1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/option.h" 26 #include "qemu/cutils.h" 27 #include "qemu/units.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/qmp/qerror.h" 31 #include "qapi/qapi-visit-common.h" 32 #include "qapi/visitor.h" 33 #include "sysemu/qtest.h" 34 #include "sysemu/numa.h" 35 #include "sysemu/replay.h" 36 #include "sysemu/sysemu.h" 37 #include "trace.h" 38 39 #include "hw/i386/x86.h" 40 #include "target/i386/cpu.h" 41 #include "hw/i386/topology.h" 42 #include "hw/i386/fw_cfg.h" 43 #include "hw/intc/i8259.h" 44 #include "hw/rtc/mc146818rtc.h" 45 46 #include "hw/acpi/cpu_hotplug.h" 47 #include "hw/irq.h" 48 #include "hw/nmi.h" 49 #include "hw/loader.h" 50 #include "multiboot.h" 51 #include "elf.h" 52 #include "standard-headers/asm-x86/bootparam.h" 53 #include CONFIG_DEVICES 54 #include "kvm_i386.h" 55 56 #define BIOS_FILENAME "bios.bin" 57 58 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 59 static size_t pvh_start_addr; 60 61 inline void init_topo_info(X86CPUTopoInfo *topo_info, 62 const X86MachineState *x86ms) 63 { 64 MachineState *ms = MACHINE(x86ms); 65 66 topo_info->dies_per_pkg = x86ms->smp_dies; 67 topo_info->cores_per_die = ms->smp.cores; 68 topo_info->threads_per_core = ms->smp.threads; 69 } 70 71 /* 72 * Calculates initial APIC ID for a specific CPU index 73 * 74 * Currently we need to be able to calculate the APIC ID from the CPU index 75 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 76 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 77 * all CPUs up to max_cpus. 78 */ 79 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, 80 unsigned int cpu_index) 81 { 82 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms); 83 X86CPUTopoInfo topo_info; 84 uint32_t correct_id; 85 static bool warned; 86 87 init_topo_info(&topo_info, x86ms); 88 89 correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index); 90 if (x86mc->compat_apic_id_mode) { 91 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 92 error_report("APIC IDs set in compatibility mode, " 93 "CPU topology won't match the configuration"); 94 warned = true; 95 } 96 return cpu_index; 97 } else { 98 return correct_id; 99 } 100 } 101 102 103 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 104 { 105 Object *cpu = object_new(MACHINE(x86ms)->cpu_type); 106 107 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { 108 goto out; 109 } 110 qdev_realize(DEVICE(cpu), NULL, errp); 111 112 out: 113 object_unref(cpu); 114 } 115 116 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 117 { 118 int i; 119 const CPUArchIdList *possible_cpus; 120 MachineState *ms = MACHINE(x86ms); 121 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 122 123 x86_cpu_set_default_version(default_cpu_version); 124 125 /* 126 * Calculates the limit to CPU APIC ID values 127 * 128 * Limit for the APIC ID value, so that all 129 * CPU APIC IDs are < x86ms->apic_id_limit. 130 * 131 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 132 */ 133 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 134 ms->smp.max_cpus - 1) + 1; 135 possible_cpus = mc->possible_cpu_arch_ids(ms); 136 for (i = 0; i < ms->smp.cpus; i++) { 137 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 138 } 139 } 140 141 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 142 { 143 if (cpus_count > 0xff) { 144 /* 145 * If the number of CPUs can't be represented in 8 bits, the 146 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 147 * to make old BIOSes fail more predictably. 148 */ 149 rtc_set_memory(rtc, 0x5f, 0); 150 } else { 151 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 152 } 153 } 154 155 static int x86_apic_cmp(const void *a, const void *b) 156 { 157 CPUArchId *apic_a = (CPUArchId *)a; 158 CPUArchId *apic_b = (CPUArchId *)b; 159 160 return apic_a->arch_id - apic_b->arch_id; 161 } 162 163 /* 164 * returns pointer to CPUArchId descriptor that matches CPU's apic_id 165 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 166 * entry corresponding to CPU's apic_id returns NULL. 167 */ 168 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 169 { 170 CPUArchId apic_id, *found_cpu; 171 172 apic_id.arch_id = id; 