4cdf05f)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
37 
38 #include "hw/i386/x86.h"
39 #include "hw/i386/pc.h"
40 #include "target/i386/cpu.h"
41 #include "hw/i386/topology.h"
42 #include "hw/i386/fw_cfg.h"
43 
44 #include "hw/acpi/cpu_hotplug.h"
45 #include "hw/nmi.h"
46 #include "hw/loader.h"
47 #include "multiboot.h"
48 #include "elf.h"
49 #include "standard-headers/asm-x86/bootparam.h"
50 
51 #define BIOS_FILENAME "bios.bin"
52 
53 /* Physical Address of PVH entry point read from kernel ELF NOTE */
54 static size_t pvh_start_addr;
55 
56 /*
57  * Calculates initial APIC ID for a specific CPU index
58  *
59  * Currently we need to be able to calculate the APIC ID from the CPU index
60  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
61  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
62  * all CPUs up to max_cpus.
63  */
64 uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms,
65                                     unsigned int cpu_index)
66 {
67     MachineState *ms = MACHINE(pcms);
68     X86MachineState *x86ms = X86_MACHINE(pcms);
69     X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
70     uint32_t correct_id;
71     static bool warned;
72 
73     correct_id = x86_apicid_from_cpu_idx(x86ms->smp_dies, ms->smp.cores,
74                                          ms->smp.threads, cpu_index);
75     if (x86mc->compat_apic_id_mode) {
76         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
77             error_report("APIC IDs set in compatibility mode, "
78                          "CPU topology won't match the configuration");
79             warned = true;
80         }
81         return cpu_index;
82     } else {
83         return correct_id;
84     }
85 }
86 
87 void x86_cpu_new(PCMachineState *pcms, int64_t apic_id, Error **errp)
88 {
89     Object *cpu = NULL;
90     Error *local_err = NULL;
91     CPUX86State *env = NULL;
92     X86MachineState *x86ms = X86_MACHINE(pcms);
93 
94     cpu = object_new(MACHINE(pcms)->cpu_type);
95 
96     env = &X86_CPU(cpu)->env;
97     env->nr_dies = x86ms->smp_dies;
98 
99     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
100     object_property_set_bool(cpu, true, "realized", &local_err);
101 
102     object_unref(cpu);
103     error_propagate(errp, local_err);
104 }
105 
106 void x86_cpus_init(PCMachineState *pcms)
107 {
108     int i;
109     const CPUArchIdList *possible_cpus;
110     MachineState *ms = MACHINE(pcms);
111     MachineClass *mc = MACHINE_GET_CLASS(pcms);
112     PCMachineClass *pcmc = PC_MACHINE_CLASS(mc);
113     X86MachineState *x86ms = X86_MACHINE(pcms);
114 
115     x86_cpu_set_default_version(pcmc->default_cpu_version);
116 
117     /*
118      * Calculates the limit to CPU APIC ID values
119      *
120      * Limit for the APIC ID value, so that all
121      * CPU APIC IDs are < pcms->apic_id_limit.
122      *
123      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
124      */
125     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(pcms,
126                                                       ms->smp.max_cpus - 1) + 1;
127     possible_cpus = mc->possible_cpu_arch_ids(ms);
128     for (i = 0; i < ms->smp.cpus; i++) {
129         x86_cpu_new(pcms, possible_cpus->cpus[i].arch_id, &error_fatal);
130     }
131 }
132 
133 CpuInstanceProperties
134 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
135 {
136     MachineClass *mc = MACHINE_GET_CLASS(ms);
137     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
138 
139     assert(cpu_index < possible_cpus->len);
140     return possible_cpus->cpus[cpu_index].props;
141 }
142 
143 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
144 {
145    X86CPUTopoInfo topo;
146    X86MachineState *x86ms = X86_MACHINE(ms);
147 
148    assert(idx < ms->possible_cpus->len);
149    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
150                             x86ms->smp_dies, ms->smp.cores,
151                             ms->smp.threads, &topo);
152    return topo.pkg_id % ms->numa_state->num_nodes;
153 }
154 
155 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
156 {
157     PCMachineState *pcms = PC_MACHINE(ms);
158     X86MachineState *x86ms = X86_MACHINE(ms);
159     int i;
160     unsigned int max_cpus = ms->smp.max_cpus;
161 
162     if (ms->possible_cpus) {
163         /*
164          * make sure that max_cpus hasn't changed since the first use, i.e.
