1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/option.h" 26 #include "qemu/cutils.h" 27 #include "qemu/units.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/qmp/qerror.h" 31 #include "qapi/qapi-visit-common.h" 32 #include "qapi/visitor.h" 33 #include "sysemu/qtest.h" 34 #include "sysemu/numa.h" 35 #include "sysemu/replay.h" 36 #include "sysemu/sysemu.h" 37 #include "trace.h" 38 39 #include "hw/i386/x86.h" 40 #include "target/i386/cpu.h" 41 #include "hw/i386/topology.h" 42 #include "hw/i386/fw_cfg.h" 43 #include "hw/intc/i8259.h" 44 #include "hw/rtc/mc146818rtc.h" 45 46 #include "hw/acpi/cpu_hotplug.h" 47 #include "hw/irq.h" 48 #include "hw/nmi.h" 49 #include "hw/loader.h" 50 #include "multiboot.h" 51 #include "elf.h" 52 #include "standard-headers/asm-x86/bootparam.h" 53 #include CONFIG_DEVICES 54 #include "kvm_i386.h" 55 56 #define BIOS_FILENAME "bios.bin" 57 58 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 59 static size_t pvh_start_addr; 60 61 inline void init_topo_info(X86CPUTopoInfo *topo_info, 62 const X86MachineState *x86ms) 63 { 64 MachineState *ms = MACHINE(x86ms); 65 66 topo_info->dies_per_pkg = x86ms->smp_dies; 67 topo_info->cores_per_die = ms->smp.cores; 68 topo_info->threads_per_core = ms->smp.threads; 69 } 70 71 /* 72 * Calculates initial APIC ID for a specific CPU index 73 * 74 * Currently we need to be able to calculate the APIC ID from the CPU index 75 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 76 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 77 * all CPUs up to max_cpus. 78 */ 79 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, 80 unsigned int cpu_index) 81 { 82 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms); 83 X86CPUTopoInfo topo_info; 84 uint32_t correct_id; 85 static bool warned; 86 87 init_topo_info(&topo_info, x86ms); 88 89 correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index); 90 if (x86mc->compat_apic_id_mode) { 91 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 92 error_report("APIC IDs set in compatibility mode, " 93 "CPU topology won't match the configuration"); 94 warned = true; 95 } 96 return cpu_index; 97 } else { 98 return correct_id; 99 } 100 } 101 102 103 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 104 { 105 Object *cpu = object_new(MACHINE(x86ms)->cpu_type); 106 107 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { 108 goto out; 109 } 110 qdev_realize(DEVICE(cpu), NULL, errp); 111 112 out: 113 object_unref(cpu); 114 } 115 116 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 117 { 118 int i; 119 const CPUArchIdList *possible_cpus; 120 MachineState *ms = MACHINE(x86ms); 121 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 122 123 x86_cpu_set_default_version(default_cpu_version); 124 125 /* 126 * Calculates the limit to CPU APIC ID values 127 * 128 * Limit for the APIC ID value, so that all 129 * CPU APIC IDs are < x86ms->apic_id_limit. 130 * 131 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 132 */ 133 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 134 ms->smp.max_cpus - 1) + 1; 135 possible_cpus = mc->possible_cpu_arch_ids(ms); 136 for (i = 0; i < ms->smp.cpus; i++) { 137 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 138 } 139 } 140 141 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 142 { 143 if (cpus_count > 0xff) { 144 /* 145 * If the number of CPUs can't be represented in 8 bits, the 146 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 147 * to make old BIOSes fail more predictably. 148 */ 149 rtc_set_memory(rtc, 0x5f, 0); 150 } else { 151 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 152 } 153 } 154 155 static int x86_apic_cmp(const void *a, const void *b) 156 { 157 CPUArchId *apic_a = (CPUArchId *)a; 158 CPUArchId *apic_b = (CPUArchId *)b; 159 160 return apic_a->arch_id - apic_b->arch_id; 161 } 162 163 /* 164 * returns pointer to CPUArchId descriptor that matches CPU's apic_id 165 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 166 * entry corresponding to CPU's apic_id returns NULL. 167 */ 168 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 169 { 170 CPUArchId apic_id, *found_cpu; 171 172 apic_id.arch_id = id; 173 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 174 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 175 x86_apic_cmp); 176 if (found_cpu && idx) { 177 *idx = found_cpu - ms->possible_cpus->cpus; 178 } 179 return found_cpu; 180 } 181 182 void x86_cpu_plug(HotplugHandler *hotplug_dev, 183 DeviceState *dev, Error **errp) 184 { 185 CPUArchId *found_cpu; 186 Error *local_err = NULL; 187 X86CPU *cpu = X86_CPU(dev); 188 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 189 190 if (x86ms->acpi_dev) { 191 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); 192 if (local_err) { 193 goto out; 194 } 195 } 196 197 /* increment the number of CPUs */ 198 x86ms->boot_cpus++; 199 if (x86ms->rtc) { 200 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 201 } 202 if (x86ms->fw_cfg) { 203 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 204 } 205 206 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 207 found_cpu->cpu = OBJECT(dev); 208 out: 209 error_propagate(errp, local_err); 210 } 211 212 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 213 DeviceState *dev, Error **errp) 214 { 215 int idx = -1; 216 X86CPU *cpu = X86_CPU(dev); 217 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 218 219 if (!x86ms->acpi_dev) { 220 error_setg(errp, "CPU hot unplug not supported without ACPI"); 221 return; 222 } 223 224 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 225 assert(idx != -1); 226 if (idx == 0) { 227 error_setg(errp, "Boot CPU is unpluggable"); 228 return; 229 } 230 231 hotplug_handler_unplug_request(x86ms->acpi_dev, dev, 232 errp); 233 } 234 235 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, 236 DeviceState *dev, Error **errp) 237 { 238 CPUArchId *found_cpu; 239 Error *local_err = NULL; 240 X86CPU *cpu = X86_CPU(dev); 241 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 242 243 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); 244 if (local_err) { 245 goto out; 246 } 247 248 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 249 found_cpu->cpu = NULL; 250 qdev_unrealize(dev); 251 252 /* decrement the number of CPUs */ 253 x86ms->boot_cpus--; 254 /* Update the number of CPUs in CMOS */ 255 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 256 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 257 out: 258 error_propagate(errp, local_err); 259 } 260 261 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, 262 DeviceState *dev, Error **errp) 263 { 264 int idx; 265 CPUState *cs; 266 CPUArchId *cpu_slot; 267 X86CPUTopoIDs topo_ids; 268 X86CPU *cpu = X86_CPU(dev); 269 CPUX86State *env = &cpu->env; 270 MachineState *ms = MACHINE(hotplug_dev); 271 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 272 unsigned int smp_cores = ms->smp.cores; 273 unsigned int smp_threads = ms->smp.threads; 274 X86CPUTopoInfo topo_info; 275 276 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 277 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 278 ms->cpu_type); 279 return; 280 } 281 282 init_topo_info(&topo_info, x86ms); 283 284 env->nr_dies = x86ms->smp_dies; 285 286 /* 287 * If APIC ID is not set, 288 * set it based on socket/die/core/thread properties. 289 */ 290 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 291 int max_socket = (ms->smp.max_cpus - 1) / 292 smp_threads / smp_cores / x86ms->smp_dies; 293 294 /* 295 * die-id was optional in QEMU 4.0 and older, so keep it optional 296 * if there's only one die per socket. 297 */ 298 if (cpu->die_id < 0 && x86ms->smp_dies == 1) { 299 cpu->die_id = 0; 300 } 301 302 if (cpu->socket_id < 0) { 303 error_setg(errp, "CPU socket-id is not set"); 304 return; 305 } else if (cpu->socket_id > max_socket) { 306 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 307 cpu->socket_id, max_socket); 308 return; 309 } 310 if (cpu->die_id < 0) { 311 error_setg(errp, "CPU die-id is not set"); 312 return; 313 } else if (cpu->die_id > x86ms->smp_dies - 1) { 314 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", 315 cpu->die_id, x86ms->smp_dies - 1); 316 return; 317 } 318 if (cpu->core_id < 0) { 319 error_setg(errp, "CPU core-id is not set"); 320 return; 321 } else if (cpu->core_id > (smp_cores - 1)) { 322 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 323 cpu->core_id, smp_cores - 1); 324 return; 325 } 326 if (cpu->thread_id < 0) { 327 error_setg(errp, "CPU thread-id is not set"); 328 return; 329 } else if (cpu->thread_id > (smp_threads - 1)) { 330 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 331 cpu->thread_id, smp_threads - 1); 332 