173 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 174 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 175 x86_apic_cmp); 176 if (found_cpu && idx) { 177 *idx = found_cpu - ms->possible_cpus->cpus; 178 } 179 return found_cpu; 180 } 181 182 void x86_cpu_plug(HotplugHandler *hotplug_dev, 183 DeviceState *dev, Error **errp) 184 { 185 CPUArchId *found_cpu; 186 Error *local_err = NULL; 187 X86CPU *cpu = X86_CPU(dev); 188 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 189 190 if (x86ms->acpi_dev) { 191 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); 192 if (local_err) { 193 goto out; 194 } 195 } 196 197 /* increment the number of CPUs */ 198 x86ms->boot_cpus++; 199 if (x86ms->rtc) { 200 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 201 } 202 if (x86ms->fw_cfg) { 203 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 204 } 205 206 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 207 found_cpu->cpu = OBJECT(dev); 208 out: 209 error_propagate(errp, local_err); 210 } 211 212 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 213 DeviceState *dev, Error **errp) 214 { 215 int idx = -1; 216 X86CPU *cpu = X86_CPU(dev); 217 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 218 219 if (!x86ms->acpi_dev) { 220 error_setg(errp, "CPU hot unplug not supported without ACPI"); 221 return; 222 } 223 224 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 225 assert(idx != -1); 226 if (idx == 0) { 227 error_setg(errp, "Boot CPU is unpluggable"); 228 return; 229 } 230 231 hotplug_handler_unplug_request(x86ms->acpi_dev, dev, 232 errp); 233 } 234 235 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, 236 DeviceState *dev, Error **errp) 237 { 238 CPUArchId *found_cpu; 239 Error *local_err = NULL; 240 X86CPU *cpu = X86_CPU(dev); 241 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 242 243 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); 244 if (local_err) { 245 goto out; 246 } 247 248 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 249 found_cpu->cpu = NULL; 250 qdev_unrealize(dev); 251 252 /* decrement the number of CPUs */ 253 x86ms->boot_cpus--; 254 /* Update the number of CPUs in CMOS */ 255 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 256 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 257 out: 258 error_propagate(errp, local_err); 259 } 260 261 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, 262 DeviceState *dev, Error **errp) 263 { 264 int idx; 265 CPUState *cs; 266 CPUArchId *cpu_slot; 267 X86CPUTopoIDs topo_ids; 268 X86CPU *cpu = X86_CPU(dev); 269 CPUX86State *env = &cpu->env; 270 MachineState *ms = MACHINE(hotplug_dev); 271 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 272 unsigned int smp_cores = ms->smp.cores; 273 unsigned int smp_threads = ms->smp.threads; 274 X86CPUTopoInfo topo_info; 275 276 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 277 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 278 ms->cpu_type); 279 return; 280 } 281 282 if (x86ms->acpi_dev) { 283 Error *local_err = NULL; 284 285 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, 286 &local_err); 287 if (local_err) { 288 error_propagate(errp, local_err); 289 return; 290 } 291 } 292 293 init_topo_info(&topo_info, x86ms); 294 295 env->nr_dies = x86ms->smp_dies; 296 297 /* 298 * If APIC ID is not set, 299 * set it based on socket/die/core/thread properties. 300 */ 301 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 302 int max_socket = (ms->smp.max_cpus - 1) / 303 smp_threads / smp_cores / x86ms->smp_dies; 304 305 /* 306 * die-id was optional in QEMU 4.0 and older, so keep it optional 307 * if there's only one die per socket. 