165          * -smp hasn't been parsed after it
166          */
167         assert(ms->possible_cpus->len == max_cpus);
168         return ms->possible_cpus;
169     }
170 
171     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
172                                   sizeof(CPUArchId) * max_cpus);
173     ms->possible_cpus->len = max_cpus;
174     for (i = 0; i < ms->possible_cpus->len; i++) {
175         X86CPUTopoInfo topo;
176 
177         ms->possible_cpus->cpus[i].type = ms->cpu_type;
178         ms->possible_cpus->cpus[i].vcpus_count = 1;
179         ms->possible_cpus->cpus[i].arch_id =
180             x86_cpu_apic_id_from_index(pcms, i);
181         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
182                                  x86ms->smp_dies, ms->smp.cores,
183                                  ms->smp.threads, &topo);
184         ms->possible_cpus->cpus[i].props.has_socket_id = true;
185         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
186         if (x86ms->smp_dies > 1) {
187             ms->possible_cpus->cpus[i].props.has_die_id = true;
188             ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
189         }
190         ms->possible_cpus->cpus[i].props.has_core_id = true;
191         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
192         ms->possible_cpus->cpus[i].props.has_thread_id = true;
193         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
194     }
195     return ms->possible_cpus;
196 }
197 
198 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
199 {
200     /* cpu index isn't used */
201     CPUState *cs;
202 
203     CPU_FOREACH(cs) {
204         X86CPU *cpu = X86_CPU(cs);
205 
206         if (!cpu->apic_state) {
207             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
208         } else {
209             apic_deliver_nmi(cpu->apic_state);
210         }
211     }
212 }
213 
214 static long get_file_size(FILE *f)
215 {
216     long where, size;
217 
218     /* XXX: on Unix systems, using fstat() probably makes more sense */
219 
220     where = ftell(f);
221     fseek(f, 0, SEEK_END);
222     size = ftell(f);
223     fseek(f, where, SEEK_SET);
224 
225     return size;
226 }
227 
228 struct setup_data {
229     uint64_t next;
230     uint32_t type;
231     uint32_t len;
232     uint8_t data[0];
233 } __attribute__((packed));
234 
235 
236 /*
237  * The entry point into the kernel for PVH boot is different from
238  * the native entry point.  The PVH entry is defined by the x86/HVM
239  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
240  *
241  * This function is passed to load_elf() when it is called from
242  * load_elfboot() which then additionally checks for an ELF Note of
243  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
244  * parse the PVH entry address from the ELF Note.
245  *
246  * Due to trickery in elf_opts.h, load_elf() is actually available as
247  * load_elf32() or load_elf64() and this routine needs to be able
248  * to deal with being called as 32 or 64 bit.
249  *
250  * The address of the PVH entry point is saved to the 'pvh_start_addr'
251  * global variable.  (although the entry point is 32-bit, the kernel
252  * binary can be either 32-bit or 64-bit).