return; 333 } 334 335 topo_ids.pkg_id = cpu->socket_id; 336 topo_ids.die_id = cpu->die_id; 337 topo_ids.core_id = cpu->core_id; 338 topo_ids.smt_id = cpu->thread_id; 339 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids); 340 } 341 342 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 343 if (!cpu_slot) { 344 MachineState *ms = MACHINE(x86ms); 345 346 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 347 error_setg(errp, 348 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with" 349 " APIC ID %" PRIu32 ", valid index range 0:%d", 350 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id, 351 cpu->apic_id, ms->possible_cpus->len - 1); 352 return; 353 } 354 355 if (cpu_slot->cpu) { 356 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 357 idx, cpu->apic_id); 358 return; 359 } 360 361 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 362 * so that machine_query_hotpluggable_cpus would show correct values 363 */ 364 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 365 * once -smp refactoring is complete and there will be CPU private 366 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 367 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 368 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { 369 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 370 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, 371 topo_ids.pkg_id); 372 return; 373 } 374 cpu->socket_id = topo_ids.pkg_id; 375 376 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { 377 error_setg(errp, "property die-id: %u doesn't match set apic-id:" 378 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); 379 return; 380 } 381 cpu->die_id = topo_ids.die_id; 382 383 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { 384 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 385 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, 386 topo_ids.core_id); 387 return; 388 } 389 cpu->core_id = topo_ids.core_id; 390 391 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { 392 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 393 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, 394 topo_ids.smt_id); 395 return; 396 } 397 cpu->thread_id = topo_ids.smt_id; 398 399 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && 400 !kvm_hv_vpindex_settable()) { 401 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 402 return; 403 } 404 405 cs = CPU(cpu); 406 cs->cpu_index = idx; 407 408 numa_cpu_pre_plug(cpu_slot, dev, errp); 409 } 410 411 CpuInstanceProperties 412 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 413 { 414 MachineClass *mc = MACHINE_GET_CLASS(ms); 415 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 416 417 assert(cpu_index < possible_cpus->len); 418 return possible_cpus->cpus[cpu_index].props; 419 } 420 421 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) 422 { 423 X86CPUTopoIDs topo_ids; 424 X86MachineState *x86ms = X86_MACHINE(ms); 425 X86CPUTopoInfo topo_info; 426 427 init_topo_info(&topo_info, x86ms); 428 429 assert(idx < ms->possible_cpus->len); 430 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 431 &topo_info, &topo_ids); 432 return topo_ids.pkg_id % ms->numa_state->num_nodes; 433 } 434 435 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) 436 { 437 X86MachineState *x86ms = X86_MACHINE(ms); 438 unsigned int max_cpus = ms->smp.max_cpus; 439 X86CPUTopoInfo topo_info; 440 int i; 441 442 if (ms->possible_cpus) { 443 /* 444 * make sure that max_cpus hasn't changed since the first use, i.e. 445 * -smp hasn't been parsed after it 446 */ 447 assert(ms->possible_cpus->len == max_cpus); 448 return ms->possible_cpus; 449 } 450 451 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 452 sizeof(CPUArchId) * max_cpus); 453 ms->possible_cpus->len = max_cpus; 454 455 init_topo_info(&topo_info, x86ms); 456 457 for (i = 0; i < ms->possible_cpus->len; i++) { 458 X86CPUTopoIDs topo_ids; 459 460 ms->possible_cpus->cpus[i].type = ms->cpu_type; 461 ms->possible_cpus->cpus[i].vcpus_count = 1; 462 ms->possible_cpus->cpus[i].arch_id = 463 x86_cpu_apic_id_from_index(x86ms, i); 464 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 465 &topo_info, &topo_ids); 466 ms->possible_cpus->cpus[i].props.has_socket_id = true; 467 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id; 468 if (x86ms->smp_dies > 1) { 469 