308 */ 309 if (cpu->die_id < 0 && x86ms->smp_dies == 1) { 310 cpu->die_id = 0; 311 } 312 313 if (cpu->socket_id < 0) { 314 error_setg(errp, "CPU socket-id is not set"); 315 return; 316 } else if (cpu->socket_id > max_socket) { 317 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 318 cpu->socket_id, max_socket); 319 return; 320 } 321 if (cpu->die_id < 0) { 322 error_setg(errp, "CPU die-id is not set"); 323 return; 324 } else if (cpu->die_id > x86ms->smp_dies - 1) { 325 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", 326 cpu->die_id, x86ms->smp_dies - 1); 327 return; 328 } 329 if (cpu->core_id < 0) { 330 error_setg(errp, "CPU core-id is not set"); 331 return; 332 } else if (cpu->core_id > (smp_cores - 1)) { 333 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 334 cpu->core_id, smp_cores - 1); 335 return; 336 } 337 if (cpu->thread_id < 0) { 338 error_setg(errp, "CPU thread-id is not set"); 339 return; 340 } else if (cpu->thread_id > (smp_threads - 1)) { 341 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 342 cpu->thread_id, smp_threads - 1); 343 return; 344 } 345 346 topo_ids.pkg_id = cpu->socket_id; 347 topo_ids.die_id = cpu->die_id; 348 topo_ids.core_id = cpu->core_id; 349 topo_ids.smt_id = cpu->thread_id; 350 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids); 351 } 352 353 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 354 if (!cpu_slot) { 355 MachineState *ms = MACHINE(x86ms); 356 357 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 358 error_setg(errp, 359 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with" 360 " APIC ID %" PRIu32 ", valid index range 0:%d", 361 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id, 362 cpu->apic_id, ms->possible_cpus->len - 1); 363 return; 364 } 365 366 if (cpu_slot->cpu) { 367 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 368 idx, cpu->apic_id); 369 return; 370 } 371 372 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 373 * so that machine_query_hotpluggable_cpus would show correct values 374 */ 375 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 376 * once -smp refactoring is complete and there will be CPU private 377 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 378 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 379 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { 380 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 381 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, 382 topo_ids.pkg_id); 383 return; 384 } 385 cpu->socket_id = topo_ids.pkg_id; 386 387 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { 388 error_setg(errp, "property die-id: %u doesn't match set apic-id:" 389 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); 390 return; 391 } 392 cpu->die_id = topo_ids.die_id; 393 394 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { 395 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 396 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, 397 topo_ids.core_id); 398 return; 399 } 400 cpu->core_id = topo_ids.core_id; 401 402 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { 403 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 404 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, 405 topo_ids.smt_id); 406 return; 407 } 408 cpu->thread_id = topo_ids.smt_id; 409 410 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && 411 !kvm_hv_vpindex_settable()) { 412 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 413 return; 414 } 415 416 cs = CPU(cpu); 417 cs->cpu_index = idx; 418 419 numa_cpu_pre_plug(cpu_slot, dev, errp); 420 } 421 422 CpuInstanceProperties 423 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 424 { 425 MachineClass *mc = MACHINE_GET_CLASS(ms); 426 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 427 428 assert(cpu_index < possible_cpus->len); 429 return possible_cpus->cpus[cpu_index].props; 430 } 431 432 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) 433 { 434 X86CPUTopoIDs topo_ids; 435 X86MachineState *x86ms = X86_MACHINE(ms); 436 X86CPUTopoInfo topo_info; 437 438 init_topo_info(&topo_info, x86ms); 439 440 assert(idx < ms->possible_cpus->len); 441 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 442 &topo_info, &topo_ids); 443 return topo_ids.pkg_id % ms->numa_state->num_nodes; 444 } 445 446 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) 447 { 448 X86MachineState *x86ms = X86_MACHINE(ms); 449 unsigned int max_cpus = ms->smp.max_cpus; 450 X86CPUTopoInfo topo_info; 451 int i; 452 453 if (ms->possible_cpus) { 454 /* 455 * make sure that max_cpus hasn't changed since the first use, i.e. 456 * -smp hasn't been parsed after it 457 */ 458 assert(ms->possible_cpus->len == max_cpus); 