253  */
254 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
255 {
256     size_t *elf_note_data_addr;
257 
258     /* Check if ELF Note header passed in is valid */
259     if (arg1 == NULL) {
260         return 0;
261     }
262 
263     if (is64) {
264         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
265         uint64_t nhdr_size64 = sizeof(struct elf64_note);
266         uint64_t phdr_align = *(uint64_t *)arg2;
267         uint64_t nhdr_namesz = nhdr64->n_namesz;
268 
269         elf_note_data_addr =
270             ((void *)nhdr64) + nhdr_size64 +
271             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
272     } else {
273         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
274         uint32_t nhdr_size32 = sizeof(struct elf32_note);
275         uint32_t phdr_align = *(uint32_t *)arg2;
276         uint32_t nhdr_namesz = nhdr32->n_namesz;
277 
278         elf_note_data_addr =
279             ((void *)nhdr32) + nhdr_size32 +
280             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
281     }
282 
283     pvh_start_addr = *elf_note_data_addr;
284 
285     return pvh_start_addr;
286 }
287 
288 static bool load_elfboot(const char *kernel_filename,
289                          int kernel_file_size,
290                          uint8_t *header,
291                          size_t pvh_xen_start_addr,
292                          FWCfgState *fw_cfg)
293 {
294     uint32_t flags = 0;
295     uint32_t mh_load_addr = 0;
296     uint32_t elf_kernel_size = 0;
297     uint64_t elf_entry;
298     uint64_t elf_low, elf_high;
299     int kernel_size;
300 
301     if (ldl_p(header) != 0x464c457f) {
302         return false; /* no elfboot */
303     }
304 
305     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
306     flags = elf_is64 ?
307         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
308 
309     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
310         error_report("elfboot unsupported flags = %x", flags);
311         exit(1);
312     }
313 
314     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
315     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
316                            NULL, &elf_note_type, &elf_entry,
317                            &elf_low, &elf_high, 0, I386_ELF_MACHINE,
318                            0, 0);
319 
320     if (kernel_size < 0) {
321         error_report("Error while loading elf kernel");
322         exit(1);
323     }
324     mh_load_addr = elf_low;
325     elf_kernel_size = elf_high - elf_low;
326 
327     if (pvh_start_addr == 0) {
328         error_report("Error loading uncompressed kernel without PVH ELF Note");
329         exit(1);
330     }
331     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
332     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
333     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
334 
335     return true;
336 }
337 
338 void x86_load_linux(PCMachineState *pcms,
339                     FWCfgState *fw_cfg)
340 {
341     uint16_t protocol;
342     int setup_size, kernel_size, cmdline_size;
343     int dtb_size, setup_data_offset;
344     uint32_t initrd_max;
345     uint8_t header[8192], *setup, *kernel;
346     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
347     FILE *f;
348     char *vmode;
349     MachineState *machine = MACHINE(pcms);
350     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
351     X86MachineState *x86ms = X86_MACHINE(pcms);
352     struct setup_data *setup_data;
353     const char *kernel_filename = machine->kernel_filename;
354     const char *initrd_filename = machine->initrd_filename;
355     const char *dtb_filename = machine->dtb;
356     const char *kernel_cmdline = machine->kernel_cmdline;
357 
358     /* Align to 16 bytes as a paranoia measure */
359     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
360 
361     /* load the kernel header */
362     f = fopen(kernel_filename, "rb");
363     if (!f) {
364         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
365                 kernel_filename, strerror(errno));
366         exit(1);
367     }
368 
369     kernel_size = get_file_size(f);
370     if (!kernel_size ||
371         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
372         MIN(ARRAY_SIZE(header), kernel_size)) {
373         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
374                 kernel_filename, strerror(errno));
375         exit(1);
376     }
377 
378     /* kernel protocol version */
379     if (ldl_p(header + 0x202) == 0x53726448) {
380         protocol = lduw_p(header + 0x206);
381     } else {
382         /*
383          * This could be a multiboot kernel. If it is, let's stop treating it
384          * like a Linux kernel.
385          * Note: some multiboot images could be in the ELF format (the same of
386          * PVH), so we try multiboot first since we check the multiboot magic
387          * header before to load it.
388          */
389         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
390                            kernel_cmdline, kernel_size, header)) {
391             return;
392         }
393         /*
394          * Check if the file is an uncompressed kernel file (ELF) and load it,
395          * saving the PVH entry point used by the x86/HVM direct boot ABI.
396          * If load_elfboot() is successful, populate the fw_cfg info.
