xref: /openbmc/qemu/hw/i386/x86.c (revision ea06a006)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qmp/qerror.h"
32 #include "qapi/qapi-visit-common.h"
33 #include "qapi/clone-visitor.h"
34 #include "qapi/qapi-visit-machine.h"
35 #include "qapi/visitor.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/whpx.h"
38 #include "sysemu/numa.h"
39 #include "sysemu/replay.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/cpu-timers.h"
42 #include "trace.h"
43 
44 #include "hw/i386/x86.h"
45 #include "target/i386/cpu.h"
46 #include "hw/i386/topology.h"
47 #include "hw/i386/fw_cfg.h"
48 #include "hw/intc/i8259.h"
49 #include "hw/rtc/mc146818rtc.h"
50 #include "target/i386/sev.h"
51 
52 #include "hw/acpi/cpu_hotplug.h"
53 #include "hw/irq.h"
54 #include "hw/nmi.h"
55 #include "hw/loader.h"
56 #include "multiboot.h"
57 #include "elf.h"
58 #include "standard-headers/asm-x86/bootparam.h"
59 #include CONFIG_DEVICES
60 #include "kvm/kvm_i386.h"
61 
62 /* Physical Address of PVH entry point read from kernel ELF NOTE */
63 static size_t pvh_start_addr;
64 
65 inline void init_topo_info(X86CPUTopoInfo *topo_info,
66                            const X86MachineState *x86ms)
67 {
68     MachineState *ms = MACHINE(x86ms);
69 
70     topo_info->dies_per_pkg = ms->smp.dies;
71     topo_info->cores_per_die = ms->smp.cores;
72     topo_info->threads_per_core = ms->smp.threads;
73 }
74 
75 /*
76  * Calculates initial APIC ID for a specific CPU index
77  *
78  * Currently we need to be able to calculate the APIC ID from the CPU index
79  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
80  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
81  * all CPUs up to max_cpus.
82  */
83 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
84                                     unsigned int cpu_index)
85 {
86     X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
87     X86CPUTopoInfo topo_info;
88     uint32_t correct_id;
89     static bool warned;
90 
91     init_topo_info(&topo_info, x86ms);
92 
93     correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index);
94     if (x86mc->compat_apic_id_mode) {
95         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
96             error_report("APIC IDs set in compatibility mode, "
97                          "CPU topology won't match the configuration");
98             warned = true;
99         }
100         return cpu_index;
101     } else {
102         return correct_id;
103     }
104 }
105 
106 
107 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
108 {
109     Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
110 
111     if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
112         goto out;
113     }
114     qdev_realize(DEVICE(cpu), NULL, errp);
115 
116 out:
117     object_unref(cpu);
118 }
119 
120 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
121 {
122     int i;
123     const CPUArchIdList *possible_cpus;
124     MachineState *ms = MACHINE(x86ms);
125     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
126 
127     x86_cpu_set_default_version(default_cpu_version);
128 
129     /*
130      * Calculates the limit to CPU APIC ID values
131      *
132      * Limit for the APIC ID value, so that all
133      * CPU APIC IDs are < x86ms->apic_id_limit.
134      *
135      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
136      */
137     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
138                                                       ms->smp.max_cpus - 1) + 1;
139     possible_cpus = mc->possible_cpu_arch_ids(ms);
140     for (i = 0; i < ms->smp.cpus; i++) {
141         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
142     }
143 }
144 
145 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
146 {
147     if (cpus_count > 0xff) {
148         /*
149          * If the number of CPUs can't be represented in 8 bits, the
150          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
151          * to make old BIOSes fail more predictably.
152          */
153         rtc_set_memory(rtc, 0x5f, 0);
154     } else {
155         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
156     }
157 }
158 
159 static int x86_apic_cmp(const void *a, const void *b)
160 {
161    CPUArchId *apic_a = (CPUArchId *)a;
162    CPUArchId *apic_b = (CPUArchId *)b;
163 
164    return apic_a->arch_id - apic_b->arch_id;
165 }
166 
167 /*
168  * returns pointer to CPUArchId descriptor that matches CPU's apic_id
169  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
170  * entry corresponding to CPU's apic_id returns NULL.