459 return ms->possible_cpus; 460 } 461 462 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 463 sizeof(CPUArchId) * max_cpus); 464 ms->possible_cpus->len = max_cpus; 465 466 init_topo_info(&topo_info, x86ms); 467 468 for (i = 0; i < ms->possible_cpus->len; i++) { 469 X86CPUTopoIDs topo_ids; 470 471 ms->possible_cpus->cpus[i].type = ms->cpu_type; 472 ms->possible_cpus->cpus[i].vcpus_count = 1; 473 ms->possible_cpus->cpus[i].arch_id = 474 x86_cpu_apic_id_from_index(x86ms, i); 475 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 476 &topo_info, &topo_ids); 477 ms->possible_cpus->cpus[i].props.has_socket_id = true; 478 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id; 479 if (x86ms->smp_dies > 1) { 480 ms->possible_cpus->cpus[i].props.has_die_id = true; 481 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id; 482 } 483 ms->possible_cpus->cpus[i].props.has_core_id = true; 484 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id; 485 ms->possible_cpus->cpus[i].props.has_thread_id = true; 486 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id; 487 } 488 return ms->possible_cpus; 489 } 490 491 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 492 { 493 /* cpu index isn't used */ 494 CPUState *cs; 495 496 CPU_FOREACH(cs) { 497 X86CPU *cpu = X86_CPU(cs); 498 499 if (!cpu->apic_state) { 500 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 501 } else { 502 apic_deliver_nmi(cpu->apic_state); 503 } 504 } 505 } 506 507 static long get_file_size(FILE *f) 508 { 509 long where, size; 510 511 /* XXX: on Unix systems, using fstat() probably makes more sense */ 512 513 where = ftell(f); 514 fseek(f, 0, SEEK_END); 515 size = ftell(f); 516 fseek(f, where, SEEK_SET); 517 518 return size; 519 } 520 521 /* TSC handling */ 522 uint64_t cpu_get_tsc(CPUX86State *env) 523 { 524 return cpu_get_ticks(); 525 } 526 527 /* IRQ handling */ 528 static void pic_irq_request(void *opaque, int irq, int level) 529 { 530 CPUState *cs = first_cpu; 531 X86CPU *cpu = X86_CPU(cs); 532 533 trace_x86_pic_interrupt(irq, level); 534 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 535 CPU_FOREACH(cs) { 536 cpu = X86_CPU(cs); 537 if (apic_accept_pic_intr(cpu->apic_state)) { 538 apic_deliver_pic_intr(cpu->apic_state, level); 539 } 540 } 541 } else { 542 if (level) { 543 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 544 } else { 545 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 546 } 547 } 548 } 549 550 qemu_irq x86_allocate_cpu_irq(void) 551 { 552 return qemu_allocate_irq(pic_irq_request, NULL, 0); 553 } 554 555 int cpu_get_pic_interrupt(CPUX86State *env) 556 { 557 X86CPU *cpu = env_archcpu(env); 558 int intno; 559 560 if (!kvm_irqchip_in_kernel()) { 561 intno = apic_get_interrupt(cpu->apic_state); 562 if (intno >= 0) { 563 return intno; 564 } 565 /* read the irq from the PIC */ 566 if (!apic_accept_pic_intr(cpu->apic_state)) { 567 return -1; 568 } 569 } 570 571 intno = pic_read_irq(isa_pic); 572 return intno; 573 } 574 575 DeviceState *cpu_get_current_apic(void) 576 { 577 if (current_cpu) { 578 X86CPU *cpu = X86_CPU(current_cpu); 579 return cpu->apic_state; 580 } else { 581 return NULL; 582 } 583 } 584 585 void gsi_handler(void *opaque, int n, int level) 586 { 587 GSIState *s = opaque; 588 589 trace_x86_gsi_interrupt(n, level); 590 if (n < ISA_NUM_IRQS) { 591 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 592 qemu_set_irq(s->i8259_irq[n], level); 593 } 594 qemu_set_irq(s->ioapic_irq[n], level); 595 } 596 597 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 598 { 599 DeviceState *dev; 600 SysBusDevice *d; 601 unsigned int i; 602 603 assert(parent_name); 604 if (kvm_ioapic_in_kernel()) { 605 dev = qdev_new(TYPE_KVM_IOAPIC); 606 } else { 607 dev = qdev_new(TYPE_IOAPIC); 608 } 609 object_property_add_child(object_resolve_path(parent_name, NULL), 610 "ioapic", OBJECT(dev)); 611 d = SYS_BUS_DEVICE(dev); 612 sysbus_realize_and_unref(d, &error_fatal); 613 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 614 615 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 616 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 617 } 618 } 619 620 struct setup_data { 621 uint64_t next; 