ms->possible_cpus->cpus[i].props.has_die_id = true; 470 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id; 471 } 472 ms->possible_cpus->cpus[i].props.has_core_id = true; 473 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id; 474 ms->possible_cpus->cpus[i].props.has_thread_id = true; 475 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id; 476 } 477 return ms->possible_cpus; 478 } 479 480 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 481 { 482 /* cpu index isn't used */ 483 CPUState *cs; 484 485 CPU_FOREACH(cs) { 486 X86CPU *cpu = X86_CPU(cs); 487 488 if (!cpu->apic_state) { 489 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 490 } else { 491 apic_deliver_nmi(cpu->apic_state); 492 } 493 } 494 } 495 496 static long get_file_size(FILE *f) 497 { 498 long where, size; 499 500 /* XXX: on Unix systems, using fstat() probably makes more sense */ 501 502 where = ftell(f); 503 fseek(f, 0, SEEK_END); 504 size = ftell(f); 505 fseek(f, where, SEEK_SET); 506 507 return size; 508 } 509 510 /* TSC handling */ 511 uint64_t cpu_get_tsc(CPUX86State *env) 512 { 513 return cpu_get_ticks(); 514 } 515 516 /* IRQ handling */ 517 static void pic_irq_request(void *opaque, int irq, int level) 518 { 519 CPUState *cs = first_cpu; 520 X86CPU *cpu = X86_CPU(cs); 521 522 trace_x86_pic_interrupt(irq, level); 523 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 524 CPU_FOREACH(cs) { 525 cpu = X86_CPU(cs); 526 if (apic_accept_pic_intr(cpu->apic_state)) { 527 apic_deliver_pic_intr(cpu->apic_state, level); 528 } 529 } 530 } else { 531 if (level) { 532 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 533 } else { 534 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 535 } 536 } 537 } 538 539 qemu_irq x86_allocate_cpu_irq(void) 540 { 541 return qemu_allocate_irq(pic_irq_request, NULL, 0); 542 } 543 544 int cpu_get_pic_interrupt(CPUX86State *env) 545 { 546 X86CPU *cpu = env_archcpu(env); 547 int intno; 548 549 if (!kvm_irqchip_in_kernel()) { 550 intno = apic_get_interrupt(cpu->apic_state); 551 if (intno >= 0) { 552 return intno; 553 } 554 /* read the irq from the PIC */ 555 if (!apic_accept_pic_intr(cpu->apic_state)) { 556 return -1; 557 } 558 } 559 560 intno = pic_read_irq(isa_pic); 561 return intno; 562 } 563 564 DeviceState *cpu_get_current_apic(void) 565 { 566 if (current_cpu) { 567 X86CPU *cpu = X86_CPU(current_cpu); 568 return cpu->apic_state; 569 } else { 570 return NULL; 571 } 572 } 573 574 void gsi_handler(void *opaque, int n, int level) 575 { 576 GSIState *s = opaque; 577 578 trace_x86_gsi_interrupt(n, level); 579 if (n < ISA_NUM_IRQS) { 580 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 581 qemu_set_irq(s->i8259_irq[n], level); 582 } 583 qemu_set_irq(s->ioapic_irq[n], level); 584 } 585 586 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 587 { 588 DeviceState *dev; 589 SysBusDevice *d; 590 unsigned int i; 591 592 assert(parent_name); 593 if (kvm_ioapic_in_kernel()) { 594 dev = qdev_new(TYPE_KVM_IOAPIC); 595 } else { 596 dev = qdev_new(TYPE_IOAPIC); 597 } 598 object_property_add_child(object_resolve_path(parent_name, NULL), 599 "ioapic", OBJECT(dev)); 600 d = SYS_BUS_DEVICE(dev); 601 sysbus_realize_and_unref(d, &error_fatal); 602 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 603 604 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 605 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 606 } 607 } 608 609 struct setup_data { 610 uint64_t next; 611 uint32_t type; 612 uint32_t len; 613 uint8_t data[]; 614 } __attribute__((packed)); 615 616 617 /* 618 * The entry point into the kernel for PVH boot is different from 619 * the native entry point. The PVH entry is defined by the x86/HVM 620 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 621 * 622 * This function is passed to load_elf() when it is called from 623 * load_elfboot() which then additionally checks for an ELF Note of 624 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 625 * parse the PVH entry address from the ELF Note. 626 * 627 * Due to trickery in elf_opts.h, load_elf() is actually available as 628 * load_elf32() or load_elf64() and this routine needs to be able 629 * to deal with being called as 32 or 64 bit. 630 * 631 * The address of the PVH entry point is saved to the 'pvh_start_addr' 632 * global variable. (although the entry point is 32-bit, the kernel 633 * binary can be either 32-bit or 64-bit). 