171  */
172 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
173 {
174     CPUArchId apic_id, *found_cpu;
175 
176     apic_id.arch_id = id;
177     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
178         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
179         x86_apic_cmp);
180     if (found_cpu && idx) {
181         *idx = found_cpu - ms->possible_cpus->cpus;
182     }
183     return found_cpu;
184 }
185 
186 void x86_cpu_plug(HotplugHandler *hotplug_dev,
187                   DeviceState *dev, Error **errp)
188 {
189     CPUArchId *found_cpu;
190     Error *local_err = NULL;
191     X86CPU *cpu = X86_CPU(dev);
192     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
193 
194     if (x86ms->acpi_dev) {
195         hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
196         if (local_err) {
197             goto out;
198         }
199     }
200 
201     /* increment the number of CPUs */
202     x86ms->boot_cpus++;
203     if (x86ms->rtc) {
204         x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
205     }
206     if (x86ms->fw_cfg) {
207         fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
208     }
209 
210     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
211     found_cpu->cpu = OBJECT(dev);
212 out:
213     error_propagate(errp, local_err);
214 }
215 
216 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
217                                DeviceState *dev, Error **errp)
218 {
219     int idx = -1;
220     X86CPU *cpu = X86_CPU(dev);
221     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
222 
223     if (!x86ms->acpi_dev) {
224         error_setg(errp, "CPU hot unplug not supported without ACPI");
225         return;
226     }
227 
228     x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
229     assert(idx != -1);
230     if (idx == 0) {
231         error_setg(errp, "Boot CPU is unpluggable");
232         return;
233     }
234 
235     hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
236                                    errp);
237 }
238 
239 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
240                        DeviceState *dev, Error **errp)
241 {
242     CPUArchId *found_cpu;
243     Error *local_err = NULL;
244     X86CPU *cpu = X86_CPU(dev);
245     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
246 
247     hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
248     if (local_err) {
249         goto out;
250     }
251 
252     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
253     found_cpu->cpu = NULL;
254     qdev_unrealize(dev);
255 
256     /* decrement the number of CPUs */
257     x86ms->boot_cpus--;
258     /* Update the number of CPUs in CMOS */
259     x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
260     fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
261  out:
262     error_propagate(errp, local_err);
263 }
264 
265 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
266                       DeviceState *dev, Error **errp)
267 {
268     int idx;
269     CPUState *cs;
270     CPUArchId *cpu_slot;
271     X86CPUTopoIDs topo_ids;
272     X86CPU *cpu = X86_CPU(dev);
273     CPUX86State *env = &cpu->env;
274     MachineState *ms = MACHINE(hotplug_dev);
275     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
276     unsigned int smp_cores = ms->smp.cores;
277     unsigned int smp_threads = ms->smp.threads;
278     X86CPUTopoInfo topo_info;
279 
280     if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
281         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
282                    ms->cpu_type);
283         return;
284     }
285 
286     if (x86ms->acpi_dev) {
287         Error *local_err = NULL;
288 
289         hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
290                                  &local_err);
291         if (local_err) {
292             error_propagate(errp, local_err);
293             return;
294         }
295     }
296 
297     init_topo_info(&topo_info, x86ms);
298 
299     env->nr_dies = ms->smp.dies;
300 
301     /*
302      * If APIC ID is not set,
303      * set it based on socket/die/core/thread properties.
304      */
305     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
306         int max_socket = (ms->smp.max_cpus - 1) /
307                                 smp_threads / smp_cores / ms->smp.dies;
308 
309         /*
310          * die-id was optional in QEMU 4.0 and older, so keep it optional
311          * if there's only one die per socket.
312          */
313         if (cpu->die_id < 0 && ms->smp.dies == 1) {
314             cpu->die_id = 0;
315         }
316 
317         if (cpu->socket_id < 0) {
318             error_setg(errp, "CPU socket-id is not set");
319             return;
320         } else if (cpu->socket_id > max_socket) {
321             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
322                        cpu->socket_id, max_socket);
323             return;
324         }
325         if (cpu->die_id < 0) {
326             error_setg(errp, "CPU die-id is not set");
327             return;
328         } else if (cpu->die_id > ms->smp.dies - 1) {
329             error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
330                        cpu->die_id, ms->smp.dies - 1);
331             return;
332         }
333         if (cpu->core_id < 0) {
334             error_setg(errp, "CPU core-id is not set");
335             return;
336         } else if (cpu->core_id > (smp_cores - 1)) {
337             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
338                        cpu->core_id, smp_cores - 1);
339             return;
340         }
341         if (cpu->thread_id < 0) {
342             error_setg(errp, "CPU thread-id is not set");
343             return;
344         } else if (cpu->thread_id > (smp_threads - 1)) {
345             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
346                        cpu->thread_id, smp_threads - 1);
347             return;
348         }
349 
350         topo_ids.pkg_id = cpu->socket_id;
351         topo_ids.die_id = cpu->die_id;
352         topo_ids.core_id = cpu->core_id;
353         topo_ids.smt_id = cpu->thread_id;
354         cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
355     }
356 