397          */
398         if (pcmc->pvh_enabled &&
399             load_elfboot(kernel_filename, kernel_size,
400                          header, pvh_start_addr, fw_cfg)) {
401             fclose(f);
402 
403             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
404                 strlen(kernel_cmdline) + 1);
405             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
406 
407             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
408             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
409                              header, sizeof(header));
410 
411             /* load initrd */
412             if (initrd_filename) {
413                 GMappedFile *mapped_file;
414                 gsize initrd_size;
415                 gchar *initrd_data;
416                 GError *gerr = NULL;
417 
418                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
419                 if (!mapped_file) {
420                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
421                             initrd_filename, gerr->message);
422                     exit(1);
423                 }
424                 x86ms->initrd_mapped_file = mapped_file;
425 
426                 initrd_data = g_mapped_file_get_contents(mapped_file);
427                 initrd_size = g_mapped_file_get_length(mapped_file);
428                 initrd_max =
429                     x86ms->below_4g_mem_size - pcmc->acpi_data_size - 1;
430                 if (initrd_size >= initrd_max) {
431                     fprintf(stderr, "qemu: initrd is too large, cannot support."
432                             "(max: %"PRIu32", need %"PRId64")\n",
433                             initrd_max, (uint64_t)initrd_size);
434                     exit(1);
435                 }
436 
437                 initrd_addr = (initrd_max - initrd_size) & ~4095;
438 
439                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
440                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
441                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
442                                  initrd_size);
443             }
444 
445             option_rom[nb_option_roms].bootindex = 0;
446             option_rom[nb_option_roms].name = "pvh.bin";
447             nb_option_roms++;
448 
449             return;
450         }
451         protocol = 0;
452     }
453 
454     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
455         /* Low kernel */
456         real_addr    = 0x90000;
457         cmdline_addr = 0x9a000 - cmdline_size;
458         prot_addr    = 0x10000;
459     } else if (protocol < 0x202) {
460         /* High but ancient kernel */
461         real_addr    = 0x90000;
462         cmdline_addr = 0x9a000 - cmdline_size;
463         prot_addr    = 0x100000;
464     } else {
465         /* High and recent kernel */
466         real_addr    = 0x10000;
467         cmdline_addr = 0x20000;
468         prot_addr    = 0x100000;
469     }
470 
471     /* highest address for loading the initrd */
472     if (protocol >= 0x20c &&
473         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
474         /*
475          * Linux has supported initrd up to 4 GB for a very long time (2007,
476          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
477          * though it only sets initrd_max to 2 GB to "work around bootloader
478          * bugs". Luckily, QEMU firmware(which does something like bootloader)
479          * has supported this.
480          *
481          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
482          * be loaded into any address.
483          *
484          * In addition, initrd_max is uint32_t simply because QEMU doesn't
485          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
486          * field).
487          *
488          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
489          */
490         initrd_max = UINT32_MAX;
491     } else if (protocol >= 0x203) {
492         initrd_max = ldl_p(header + 0x22c);
493     } else {
494         initrd_max = 0x37ffffff;
495     }
496 
497     if (initrd_max >= x86ms->below_4g_mem_size - pcmc->acpi_data_size) {
498         initrd_max = x86ms->below_4g_mem_size - pcmc->acpi_data_size - 1;
499     }
500 
501     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
502     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
503     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
504 
505     if (protocol >= 0x202) {
506         stl_p(header + 0x228, cmdline_addr);
507     } else {
508         stw_p(header + 0x20, 0xA33F);
509         stw_p(header + 0x22, cmdline_addr - real_addr);
510     }
511 
512     /* handle vga= parameter */
513     vmode = strstr(kernel_cmdline, "vga=");
514     if (vmode) {
515         unsigned int video_mode;
516         int ret;
517         /* skip "vga=" */
518         vmode += 4;
519         if (!strncmp(vmode, "normal", 6)) {
520             video_mode = 0xffff;
521         } else if (!strncmp(vmode, "ext", 3)) {
522             video_mode = 0xfffe;
523         } else if (!strncmp(vmode, "ask", 3)) {
524             video_mode = 0xfffd;
525         } else {
526             ret = qemu_strtoui(vmode, NULL, 0, &video_mode);
527             if (ret != 0) {
528                 fprintf(stderr, "qemu: can't parse 'vga' parameter: %s\n",
529                         strerror(-ret));
530                 exit(1);
531             }
532         }
533         stw_p(header + 0x1fa, video_mode);
534     }
535 
536     /* loader type */
537     /*
538      * High nybble = B reserved for QEMU; low nybble is revision number.