634 */ 635 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 636 { 637 size_t *elf_note_data_addr; 638 639 /* Check if ELF Note header passed in is valid */ 640 if (arg1 == NULL) { 641 return 0; 642 } 643 644 if (is64) { 645 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 646 uint64_t nhdr_size64 = sizeof(struct elf64_note); 647 uint64_t phdr_align = *(uint64_t *)arg2; 648 uint64_t nhdr_namesz = nhdr64->n_namesz; 649 650 elf_note_data_addr = 651 ((void *)nhdr64) + nhdr_size64 + 652 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 653 } else { 654 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 655 uint32_t nhdr_size32 = sizeof(struct elf32_note); 656 uint32_t phdr_align = *(uint32_t *)arg2; 657 uint32_t nhdr_namesz = nhdr32->n_namesz; 658 659 elf_note_data_addr = 660 ((void *)nhdr32) + nhdr_size32 + 661 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 662 } 663 664 pvh_start_addr = *elf_note_data_addr; 665 666 return pvh_start_addr; 667 } 668 669 static bool load_elfboot(const char *kernel_filename, 670 int kernel_file_size, 671 uint8_t *header, 672 size_t pvh_xen_start_addr, 673 FWCfgState *fw_cfg) 674 { 675 uint32_t flags = 0; 676 uint32_t mh_load_addr = 0; 677 uint32_t elf_kernel_size = 0; 678 uint64_t elf_entry; 679 uint64_t elf_low, elf_high; 680 int kernel_size; 681 682 if (ldl_p(header) != 0x464c457f) { 683 return false; /* no elfboot */ 684 } 685 686 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 687 flags = elf_is64 ? 688 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 689 690 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 691 error_report("elfboot unsupported flags = %x", flags); 692 exit(1); 693 } 694 695 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 696 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 697 NULL, &elf_note_type, &elf_entry, 698 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 699 0, 0); 700 701 if (kernel_size < 0) { 702 error_report("Error while loading elf kernel"); 703 exit(1); 704 } 705 mh_load_addr = elf_low; 706 elf_kernel_size = elf_high - elf_low; 707 708 if (pvh_start_addr == 0) { 709 error_report("Error loading uncompressed kernel without PVH ELF Note"); 710 exit(1); 711 } 712 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 713 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 714 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 715 716 return true; 717 } 718 719 void x86_load_linux(X86MachineState *x86ms, 720 FWCfgState *fw_cfg, 721 int acpi_data_size, 722 bool pvh_enabled, 723 bool linuxboot_dma_enabled) 724 { 725 uint16_t protocol; 726 int setup_size, kernel_size, cmdline_size; 727 int dtb_size, setup_data_offset; 728 uint32_t initrd_max; 729 uint8_t header[8192], *setup, *kernel; 730 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 731 FILE *f; 732 char *vmode; 733 MachineState *machine = MACHINE(x86ms); 734 struct setup_data *setup_data; 735 const char *kernel_filename = machine->kernel_filename; 736 const char *initrd_filename = machine->initrd_filename; 737 const char *dtb_filename = machine->dtb; 738 const char *kernel_cmdline = machine->kernel_cmdline; 739 740 /* Align to 16 bytes as a paranoia measure */ 741 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 742 743 /* load the kernel header */ 744 f = fopen(kernel_filename, "rb"); 745 if (!f) { 746 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 747 kernel_filename, strerror(errno)); 748 exit(1); 749 } 750 751 kernel_size = get_file_size(f); 752 if (!kernel_size || 753 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 754 MIN(ARRAY_SIZE(header), kernel_size)) { 755 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 756 kernel_filename, strerror(errno)); 757 exit(1); 758 } 759 760 /* kernel protocol version */ 761 if (ldl_p(header + 0x202) == 0x53726448) { 762 protocol = lduw_p(header + 0x206); 763 } else { 764 /* 765 * This could be a multiboot kernel. If it is, let's stop treating it 766 * like a Linux kernel. 