357     cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
358     if (!cpu_slot) {
359         MachineState *ms = MACHINE(x86ms);
360 
361         x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
362         error_setg(errp,
363             "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
364             " APIC ID %" PRIu32 ", valid index range 0:%d",
365             topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
366             cpu->apic_id, ms->possible_cpus->len - 1);
367         return;
368     }
369 
370     if (cpu_slot->cpu) {
371         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
372                    idx, cpu->apic_id);
373         return;
374     }
375 
376     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
377      * so that machine_query_hotpluggable_cpus would show correct values
378      */
379     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
380      * once -smp refactoring is complete and there will be CPU private
381      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
382     x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
383     if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
384         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
385             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
386             topo_ids.pkg_id);
387         return;
388     }
389     cpu->socket_id = topo_ids.pkg_id;
390 
391     if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
392         error_setg(errp, "property die-id: %u doesn't match set apic-id:"
393             " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
394         return;
395     }
396     cpu->die_id = topo_ids.die_id;
397 
398     if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
399         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
400             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
401             topo_ids.core_id);
402         return;
403     }
404     cpu->core_id = topo_ids.core_id;
405 
406     if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
407         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
408             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
409             topo_ids.smt_id);
410         return;
411     }
412     cpu->thread_id = topo_ids.smt_id;
413 
414     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
415         !kvm_hv_vpindex_settable()) {
416         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
417         return;
418     }
419 
420     cs = CPU(cpu);
421     cs->cpu_index = idx;
422 
423     numa_cpu_pre_plug(cpu_slot, dev, errp);
424 }
425 
426 CpuInstanceProperties
427 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
428 {
429     MachineClass *mc = MACHINE_GET_CLASS(ms);
430     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
431 
432     assert(cpu_index < possible_cpus->len);
433     return possible_cpus->cpus[cpu_index].props;
434 }
435 
436 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
437 {
438    X86CPUTopoIDs topo_ids;
439    X86MachineState *x86ms = X86_MACHINE(ms);
440    X86CPUTopoInfo topo_info;
441 
442    init_topo_info(&topo_info, x86ms);
443 
444    assert(idx < ms->possible_cpus->len);
445    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
446                             &topo_info, &topo_ids);
447    return topo_ids.pkg_id % ms->numa_state->num_nodes;
448 }
449 
450 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
451 {
452     X86MachineState *x86ms = X86_MACHINE(ms);
453     unsigned int max_cpus = ms->smp.max_cpus;
454     X86CPUTopoInfo topo_info;
455     int i;
456 
457     if (ms->possible_cpus) {
458         /*
459          * make sure that max_cpus hasn't changed since the first use, i.e.
460          * -smp hasn't been parsed after it
461          */
462         assert(ms->possible_cpus->len == max_cpus);
463         return ms->possible_cpus;
464     }
465 
466     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
467                                   sizeof(CPUArchId) * max_cpus);
468     ms->possible_cpus->len = max_cpus;
469 
470     init_topo_info(&topo_info, x86ms);
471 
472     for (i = 0; i < ms->possible_cpus->len; i++) {
473         X86CPUTopoIDs topo_ids;
474 
475         ms->possible_cpus->cpus[i].type = ms->cpu_type;
476         ms->possible_cpus->cpus[i].vcpus_count = 1;
477         ms->possible_cpus->cpus[i].arch_id =
478             x86_cpu_apic_id_from_index(x86ms, i);
479         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
480                                  &topo_info, &topo_ids);
481         ms->possible_cpus->cpus[i].props.has_socket_id = true;
482         ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
483         if (ms->smp.dies > 1) {
484             ms->possible_cpus->cpus[i].props.has_die_id = true;
485             ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
486         }
487         ms->possible_cpus->cpus[i].props.has_core_id = true;
488         ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
489         ms->possible_cpus->cpus[i].props.has_thread_id = true;
490         ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
491     }
492     return ms->possible_cpus;
493 }
494 
495 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
496 {
497     /* cpu index isn't used */
498     CPUState *cs;
499 
500     CPU_FOREACH(cs) {
501         X86CPU *cpu = X86_CPU(cs);
502 
503         if (!cpu->apic_state) {
504             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
505         } else {
506             apic_deliver_nmi(cpu->apic_state);
507         }
508     }
509 }
510 
511 static long get_file_size(FILE *f)
512 {
513     long where, size;
514 
515     /* XXX: on Unix systems, using fstat() probably makes more sense */
516 
517     where = ftell(f);
518     fseek(f, 0, SEEK_END);
519     size = ftell(f);
520     fseek(f, where, SEEK_SET);
521 
522     return size;
523 }
524 
525 /* TSC handling */
526 uint64_t cpu_get_tsc(CPUX86State *env)
527 {
528     return cpus_get_elapsed_ticks();
529 }
530 
531 /* IRQ handling */
532 static void pic_irq_request(void *opaque, int irq, int level)
533 {
534     CPUState *cs = first_cpu;
535     X86CPU *cpu = X86_CPU(cs);
536 
537     trace_x86_pic_interrupt(irq, level);
538     if (cpu->apic_state && !kvm_irqchip_in_kernel() &&