622 uint32_t type; 623 uint32_t len; 624 uint8_t data[]; 625 } __attribute__((packed)); 626 627 628 /* 629 * The entry point into the kernel for PVH boot is different from 630 * the native entry point. The PVH entry is defined by the x86/HVM 631 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 632 * 633 * This function is passed to load_elf() when it is called from 634 * load_elfboot() which then additionally checks for an ELF Note of 635 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 636 * parse the PVH entry address from the ELF Note. 637 * 638 * Due to trickery in elf_opts.h, load_elf() is actually available as 639 * load_elf32() or load_elf64() and this routine needs to be able 640 * to deal with being called as 32 or 64 bit. 641 * 642 * The address of the PVH entry point is saved to the 'pvh_start_addr' 643 * global variable. (although the entry point is 32-bit, the kernel 644 * binary can be either 32-bit or 64-bit). 645 */ 646 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 647 { 648 size_t *elf_note_data_addr; 649 650 /* Check if ELF Note header passed in is valid */ 651 if (arg1 == NULL) { 652 return 0; 653 } 654 655 if (is64) { 656 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 657 uint64_t nhdr_size64 = sizeof(struct elf64_note); 658 uint64_t phdr_align = *(uint64_t *)arg2; 659 uint64_t nhdr_namesz = nhdr64->n_namesz; 660 661 elf_note_data_addr = 662 ((void *)nhdr64) + nhdr_size64 + 663 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 664 } else { 665 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 666 uint32_t nhdr_size32 = sizeof(struct elf32_note); 667 uint32_t phdr_align = *(uint32_t *)arg2; 668 uint32_t nhdr_namesz = nhdr32->n_namesz; 669 670 elf_note_data_addr = 671 ((void *)nhdr32) + nhdr_size32 + 672 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 673 } 674 675 pvh_start_addr = *elf_note_data_addr; 676 677 return pvh_start_addr; 678 } 679 680 static bool load_elfboot(const char *kernel_filename, 681 int kernel_file_size, 682 uint8_t *header, 683 size_t pvh_xen_start_addr, 684 FWCfgState *fw_cfg) 685 { 686 uint32_t flags = 0; 687 uint32_t mh_load_addr = 0; 688 uint32_t elf_kernel_size = 0; 689 uint64_t elf_entry; 690 uint64_t elf_low, elf_high; 691 int kernel_size; 692 693 if (ldl_p(header) != 0x464c457f) { 694 return false; /* no elfboot */ 695 } 696 697 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 698 flags = elf_is64 ? 699 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 700 701 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 702 error_report("elfboot unsupported flags = %x", flags); 703 exit(1); 704 } 705 706 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 707 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 708 NULL, &elf_note_type, &elf_entry, 709 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 710 0, 0); 711 712 if (kernel_size < 0) { 713 error_report("Error while loading elf kernel"); 714 exit(1); 715 } 716 mh_load_addr = elf_low; 717 elf_kernel_size = elf_high - elf_low; 718 719 if (pvh_start_addr == 0) { 720 error_report("Error loading uncompressed kernel without PVH ELF Note"); 721 exit(1); 722 } 723 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 724 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 725 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 726 727 return true; 728 } 729 730 void x86_load_linux(X86MachineState *x86ms, 731 FWCfgState *fw_cfg, 732 int acpi_data_size, 733 bool pvh_enabled, 734 bool linuxboot_dma_enabled) 735 { 736 uint16_t protocol; 737 int setup_size, kernel_size, cmdline_size; 738 int dtb_size, setup_data_offset; 739 uint32_t initrd_max; 740 uint8_t header[8192], *setup, *kernel; 741 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 742 FILE *f; 743 char *vmode; 744 MachineState *machine = MACHINE(x86ms); 745 struct setup_data *setup_data; 746 const char *kernel_filename = machine->kernel_filename; 747 const char *initrd_filename = machine->initrd_filename; 748 const char *dtb_filename = machine->dtb; 749 const char *kernel_cmdline = machine->kernel_cmdline; 750 751 /* Align to 16 bytes as a paranoia measure */ 752 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 