767 * Note: some multiboot images could be in the ELF format (the same of 768 * PVH), so we try multiboot first since we check the multiboot magic 769 * header before to load it. 770 */ 771 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 772 kernel_cmdline, kernel_size, header)) { 773 return; 774 } 775 /* 776 * Check if the file is an uncompressed kernel file (ELF) and load it, 777 * saving the PVH entry point used by the x86/HVM direct boot ABI. 778 * If load_elfboot() is successful, populate the fw_cfg info. 779 */ 780 if (pvh_enabled && 781 load_elfboot(kernel_filename, kernel_size, 782 header, pvh_start_addr, fw_cfg)) { 783 fclose(f); 784 785 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 786 strlen(kernel_cmdline) + 1); 787 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 788 789 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 790 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 791 header, sizeof(header)); 792 793 /* load initrd */ 794 if (initrd_filename) { 795 GMappedFile *mapped_file; 796 gsize initrd_size; 797 gchar *initrd_data; 798 GError *gerr = NULL; 799 800 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 801 if (!mapped_file) { 802 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 803 initrd_filename, gerr->message); 804 exit(1); 805 } 806 x86ms->initrd_mapped_file = mapped_file; 807 808 initrd_data = g_mapped_file_get_contents(mapped_file); 809 initrd_size = g_mapped_file_get_length(mapped_file); 810 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 811 if (initrd_size >= initrd_max) { 812 fprintf(stderr, "qemu: initrd is too large, cannot support." 813 "(max: %"PRIu32", need %"PRId64")\n", 814 initrd_max, (uint64_t)initrd_size); 815 exit(1); 816 } 817 818 initrd_addr = (initrd_max - initrd_size) & ~4095; 819 820 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 821 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 822 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 823 initrd_size); 824 } 825 826 option_rom[nb_option_roms].bootindex = 0; 827 option_rom[nb_option_roms].name = "pvh.bin"; 828 nb_option_roms++; 829 830 return; 831 } 832 protocol = 0; 833 } 834 835 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 836 /* Low kernel */ 837 real_addr = 0x90000; 838 cmdline_addr = 0x9a000 - cmdline_size; 839 prot_addr = 0x10000; 840 } else if (protocol < 0x202) { 841 /* High but ancient kernel */ 842 real_addr = 0x90000; 843 cmdline_addr = 0x9a000 - cmdline_size; 844 prot_addr = 0x100000; 845 } else { 846 /* High and recent kernel */ 847 real_addr = 0x10000; 848 cmdline_addr = 0x20000; 849 prot_addr = 0x100000; 850 } 851 852 /* highest address for loading the initrd */ 853 if (protocol >= 0x20c && 854 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 855 /* 856 * Linux has supported initrd up to 4 GB for a very long time (2007, 857 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 858 * though it only sets initrd_max to 2 GB to "work around bootloader 859 * bugs". Luckily, QEMU firmware(which does something like bootloader) 860 * has supported this. 861 * 862 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 863 * be loaded into any address. 864 * 865 * In addition, initrd_max is uint32_t simply because QEMU doesn't 866 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 867 * field). 868 * 869 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 870 */ 871 initrd_max = UINT32_MAX; 872 } else if (protocol >= 0x203) { 873 initrd_max = ldl_p(header + 0x22c); 874 } else { 875 initrd_max = 0x37ffffff; 876 } 877 878 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 879 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 880 } 881 882 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 883 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 884 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 885 886 if (protocol >= 0x202) { 887 stl_p(header + 0x228, cmdline_addr); 888 } else { 889 stw_p(header + 0x20, 0xA33F); 890 stw_p(header + 0x22, cmdline_addr - real_addr); 891 } 892 893 /* handle vga= parameter */ 894 vmode = strstr(kernel_cmdline, "vga="); 895 if (vmode) { 896 unsigned int video_mode; 897 const char *end; 898 int ret; 899 /* skip "vga=" */ 900 vmode += 4; 901 if (!strncmp(vmode, "normal", 6)) { 902 video_mode = 0xffff; 903 } else if (!strncmp(vmode, "ext", 3)) { 904 video_mode = 0xfffe; 905 } else if (!strncmp(vmode, "ask", 3)) { 906 video_mode = 0xfffd; 907 } else { 908 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 909 if (ret != 0 || (*end && *end != ' ')) { 910 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 911 exit(1); 912 } 913 } 914 stw_p(header + 0x1fa, video_mode); 915 } 916 917 /* loader type */ 918 /* 919 * High nybble = B reserved for QEMU; low nybble is revision number. 