539         !whpx_apic_in_platform()) {
540         CPU_FOREACH(cs) {
541             cpu = X86_CPU(cs);
542             if (apic_accept_pic_intr(cpu->apic_state)) {
543                 apic_deliver_pic_intr(cpu->apic_state, level);
544             }
545         }
546     } else {
547         if (level) {
548             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
549         } else {
550             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
551         }
552     }
553 }
554 
555 qemu_irq x86_allocate_cpu_irq(void)
556 {
557     return qemu_allocate_irq(pic_irq_request, NULL, 0);
558 }
559 
560 int cpu_get_pic_interrupt(CPUX86State *env)
561 {
562     X86CPU *cpu = env_archcpu(env);
563     int intno;
564 
565     if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
566         intno = apic_get_interrupt(cpu->apic_state);
567         if (intno >= 0) {
568             return intno;
569         }
570         /* read the irq from the PIC */
571         if (!apic_accept_pic_intr(cpu->apic_state)) {
572             return -1;
573         }
574     }
575 
576     intno = pic_read_irq(isa_pic);
577     return intno;
578 }
579 
580 DeviceState *cpu_get_current_apic(void)
581 {
582     if (current_cpu) {
583         X86CPU *cpu = X86_CPU(current_cpu);
584         return cpu->apic_state;
585     } else {
586         return NULL;
587     }
588 }
589 
590 void gsi_handler(void *opaque, int n, int level)
591 {
592     GSIState *s = opaque;
593 
594     trace_x86_gsi_interrupt(n, level);
595     switch (n) {
596     case 0 ... ISA_NUM_IRQS - 1:
597         if (s->i8259_irq[n]) {
598             /* Under KVM, Kernel will forward to both PIC and IOAPIC */
599             qemu_set_irq(s->i8259_irq[n], level);
600         }
601         /* fall through */
602     case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
603         qemu_set_irq(s->ioapic_irq[n], level);
604         break;
605     case IO_APIC_SECONDARY_IRQBASE
606         ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
607         qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
608         break;
609     }
610 }
611 
612 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
613 {
614     DeviceState *dev;
615     SysBusDevice *d;
616     unsigned int i;
617 
618     assert(parent_name);
619     if (kvm_ioapic_in_kernel()) {
620         dev = qdev_new(TYPE_KVM_IOAPIC);
621     } else {
622         dev = qdev_new(TYPE_IOAPIC);
623     }
624     object_property_add_child(object_resolve_path(parent_name, NULL),
625                               "ioapic", OBJECT(dev));
626     d = SYS_BUS_DEVICE(dev);
627     sysbus_realize_and_unref(d, &error_fatal);
628     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
629 
630     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
631         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
632     }
633 }
634 
635 DeviceState *ioapic_init_secondary(GSIState *gsi_state)
636 {
637     DeviceState *dev;
638     SysBusDevice *d;
639     unsigned int i;
640 
641     dev = qdev_new(TYPE_IOAPIC);
642     d = SYS_BUS_DEVICE(dev);
643     sysbus_realize_and_unref(d, &error_fatal);
644     sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
645 
646     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
647         gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
648     }
649     return dev;
650 }
651 
652 struct setup_data {
653     uint64_t next;
654     uint32_t type;
655     uint32_t len;
656     uint8_t data[];
657 } __attribute__((packed));
658 
659 
660 /*
661  * The entry point into the kernel for PVH boot is different from
662  * the native entry point.  The PVH entry is defined by the x86/HVM
663  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
664  *
665  * This function is passed to load_elf() when it is called from
666  * load_elfboot() which then additionally checks for an ELF Note of
667  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
668  * parse the PVH entry address from the ELF Note.
669  *
670  * Due to trickery in elf_opts.h, load_elf() is actually available as
671  * load_elf32() or load_elf64() and this routine needs to be able
672  * to deal with being called as 32 or 64 bit.
673  *
674  * The address of the PVH entry point is saved to the 'pvh_start_addr'
675  * global variable.  (although the entry point is 32-bit, the kernel
676  * binary can be either 32-bit or 64-bit).
677  */
678 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
679 {
680     size_t *elf_note_data_addr;
681 
682     /* Check if ELF Note header passed in is valid */
683     if (arg1 == NULL) {
684         return 0;
685     }
686 
687     if (is64) {
688         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
689         uint64_t nhdr_size64 = sizeof(struct elf64_note);
690         uint64_t phdr_align = *(uint64_t *)arg2;
691         uint64_t nhdr_namesz = nhdr64->n_namesz;
692 
693         elf_note_data_addr =
694             ((void *)nhdr64) + nhdr_size64 +
695             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
696 
697         pvh_start_addr = *elf_note_data_addr;
698     } else {
699         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
700         uint32_t nhdr_size32 = sizeof(struct elf32_note);
701         uint32_t phdr_align = *(uint32_t *)arg2;
702         uint32_t nhdr_namesz = nhdr32->n_namesz;
703 
704         elf_note_data_addr =
705             ((void *)nhdr32) + nhdr_size32 +
706             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
707 
708         pvh_start_addr = *(uint32_t *)elf_note_data_addr;
709     }
710 
711     return pvh_start_addr;
712 }
713 
714 static bool load_elfboot(const char *kernel_filename,
715                          int kernel_file_size,
716                          uint8_t *header,
717                          size_t pvh_xen_start_addr,
718                          FWCfgState *fw_cfg)
719 {
720     uint32_t flags = 0;
721     uint32_t mh_load_addr = 0;
722     uint32_t elf_kernel_size = 0;
723     uint64_t elf_entry;
724     uint64_t elf_low, elf_high;
725     int kernel_size;
726 
727     if (ldl_p(header) != 0x464c457f) {
728         return false; /* no elfboot */
729     }
730 
731     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
732     flags = elf_is64 ?