753 754 /* load the kernel header */ 755 f = fopen(kernel_filename, "rb"); 756 if (!f) { 757 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 758 kernel_filename, strerror(errno)); 759 exit(1); 760 } 761 762 kernel_size = get_file_size(f); 763 if (!kernel_size || 764 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 765 MIN(ARRAY_SIZE(header), kernel_size)) { 766 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 767 kernel_filename, strerror(errno)); 768 exit(1); 769 } 770 771 /* kernel protocol version */ 772 if (ldl_p(header + 0x202) == 0x53726448) { 773 protocol = lduw_p(header + 0x206); 774 } else { 775 /* 776 * This could be a multiboot kernel. If it is, let's stop treating it 777 * like a Linux kernel. 778 * Note: some multiboot images could be in the ELF format (the same of 779 * PVH), so we try multiboot first since we check the multiboot magic 780 * header before to load it. 781 */ 782 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 783 kernel_cmdline, kernel_size, header)) { 784 return; 785 } 786 /* 787 * Check if the file is an uncompressed kernel file (ELF) and load it, 788 * saving the PVH entry point used by the x86/HVM direct boot ABI. 789 * If load_elfboot() is successful, populate the fw_cfg info. 790 */ 791 if (pvh_enabled && 792 load_elfboot(kernel_filename, kernel_size, 793 header, pvh_start_addr, fw_cfg)) { 794 fclose(f); 795 796 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 797 strlen(kernel_cmdline) + 1); 798 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 799 800 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 801 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 802 header, sizeof(header)); 803 804 /* load initrd */ 805 if (initrd_filename) { 806 GMappedFile *mapped_file; 807 gsize initrd_size; 808 gchar *initrd_data; 809 GError *gerr = NULL; 810 811 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 812 if (!mapped_file) { 813 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 814 initrd_filename, gerr->message); 815 exit(1); 816 } 817 x86ms->initrd_mapped_file = mapped_file; 818 819 initrd_data = g_mapped_file_get_contents(mapped_file); 820 initrd_size = g_mapped_file_get_length(mapped_file); 821 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 822 if (initrd_size >= initrd_max) { 823 fprintf(stderr, "qemu: initrd is too large, cannot support." 824 "(max: %"PRIu32", need %"PRId64")\n", 825 initrd_max, (uint64_t)initrd_size); 826 exit(1); 827 } 828 829 initrd_addr = (initrd_max - initrd_size) & ~4095; 830 831 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 832 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 833 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 834 initrd_size); 835 } 836 837 option_rom[nb_option_roms].bootindex = 0; 838 option_rom[nb_option_roms].name = "pvh.bin"; 839 nb_option_roms++; 840 841 return; 842 } 843 protocol = 0; 844 } 845 846 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 847 /* Low kernel */ 848 real_addr = 0x90000; 849 cmdline_addr = 0x9a000 - cmdline_size; 850 prot_addr = 0x10000; 851 } else if (protocol < 0x202) { 852 /* High but ancient kernel */ 853 real_addr = 0x90000; 854 cmdline_addr = 0x9a000 - cmdline_size; 855 prot_addr = 0x100000; 856 } else { 857 /* High and recent kernel */ 858 real_addr = 0x10000; 859 cmdline_addr = 0x20000; 860 prot_addr = 0x100000; 861 } 862 863 /* highest address for loading the initrd */ 864 if (protocol >= 0x20c && 865 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 866 /* 867 * Linux has supported initrd up to 4 GB for a very long time (2007, 868 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 869 * though it only sets initrd_max to 2 GB to "work around bootloader 870 * bugs". Luckily, QEMU firmware(which does something like bootloader) 871 * has supported this. 872 * 873 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 874 * be loaded into any address. 875 * 876 * In addition, initrd_max is uint32_t simply because QEMU doesn't 877 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 878 * field). 