920 * If this code is substantially changed, you may want to consider 921 * incrementing the revision. 922 */ 923 if (protocol >= 0x200) { 924 header[0x210] = 0xB0; 925 } 926 /* heap */ 927 if (protocol >= 0x201) { 928 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 929 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 930 } 931 932 /* load initrd */ 933 if (initrd_filename) { 934 GMappedFile *mapped_file; 935 gsize initrd_size; 936 gchar *initrd_data; 937 GError *gerr = NULL; 938 939 if (protocol < 0x200) { 940 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 941 exit(1); 942 } 943 944 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 945 if (!mapped_file) { 946 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 947 initrd_filename, gerr->message); 948 exit(1); 949 } 950 x86ms->initrd_mapped_file = mapped_file; 951 952 initrd_data = g_mapped_file_get_contents(mapped_file); 953 initrd_size = g_mapped_file_get_length(mapped_file); 954 if (initrd_size >= initrd_max) { 955 fprintf(stderr, "qemu: initrd is too large, cannot support." 956 "(max: %"PRIu32", need %"PRId64")\n", 957 initrd_max, (uint64_t)initrd_size); 958 exit(1); 959 } 960 961 initrd_addr = (initrd_max - initrd_size) & ~4095; 962 963 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 964 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 965 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 966 967 stl_p(header + 0x218, initrd_addr); 968 stl_p(header + 0x21c, initrd_size); 969 } 970 971 /* load kernel and setup */ 972 setup_size = header[0x1f1]; 973 if (setup_size == 0) { 974 setup_size = 4; 975 } 976 setup_size = (setup_size + 1) * 512; 977 if (setup_size > kernel_size) { 978 fprintf(stderr, "qemu: invalid kernel header\n"); 979 exit(1); 980 } 981 kernel_size -= setup_size; 982 983 setup = g_malloc(setup_size); 984 kernel = g_malloc(kernel_size); 985 fseek(f, 0, SEEK_SET); 986 if (fread(setup, 1, setup_size, f) != setup_size) { 987 fprintf(stderr, "fread() failed\n"); 988 exit(1); 989 } 990 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 991 fprintf(stderr, "fread() failed\n"); 992 exit(1); 993 } 994 fclose(f); 995 996 /* append dtb to kernel */ 997 if (dtb_filename) { 998 if (protocol < 0x209) { 999 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1000 exit(1); 1001 } 1002 1003 dtb_size = get_image_size(dtb_filename); 1004 if (dtb_size <= 0) { 1005 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1006 dtb_filename, strerror(errno)); 1007 exit(1); 1008 } 1009 1010 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1011 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1012 kernel = g_realloc(kernel, kernel_size); 1013 1014 stq_p(header + 0x250, prot_addr + setup_data_offset); 1015 1016 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1017 setup_data->next = 0; 1018 setup_data->type = cpu_to_le32(SETUP_DTB); 1019 setup_data->len = cpu_to_le32(dtb_size); 1020 1021 load_image_size(dtb_filename, setup_data->data, dtb_size); 1022 } 1023 1024 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1025 1026 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1027 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1028 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1029 1030 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1031 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1032 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1033 1034 option_rom[nb_option_roms].bootindex = 0; 1035 option_rom[nb_option_roms].name = "linuxboot.bin"; 1036 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1037 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1038 } 1039 nb_option_roms++; 1040 } 1041 1042 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw) 1043 { 1044 char *filename; 1045 MemoryRegion *bios, *isa_bios; 1046 int bios_size, isa_bios_size; 1047 int ret; 1048 1049 /* BIOS load */ 1050 if (bios_name == NULL) { 1051 bios_name = BIOS_FILENAME; 1052 } 1053 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1054 if (filename) { 1055 bios_size = get_image_size(filename); 1056 } else { 1057 bios_size = -1; 1058 } 1059 if (bios_size <= 0 || 1060 (bios_size % 65536) != 0) { 1061 goto bios_error; 1062 } 1063 bios = g_malloc(sizeof(*bios)); 1064 