733         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
734 
735     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
736         error_report("elfboot unsupported flags = %x", flags);
737         exit(1);
738     }
739 
740     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
741     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
742                            NULL, &elf_note_type, &elf_entry,
743                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
744                            0, 0);
745 
746     if (kernel_size < 0) {
747         error_report("Error while loading elf kernel");
748         exit(1);
749     }
750     mh_load_addr = elf_low;
751     elf_kernel_size = elf_high - elf_low;
752 
753     if (pvh_start_addr == 0) {
754         error_report("Error loading uncompressed kernel without PVH ELF Note");
755         exit(1);
756     }
757     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
758     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
759     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
760 
761     return true;
762 }
763 
764 void x86_load_linux(X86MachineState *x86ms,
765                     FWCfgState *fw_cfg,
766                     int acpi_data_size,
767                     bool pvh_enabled,
768                     bool linuxboot_dma_enabled)
769 {
770     uint16_t protocol;
771     int setup_size, kernel_size, cmdline_size;
772     int dtb_size, setup_data_offset;
773     uint32_t initrd_max;
774     uint8_t header[8192], *setup, *kernel;
775     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
776     FILE *f;
777     char *vmode;
778     MachineState *machine = MACHINE(x86ms);
779     struct setup_data *setup_data;
780     const char *kernel_filename = machine->kernel_filename;
781     const char *initrd_filename = machine->initrd_filename;
782     const char *dtb_filename = machine->dtb;
783     const char *kernel_cmdline = machine->kernel_cmdline;
784     SevKernelLoaderContext sev_load_ctx = {};
785 
786     /* Align to 16 bytes as a paranoia measure */
787     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
788 
789     /* load the kernel header */
790     f = fopen(kernel_filename, "rb");
791     if (!f) {
792         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
793                 kernel_filename, strerror(errno));
794         exit(1);
795     }
796 
797     kernel_size = get_file_size(f);
798     if (!kernel_size ||
799         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
800         MIN(ARRAY_SIZE(header), kernel_size)) {
801         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
802                 kernel_filename, strerror(errno));
803         exit(1);
804     }
805 
806     /* kernel protocol version */
807     if (ldl_p(header + 0x202) == 0x53726448) {
808         protocol = lduw_p(header + 0x206);
809     } else {
810         /*
811          * This could be a multiboot kernel. If it is, let's stop treating it
812          * like a Linux kernel.
813          * Note: some multiboot images could be in the ELF format (the same of
814          * PVH), so we try multiboot first since we check the multiboot magic
815          * header before to load it.
816          */
817         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
818                            kernel_cmdline, kernel_size, header)) {
819             return;
820         }
821         /*
822          * Check if the file is an uncompressed kernel file (ELF) and load it,
823          * saving the PVH entry point used by the x86/HVM direct boot ABI.
824          * If load_elfboot() is successful, populate the fw_cfg info.
825          */
826         if (pvh_enabled &&
827             load_elfboot(kernel_filename, kernel_size,
828                          header, pvh_start_addr, fw_cfg)) {
829             fclose(f);
830 
831             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
832                 strlen(kernel_cmdline) + 1);
833             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
834 
835             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
836             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
837                              header, sizeof(header));
838 
839             /* load initrd */
840             if (initrd_filename) {
841                 GMappedFile *mapped_file;
842                 gsize initrd_size;
843                 gchar *initrd_data;
844                 GError *gerr = NULL;
845 
846                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
847                 if (!mapped_file) {
848                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
849                             initrd_filename, gerr->message);
850                     exit(1);
851                 }
852                 x86ms->initrd_mapped_file = mapped_file;
853 
854                 initrd_data = g_mapped_file_get_contents(mapped_file);
855                 initrd_size = g_mapped_file_get_length(mapped_file);
856                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
857                 if (initrd_size >= initrd_max) {
858                     fprintf(stderr, "qemu: initrd is too large, cannot support."
859                             "(max: %"PRIu32", need %"PRId64")\n",
860                             initrd_max, (uint64_t)initrd_size);
861                     exit(1);
862                 }
863 
864                 initrd_addr = (initrd_max - initrd_size) & ~4095;
865 
866                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
867                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
868                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
869                                  initrd_size);
870             }
871 
872             option_rom[nb_option_roms].bootindex = 0;
873             option_rom[nb_option_roms].name = "pvh.bin";
874             nb_option_roms++;
875 
876             return;
877         }
878         protocol = 0;
879     }
880 
881     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
882         /* Low kernel */
883         real_addr    = 0x90000;
884         cmdline_addr = 0x9a000 - cmdline_size;
885         prot_addr    = 0x10000;
886     } else if (protocol < 0x202) {
887         /* High but ancient kernel */
888         real_addr    = 0x90000;
889         cmdline_addr = 0x9a000 - cmdline_size;
890         prot_addr    = 0x100000;
891     } else {
892         /* High and recent kernel */
893         real_addr    = 0x10000;
894         cmdline_addr = 0x20000;
895         prot_addr    = 0x100000;
896     }
897 
898     /* highest address for loading the initrd */
899     if (protocol >= 0x20c &&
900         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
901         /*
902          * Linux has supported initrd up to 4 GB for a very long time (2007,
903          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
904          * though it only sets initrd_max to 2 GB to "work around bootloader
905          * bugs". Luckily, QEMU firmware(which does something like bootloader)
906          * has supported this.
907          *
908          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
909          * be loaded into any address.
910          *
911          * In addition, initrd_max is uint32_t simply because QEMU doesn't
912          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
913          * field).