879 * 880 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 881 */ 882 initrd_max = UINT32_MAX; 883 } else if (protocol >= 0x203) { 884 initrd_max = ldl_p(header + 0x22c); 885 } else { 886 initrd_max = 0x37ffffff; 887 } 888 889 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 890 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 891 } 892 893 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 894 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 895 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 896 897 if (protocol >= 0x202) { 898 stl_p(header + 0x228, cmdline_addr); 899 } else { 900 stw_p(header + 0x20, 0xA33F); 901 stw_p(header + 0x22, cmdline_addr - real_addr); 902 } 903 904 /* handle vga= parameter */ 905 vmode = strstr(kernel_cmdline, "vga="); 906 if (vmode) { 907 unsigned int video_mode; 908 const char *end; 909 int ret; 910 /* skip "vga=" */ 911 vmode += 4; 912 if (!strncmp(vmode, "normal", 6)) { 913 video_mode = 0xffff; 914 } else if (!strncmp(vmode, "ext", 3)) { 915 video_mode = 0xfffe; 916 } else if (!strncmp(vmode, "ask", 3)) { 917 video_mode = 0xfffd; 918 } else { 919 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 920 if (ret != 0 || (*end && *end != ' ')) { 921 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 922 exit(1); 923 } 924 } 925 stw_p(header + 0x1fa, video_mode); 926 } 927 928 /* loader type */ 929 /* 930 * High nybble = B reserved for QEMU; low nybble is revision number. 931 * If this code is substantially changed, you may want to consider 932 * incrementing the revision. 933 */ 934 if (protocol >= 0x200) { 935 header[0x210] = 0xB0; 936 } 937 /* heap */ 938 if (protocol >= 0x201) { 939 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 940 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 941 } 942 943 /* load initrd */ 944 if (initrd_filename) { 945 GMappedFile *mapped_file; 946 gsize initrd_size; 947 gchar *initrd_data; 948 GError *gerr = NULL; 949 950 if (protocol < 0x200) { 951 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 952 exit(1); 953 } 954 955 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 956 if (!mapped_file) { 957 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 958 initrd_filename, gerr->message); 959 exit(1); 960 } 961 x86ms->initrd_mapped_file = mapped_file; 962 963 initrd_data = g_mapped_file_get_contents(mapped_file); 964 initrd_size = g_mapped_file_get_length(mapped_file); 965 if (initrd_size >= initrd_max) { 966 fprintf(stderr, "qemu: initrd is too large, cannot support." 967 "(max: %"PRIu32", need %"PRId64")\n", 968 initrd_max, (uint64_t)initrd_size); 969 exit(1); 970 } 971 972 initrd_addr = (initrd_max - initrd_size) & ~4095; 973 974 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 975 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 976 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 977 978 stl_p(header + 0x218, initrd_addr); 979 stl_p(header + 0x21c, initrd_size); 980 } 981 982 /* load kernel and setup */ 983 setup_size = header[0x1f1]; 984 if (setup_size == 0) { 985 setup_size = 4; 986 } 987 setup_size = (setup_size + 1) * 512; 988 if (setup_size > kernel_size) { 989 fprintf(stderr, "qemu: invalid kernel header\n"); 990 exit(1); 991 } 992 kernel_size -= setup_size; 993 994 setup = g_malloc(setup_size); 995 kernel = g_malloc(kernel_size); 996 fseek(f, 0, SEEK_SET); 997 if (fread(setup, 1, setup_size, f) != setup_size) { 998 fprintf(stderr, "fread() failed\n"); 999 exit(1); 1000 } 1001 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1002 fprintf(stderr, "fread() failed\n"); 1003 exit(1); 1004 } 1005 fclose(f); 1006 1007 /* append dtb to kernel */ 1008 if (dtb_filename) { 1009 if (protocol < 0x209) { 1010 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1011 exit(1); 1012 } 1013 1014 dtb_size = get_image_size(dtb_filename); 1015 if (dtb_size <= 0) { 1016 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1017 dtb_filename, strerror(errno)); 1018 exit(1); 1019 } 1020 1021 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1022 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1023 kernel = g_realloc(kernel, kernel_size); 1024 1025 stq_p(header + 0x250, prot_addr + setup_data_offset); 1026 1027 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1028 