539      * If this code is substantially changed, you may want to consider
540      * incrementing the revision.
541      */
542     if (protocol >= 0x200) {
543         header[0x210] = 0xB0;
544     }
545     /* heap */
546     if (protocol >= 0x201) {
547         header[0x211] |= 0x80; /* CAN_USE_HEAP */
548         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
549     }
550 
551     /* load initrd */
552     if (initrd_filename) {
553         GMappedFile *mapped_file;
554         gsize initrd_size;
555         gchar *initrd_data;
556         GError *gerr = NULL;
557 
558         if (protocol < 0x200) {
559             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
560             exit(1);
561         }
562 
563         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
564         if (!mapped_file) {
565             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
566                     initrd_filename, gerr->message);
567             exit(1);
568         }
569         x86ms->initrd_mapped_file = mapped_file;
570 
571         initrd_data = g_mapped_file_get_contents(mapped_file);
572         initrd_size = g_mapped_file_get_length(mapped_file);
573         if (initrd_size >= initrd_max) {
574             fprintf(stderr, "qemu: initrd is too large, cannot support."
575                     "(max: %"PRIu32", need %"PRId64")\n",
576                     initrd_max, (uint64_t)initrd_size);
577             exit(1);
578         }
579 
580         initrd_addr = (initrd_max - initrd_size) & ~4095;
581 
582         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
583         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
584         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
585 
586         stl_p(header + 0x218, initrd_addr);
587         stl_p(header + 0x21c, initrd_size);
588     }
589 
590     /* load kernel and setup */
591     setup_size = header[0x1f1];
592     if (setup_size == 0) {
593         setup_size = 4;
594     }
595     setup_size = (setup_size + 1) * 512;
596     if (setup_size > kernel_size) {
597         fprintf(stderr, "qemu: invalid kernel header\n");
598         exit(1);
599     }
600     kernel_size -= setup_size;
601 
602     setup  = g_malloc(setup_size);
603     kernel = g_malloc(kernel_size);
604     fseek(f, 0, SEEK_SET);
605     if (fread(setup, 1, setup_size, f) != setup_size) {
606         fprintf(stderr, "fread() failed\n");
607         exit(1);
608     }
609     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
610         fprintf(stderr, "fread() failed\n");
611         exit(1);
612     }
613     fclose(f);
614 
615     /* append dtb to kernel */
616     if (dtb_filename) {
617         if (protocol < 0x209) {
618             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
619             exit(1);
620         }
621 
622         dtb_size = get_image_size(dtb_filename);
623         if (dtb_size <= 0) {
624             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
625                     dtb_filename, strerror(errno));
626             exit(1);
627         }
628 
629         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
630         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
631         kernel = g_realloc(kernel, kernel_size);
632 
633         stq_p(header + 0x250, prot_addr + setup_data_offset);
634 
635         setup_data = (struct setup_data *)(kernel + setup_data_offset);
636         setup_data->next = 0;
637         setup_data->type = cpu_to_le32(SETUP_DTB);
638         setup_data->len = cpu_to_le32(dtb_size);
639 
640         load_image_size(dtb_filename, setup_data->data, dtb_size);
641     }
642 
643     memcpy(setup, header, MIN(sizeof(header), setup_size));
644 
645     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
646     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
647     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
648 
649     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
650     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
651     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
652 
653     option_rom[nb_option_roms].bootindex = 0;
654     option_rom[nb_option_roms].name = "linuxboot.bin";
655     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
656         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
657     }
658     nb_option_roms++;
659 }
660 
661 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
662 {
663     char *filename;
664     MemoryRegion *bios, *isa_bios;
665     int bios_size, isa_bios_size;
666     int ret;
667 
668     /* BIOS load */