914          *
915          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
916          */
917         initrd_max = UINT32_MAX;
918     } else if (protocol >= 0x203) {
919         initrd_max = ldl_p(header + 0x22c);
920     } else {
921         initrd_max = 0x37ffffff;
922     }
923 
924     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
925         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
926     }
927 
928     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
929     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
930     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
931     sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
932     sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
933 
934     if (protocol >= 0x202) {
935         stl_p(header + 0x228, cmdline_addr);
936     } else {
937         stw_p(header + 0x20, 0xA33F);
938         stw_p(header + 0x22, cmdline_addr - real_addr);
939     }
940 
941     /* handle vga= parameter */
942     vmode = strstr(kernel_cmdline, "vga=");
943     if (vmode) {
944         unsigned int video_mode;
945         const char *end;
946         int ret;
947         /* skip "vga=" */
948         vmode += 4;
949         if (!strncmp(vmode, "normal", 6)) {
950             video_mode = 0xffff;
951         } else if (!strncmp(vmode, "ext", 3)) {
952             video_mode = 0xfffe;
953         } else if (!strncmp(vmode, "ask", 3)) {
954             video_mode = 0xfffd;
955         } else {
956             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
957             if (ret != 0 || (*end && *end != ' ')) {
958                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
959                 exit(1);
960             }
961         }
962         stw_p(header + 0x1fa, video_mode);
963     }
964 
965     /* loader type */
966     /*
967      * High nybble = B reserved for QEMU; low nybble is revision number.
968      * If this code is substantially changed, you may want to consider
969      * incrementing the revision.
970      */
971     if (protocol >= 0x200) {
972         header[0x210] = 0xB0;
973     }
974     /* heap */
975     if (protocol >= 0x201) {
976         header[0x211] |= 0x80; /* CAN_USE_HEAP */
977         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
978     }
979 
980     /* load initrd */
981     if (initrd_filename) {
982         GMappedFile *mapped_file;
983         gsize initrd_size;
984         gchar *initrd_data;
985         GError *gerr = NULL;
986 
987         if (protocol < 0x200) {
988             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
989             exit(1);
990         }
991 
992         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
993         if (!mapped_file) {
994             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
995                     initrd_filename, gerr->message);
996             exit(1);
997         }
998         x86ms->initrd_mapped_file = mapped_file;
999 
1000         initrd_data = g_mapped_file_get_contents(mapped_file);
1001         initrd_size = g_mapped_file_get_length(mapped_file);
1002         if (initrd_size >= initrd_max) {
1003             fprintf(stderr, "qemu: initrd is too large, cannot support."
1004                     "(max: %"PRIu32", need %"PRId64")\n",
1005                     initrd_max, (uint64_t)initrd_size);
1006             exit(1);
1007         }
1008 
1009         initrd_addr = (initrd_max - initrd_size) & ~4095;
1010 
1011         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1012         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1013         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1014         sev_load_ctx.initrd_data = initrd_data;
1015         sev_load_ctx.initrd_size = initrd_size;
1016 
1017         stl_p(header + 0x218, initrd_addr);
1018         stl_p(header + 0x21c, initrd_size);
1019     }
1020 
1021     /* load kernel and setup */
1022     setup_size = header[0x1f1];
1023     if (setup_size == 0) {
1024         setup_size = 4;
1025     }
1026     setup_size = (setup_size + 1) * 512;
1027     if (setup_size > kernel_size) {
1028         fprintf(stderr, "qemu: invalid kernel header\n");
1029         exit(1);
1030     }
1031     kernel_size -= setup_size;
1032 
1033     setup  = g_malloc(setup_size);
1034     kernel = g_malloc(kernel_size);
1035     fseek(f, 0, SEEK_SET);
1036     if (fread(setup, 1, setup_size, f) != setup_size) {
1037         fprintf(stderr, "fread() failed\n");
1038         exit(1);
1039     }
1040     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1041         fprintf(stderr, "fread() failed\n");
1042         exit(1);
1043     }
1044     fclose(f);
1045 
1046     /* append dtb to kernel */
1047     if (dtb_filename) {
1048         if (protocol < 0x209) {
1049             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1050             exit(1);
1051         }
1052 
1053         dtb_size = get_image_size(dtb_filename);
1054         if (dtb_size <= 0) {
1055             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1056                     dtb_filename, strerror(errno));
1057             exit(1);
1058         }
1059 
1060         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1061         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1062         kernel = g_realloc(kernel, kernel_size);
1063 
1064         stq_p(header + 0x250, prot_addr + setup_data_offset);
1065 
1066         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1067         setup_data->next = 0;
1068         setup_data->type = cpu_to_le32(SETUP_DTB);
1069         setup_data->len = cpu_to_le32(dtb_size);
1070 
1071         load_image_size(dtb_filename, setup_data->data, dtb_size);
1072     }
1073 
1074     /*
1075      * If we're starting an encrypted VM, it will be OVMF based, which uses the
1076      * efi stub for booting and doesn't require any values to be placed in the
1077      * kernel header.  We therefore don't update the header so the hash of the
1078      * kernel on the other side of the fw_cfg interface matches the hash of the
1079      * file the user passed in.