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); 1065 if (!isapc_ram_fw) { 1066 memory_region_set_readonly(bios, true); 1067 } 1068 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 1069 if (ret != 0) { 1070 bios_error: 1071 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 1072 exit(1); 1073 } 1074 g_free(filename); 1075 1076 /* map the last 128KB of the BIOS in ISA space */ 1077 isa_bios_size = MIN(bios_size, 128 * KiB); 1078 isa_bios = g_malloc(sizeof(*isa_bios)); 1079 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 1080 bios_size - isa_bios_size, isa_bios_size); 1081 memory_region_add_subregion_overlap(rom_memory, 1082 0x100000 - isa_bios_size, 1083 isa_bios, 1084 1); 1085 if (!isapc_ram_fw) { 1086 memory_region_set_readonly(isa_bios, true); 1087 } 1088 1089 /* map all the bios at the top of memory */ 1090 memory_region_add_subregion(rom_memory, 1091 (uint32_t)(-bios_size), 1092 bios); 1093 } 1094 1095 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms) 1096 { 1097 bool smm_available = false; 1098 1099 if (x86ms->smm == ON_OFF_AUTO_OFF) { 1100 return false; 1101 } 1102 1103 if (tcg_enabled() || qtest_enabled()) { 1104 smm_available = true; 1105 } else if (kvm_enabled()) { 1106 smm_available = kvm_has_smm(); 1107 } 1108 1109 if (smm_available) { 1110 return true; 1111 } 1112 1113 if (x86ms->smm == ON_OFF_AUTO_ON) { 1114 error_report("System Management Mode not supported by this hypervisor."); 1115 exit(1); 1116 } 1117 return false; 1118 } 1119 1120 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name, 1121 void *opaque, Error **errp) 1122 { 1123 X86MachineState *x86ms = X86_MACHINE(obj); 1124 OnOffAuto smm = x86ms->smm; 1125 1126 visit_type_OnOffAuto(v, name, &smm, errp); 1127 } 1128 1129 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name, 1130 void *opaque, Error **errp) 1131 { 1132 X86MachineState *x86ms = X86_MACHINE(obj); 1133 1134 visit_type_OnOffAuto(v, name, &x86ms->smm, errp); 1135 } 1136 1137 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms) 1138 { 1139 if (x86ms->acpi == ON_OFF_AUTO_OFF) { 1140 return false; 1141 } 1142 return true; 1143 } 1144 1145 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name, 1146 void *opaque, Error **errp) 1147 { 1148 X86MachineState *x86ms = X86_MACHINE(obj); 1149 OnOffAuto acpi = x86ms->acpi; 1150 1151 visit_type_OnOffAuto(v, name, &acpi, errp); 1152 } 1153 1154 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name, 1155 void *opaque, Error **errp) 1156 { 1157 X86MachineState *x86ms = X86_MACHINE(obj); 1158 1159 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp); 1160 } 1161 1162 static void x86_machine_initfn(Object *obj) 1163 { 1164 X86MachineState *x86ms = X86_MACHINE(obj); 1165 1166 x86ms->smm = ON_OFF_AUTO_AUTO; 1167 x86ms->acpi = ON_OFF_AUTO_AUTO; 1168 x86ms->smp_dies = 1; 1169 } 1170 1171 static void x86_machine_class_init(ObjectClass *oc, void *data) 1172 { 1173 MachineClass *mc = MACHINE_CLASS(oc); 1174 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); 1175 NMIClass *nc = NMI_CLASS(oc); 1176 1177 mc->cpu_index_to_instance_props = x86_cpu_index_to_props; 1178 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; 1179 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; 1180 x86mc->compat_apic_id_mode = false; 1181 x86mc->save_tsc_khz = true; 1182 nc->nmi_monitor_handler = x86_nmi; 1183 1184 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto", 1185 x86_machine_get_smm, x86_machine_set_smm, 1186 NULL, NULL); 1187 object_class_property_set_description(oc, X86_MACHINE_SMM, 1188 "Enable SMM"); 1189 1190 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto", 1191 x86_machine_get_acpi, x86_machine_set_acpi, 1192 NULL, NULL); 1193 object_class_property_set_description(oc, X86_MACHINE_ACPI, 1194 "Enable ACPI"); 1195 } 1196 1197 static const TypeInfo x86_machine_info = { 1198 .name = TYPE_X86_MACHINE, 1199 .parent = TYPE_MACHINE, 1200 .abstract = true, 1201 .instance_size = sizeof(X86MachineState), 1202 .instance_init = x86_machine_initfn, 1203 .class_size = sizeof(X86MachineClass), 1204 .class_init = x86_machine_class_init, 1205 .interfaces = (InterfaceInfo[]) { 1206 { TYPE_NMI }, 1207 { } 1208 }, 1209 }; 1210 1211 static void x86_machine_register_types(void) 1212 { 1213 type_register_static(&x86_machine_info); 1214 } 1215 1216 type_init(x86_machine_register_types) 1217