669     if (bios_name == NULL) {
670         bios_name = BIOS_FILENAME;
671     }
672     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
673     if (filename) {
674         bios_size = get_image_size(filename);
675     } else {
676         bios_size = -1;
677     }
678     if (bios_size <= 0 ||
679         (bios_size % 65536) != 0) {
680         goto bios_error;
681     }
682     bios = g_malloc(sizeof(*bios));
683     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
684     if (!isapc_ram_fw) {
685         memory_region_set_readonly(bios, true);
686     }
687     ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
688     if (ret != 0) {
689     bios_error:
690         fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
691         exit(1);
692     }
693     g_free(filename);
694 
695     /* map the last 128KB of the BIOS in ISA space */
696     isa_bios_size = MIN(bios_size, 128 * KiB);
697     isa_bios = g_malloc(sizeof(*isa_bios));
698     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
699                              bios_size - isa_bios_size, isa_bios_size);
700     memory_region_add_subregion_overlap(rom_memory,
701                                         0x100000 - isa_bios_size,
702                                         isa_bios,
703                                         1);
704     if (!isapc_ram_fw) {
705         memory_region_set_readonly(isa_bios, true);
706     }
707 
708     /* map all the bios at the top of memory */
709     memory_region_add_subregion(rom_memory,
710                                 (uint32_t)(-bios_size),
711                                 bios);
712 }
713 
714 static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
715                                              const char *name, void *opaque,
716                                              Error **errp)
717 {
718     X86MachineState *x86ms = X86_MACHINE(obj);
719     uint64_t value = x86ms->max_ram_below_4g;
720 
721     visit_type_size(v, name, &value, errp);
722 }
723 
724 static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
725                                              const char *name, void *opaque,
726                                              Error **errp)
727 {
728     X86MachineState *x86ms = X86_MACHINE(obj);
729     Error *error = NULL;
730     uint64_t value;
731 
732     visit_type_size(v, name, &value, &error);
733     if (error) {
734         error_propagate(errp, error);
735         return;
736     }
737     if (value > 4 * GiB) {
738         error_setg(&error,
739                    "Machine option 'max-ram-below-4g=%"PRIu64
740                    "' expects size less than or equal to 4G", value);
741         error_propagate(errp, error);
742         return;
743     }
744 
745     if (value < 1 * MiB) {
746         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
747                     "BIOS may not work with less than 1MiB", value);
748     }
749 
750     x86ms->max_ram_below_4g = value;
751 }
752 
753 static void x86_machine_initfn(Object *obj)
754 {
755     X86MachineState *x86ms = X86_MACHINE(obj);
756 
757     x86ms->max_ram_below_4g = 0; /* use default */
758     x86ms->smp_dies = 1;
759 }
760 
761 static void x86_machine_class_init(ObjectClass *oc, void *data)
762 {
763     MachineClass *mc = MACHINE_CLASS(oc);
764     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
765     NMIClass *nc = NMI_CLASS(oc);
766 
767     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
768     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
769     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
770     x86mc->compat_apic_id_mode = false;
771     nc->nmi_monitor_handler = x86_nmi;
772 
773     object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size",
774         x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g,
775         NULL, NULL, &error_abort);
776 
777     object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G,
778         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
779 }
780 
781 static const TypeInfo x86_machine_info = {
782     .name = TYPE_X86_MACHINE,
783     .parent = TYPE_MACHINE,
784     .abstract = true,
785     .instance_size = sizeof(X86MachineState),
786     .instance_init = x86_machine_initfn,
787     .class_size = sizeof(X86MachineClass),
788     .class_init = x86_machine_class_init,
789     .interfaces = (InterfaceInfo[]) {
790          { TYPE_NMI },
791          { }
792     },
793 };
794 
795 static void x86_machine_register_types(void)
796 {
797     type_register_static(&x86_machine_info);
798 }
799 
800 type_init(x86_machine_register_types)
801