1080      */
1081     if (!sev_enabled()) {
1082         memcpy(setup, header, MIN(sizeof(header), setup_size));
1083     }
1084 
1085     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1086     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1087     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1088     sev_load_ctx.kernel_data = (char *)kernel;
1089     sev_load_ctx.kernel_size = kernel_size;
1090 
1091     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1092     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1093     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1094     sev_load_ctx.setup_data = (char *)setup;
1095     sev_load_ctx.setup_size = setup_size;
1096 
1097     if (sev_enabled()) {
1098         sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
1099     }
1100 
1101     option_rom[nb_option_roms].bootindex = 0;
1102     option_rom[nb_option_roms].name = "linuxboot.bin";
1103     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1104         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1105     }
1106     nb_option_roms++;
1107 }
1108 
1109 void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
1110                        MemoryRegion *rom_memory, bool isapc_ram_fw)
1111 {
1112     const char *bios_name;
1113     char *filename;
1114     MemoryRegion *bios, *isa_bios;
1115     int bios_size, isa_bios_size;
1116     int ret;
1117 
1118     /* BIOS load */
1119     bios_name = ms->firmware ?: default_firmware;
1120     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1121     if (filename) {
1122         bios_size = get_image_size(filename);
1123     } else {
1124         bios_size = -1;
1125     }
1126     if (bios_size <= 0 ||
1127         (bios_size % 65536) != 0) {
1128         goto bios_error;
1129     }
1130     bios = g_malloc(sizeof(*bios));
1131     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1132     if (!isapc_ram_fw) {
1133         memory_region_set_readonly(bios, true);
1134     }
1135     ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1136     if (ret != 0) {
1137     bios_error:
1138         fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1139         exit(1);
1140     }
1141     g_free(filename);
1142 
1143     /* map the last 128KB of the BIOS in ISA space */
1144     isa_bios_size = MIN(bios_size, 128 * KiB);
1145     isa_bios = g_malloc(sizeof(*isa_bios));
1146     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1147                              bios_size - isa_bios_size, isa_bios_size);
1148     memory_region_add_subregion_overlap(rom_memory,
1149                                         0x100000 - isa_bios_size,
1150                                         isa_bios,
1151                                         1);
1152     if (!isapc_ram_fw) {
1153         memory_region_set_readonly(isa_bios, true);
1154     }
1155 
1156     /* map all the bios at the top of memory */
1157     memory_region_add_subregion(rom_memory,
1158                                 (uint32_t)(-bios_size),
1159                                 bios);
1160 }
1161 
1162 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1163 {
1164     bool smm_available = false;
1165 
1166     if (x86ms->smm == ON_OFF_AUTO_OFF) {
1167         return false;
1168     }
1169 
1170     if (tcg_enabled() || qtest_enabled()) {
1171         smm_available = true;
1172     } else if (kvm_enabled()) {
1173         smm_available = kvm_has_smm();
1174     }
1175 
1176     if (smm_available) {
1177         return true;
1178     }
1179 
1180     if (x86ms->smm == ON_OFF_AUTO_ON) {
1181         error_report("System Management Mode not supported by this hypervisor.");
1182         exit(1);
1183     }
1184     return false;
1185 }
1186 
1187 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1188                                void *opaque, Error **errp)
1189 {
1190     X86MachineState *x86ms = X86_MACHINE(obj);
1191     OnOffAuto smm = x86ms->smm;
1192 
1193     visit_type_OnOffAuto(v, name, &smm, errp);
1194 }
1195 
1196 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1197                                void *opaque, Error **errp)
1198 {
1199     X86MachineState *x86ms = X86_MACHINE(obj);
1200 
1201     visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1202 }
1203 
1204 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1205 {
1206     if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1207         return false;
1208     }
1209     return true;
1210 }
1211 
1212 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1213                                  void *opaque, Error **errp)
1214 {
1215     X86MachineState *x86ms = X86_MACHINE(obj);
1216     OnOffAuto acpi = x86ms->acpi;
1217 
1218     visit_type_OnOffAuto(v, name, &acpi, errp);
1219 }
1220 
1221 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1222                                  void *opaque, Error **errp)
1223 {
1224     X86MachineState *x86ms = X86_MACHINE(obj);
1225 
1226     visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1227 }
1228 
1229 static char *x86_machine_get_oem_id(Object *obj, Error **errp)
1230 {
1231     X86MachineState *x86ms = X86_MACHINE(obj);
1232 
1233     return g_strdup(x86ms->oem_id);
1234 }
1235 
1236 static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp)
1237 {
1238     X86MachineState *x86ms = X86_MACHINE(obj);
1239     size_t len = strlen(value);
1240 
1241     if (len > 6) {
1242         error_setg(errp,
1243                    "User specified "X86_MACHINE_OEM_ID" value is bigger than "
1244                    "6 bytes in size");
1245         return;
1246     }
1247 
1248     strncpy(x86ms->oem_id, value, 6);
1249 }
1250 
1251 static char *x86_machine_get_oem_table_id(Object *obj, Error **errp)
1252 {
1253     X86MachineState *x86ms = X86_MACHINE(obj);
1254 
1255     return g_strdup(x86ms->oem_table_id);
1256 }
1257 
1258 static void x86_machine_set_oem_table_id(Object *obj, const char *value,
1259                                          Error **errp)
1260 {
1261     X86MachineState *x86ms = X86_MACHINE(obj);
1262     size_t len = strlen(value);
1263 
1264     if (len > 8) {
1265         error_setg(errp,
1266                    "User specified "X86_MACHINE_OEM_TABLE_ID
1267                    " value is bigger than "
1268                    "8 bytes in size");
1269         return;
1270     }
1271     strncpy(x86ms->oem_table_id, value, 8);
1272 }
1273 
1274 static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v,
1275                                 const char *name, void *opaque, Error **errp)
1276 {
1277     X86MachineState *x86ms = X86_MACHINE(obj);
1278     uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit;
1279 
1280     visit_type_uint64(v, name, &bus_lock_ratelimit, errp);
1281 }
1282 
1283 static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v,
1284                                const char *name, void *opaque, Error **errp)
1285 {
1286     X86MachineState *x86ms = X86_MACHINE(obj);
1287 
1288     visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp);
1289 }
1290 
1291 static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name,
1292                                 void *opaque, Error **errp)
1293 {
1294     X86MachineState *x86ms = X86_MACHINE(obj);
1295     SgxEPCList *list = x86ms->sgx_epc_list;
1296 
1297     visit_type_SgxEPCList(v, name, &list, errp);
1298 }
1299 
1300 static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name,
1301                                 void *opaque, Error **errp)
1302 {
1303     X86MachineState *x86ms = X86_MACHINE(obj);
1304     SgxEPCList *list;
1305 
1306     list = x86ms->sgx_epc_list;
1307     visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp);
1308 
1309     qapi_free_SgxEPCList(list);
1310 }
1311 
1312 static void x86_machine_initfn(Object *obj)
1313 {
1314     X86MachineState *x86ms = X86_MACHINE(obj);
1315 
1316     x86ms->smm = ON_OFF_AUTO_AUTO;
1317     x86ms->acpi = ON_OFF_AUTO_AUTO;
1318     x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
1319     x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
1320     x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
1321     x86ms->bus_lock_ratelimit = 0;
1322 }
1323 
1324 static void x86_machine_class_init(ObjectClass *oc, void *data)
1325 {
1326     MachineClass *mc = MACHINE_CLASS(oc);
1327     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1328     NMIClass *nc = NMI_CLASS(oc);
1329 
1330     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1331     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1332     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1333     x86mc->compat_apic_id_mode = false;
1334     x86mc->save_tsc_khz = true;
1335     nc->nmi_monitor_handler = x86_nmi;
1336 
1337     object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1338         x86_machine_get_smm, x86_machine_set_smm,
1339         NULL, NULL);
1340     object_class_property_set_description(oc, X86_MACHINE_SMM,
1341         "Enable SMM");
1342 
1343     object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1344         x86_machine_get_acpi, x86_machine_set_acpi,
1345         NULL, NULL);
1346     object_class_property_set_description(oc, X86_MACHINE_ACPI,
1347         "Enable ACPI");
1348 
1349     object_class_property_add_str(oc, X86_MACHINE_OEM_ID,
1350                                   x86_machine_get_oem_id,
1351                                   x86_machine_set_oem_id);
1352     object_class_property_set_description(oc, X86_MACHINE_OEM_ID,
1353                                           "Override the default value of field OEMID "
1354                                           "in ACPI table header."
1355                                           "The string may be up to 6 bytes in size");
1356 
1357 
1358     object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID,
1359                                   x86_machine_get_oem_table_id,
1360                                   x86_machine_set_oem_table_id);
1361     object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID,
1362                                           "Override the default value of field OEM Table ID "
1363                                           "in ACPI table header."
1364                                           "The string may be up to 8 bytes in size");
1365 
1366     object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t",
1367                                 x86_machine_get_bus_lock_ratelimit,
1368                                 x86_machine_set_bus_lock_ratelimit, NULL, NULL);
1369     object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT,
1370             "Set the ratelimit for the bus locks acquired in VMs");
1371 
1372     object_class_property_add(oc, "sgx-epc", "SgxEPC",
1373         machine_get_sgx_epc, machine_set_sgx_epc,
1374         NULL, NULL);
1375     object_class_property_set_description(oc, "sgx-epc",
1376         "SGX EPC device");
1377 }
1378 
1379 static const TypeInfo x86_machine_info = {
1380     .name = TYPE_X86_MACHINE,
1381     .parent = TYPE_MACHINE,
1382     .abstract = true,
1383     .instance_size = sizeof(X86MachineState),
1384     .instance_init = x86_machine_initfn,
1385     .class_size = sizeof(X86MachineClass),
1386     .class_init = x86_machine_class_init,
1387     .interfaces = (InterfaceInfo[]) {
1388          { TYPE_NMI },
1389          { }
1390     },
1391 };
1392 
1393 static void x86_machine_register_types(void)
1394 {
1395     type_register_static(&x86_machine_info);
1396 }
1397 
1398 type_init(x86_machine_register_types)
1399