setup_data->next = 0; 1029 setup_data->type = cpu_to_le32(SETUP_DTB); 1030 setup_data->len = cpu_to_le32(dtb_size); 1031 1032 load_image_size(dtb_filename, setup_data->data, dtb_size); 1033 } 1034 1035 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1036 1037 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1038 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1039 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1040 1041 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1042 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1043 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1044 1045 option_rom[nb_option_roms].bootindex = 0; 1046 option_rom[nb_option_roms].name = "linuxboot.bin"; 1047 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1048 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1049 } 1050 nb_option_roms++; 1051 } 1052 1053 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw) 1054 { 1055 char *filename; 1056 MemoryRegion *bios, *isa_bios; 1057 int bios_size, isa_bios_size; 1058 int ret; 1059 1060 /* BIOS load */ 1061 if (bios_name == NULL) { 1062 bios_name = BIOS_FILENAME; 1063 } 1064 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1065 if (filename) { 1066 bios_size = get_image_size(filename); 1067 } else { 1068 bios_size = -1; 1069 } 1070 if (bios_size <= 0 || 1071 (bios_size % 65536) != 0) { 1072 goto bios_error; 1073 } 1074 bios = g_malloc(sizeof(*bios)); 1075 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); 1076 if (!isapc_ram_fw) { 1077 memory_region_set_readonly(bios, true); 1078 } 1079 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 1080 if (ret != 0) { 1081 bios_error: 1082 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 1083 exit(1); 1084 } 1085 g_free(filename); 1086 1087 /* map the last 128KB of the BIOS in ISA space */ 1088 isa_bios_size = MIN(bios_size, 128 * KiB); 1089 isa_bios = g_malloc(sizeof(*isa_bios)); 1090 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 1091 bios_size - isa_bios_size, isa_bios_size); 1092 memory_region_add_subregion_overlap(rom_memory, 1093 0x100000 - isa_bios_size, 1094 isa_bios, 1095 1); 1096 if (!isapc_ram_fw) { 1097 memory_region_set_readonly(isa_bios, true); 1098 } 1099 1100 /* map all the bios at the top of memory */ 1101 memory_region_add_subregion(rom_memory, 1102 (uint32_t)(-bios_size), 1103 bios); 1104 } 1105 1106 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms) 1107 { 1108 bool smm_available = false; 1109 1110 if (x86ms->smm == ON_OFF_AUTO_OFF) { 1111 return false; 1112 } 1113 1114 if (tcg_enabled() || qtest_enabled()) { 1115 smm_available = true; 1116 } else if (kvm_enabled()) { 1117 smm_available = kvm_has_smm(); 1118 } 1119 1120 if (smm_available) { 1121 return true; 1122 } 1123 1124 if (x86ms->smm == ON_OFF_AUTO_ON) { 1125 error_report("System Management Mode not supported by this hypervisor."); 1126 exit(1); 1127 } 1128 return false; 1129 } 1130 1131 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name, 1132 void *opaque, Error **errp) 1133 { 1134 X86MachineState *x86ms = X86_MACHINE(obj); 1135 OnOffAuto smm = x86ms->smm; 1136 1137 visit_type_OnOffAuto(v, name, &smm, errp); 1138 } 1139 1140 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name, 1141 void *opaque, Error **errp) 1142 { 1143 X86MachineState *x86ms = X86_MACHINE(obj); 1144 1145 visit_type_OnOffAuto(v, name, &x86ms->smm, errp); 1146 } 1147 1148 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms) 1149 { 1150 if (x86ms->acpi == ON_OFF_AUTO_OFF) { 1151 return false; 1152 } 1153 return true; 1154 } 1155 1156 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name, 1157 void *opaque, Error **errp) 1158 { 1159 X86MachineState *x86ms = X86_MACHINE(obj); 1160 OnOffAuto acpi = x86ms->acpi; 1161 1162 visit_type_OnOffAuto(v, name, &acpi, errp); 1163 } 1164 1165 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name, 1166 void *opaque, Error **errp) 1167 { 1168 X86MachineState *x86ms = X86_MACHINE(obj); 1169 1170 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp); 1171 } 1172 1173 static void x86_machine_initfn(Object *obj) 1174 { 1175 X86MachineState *x86ms = X86_MACHINE(obj); 1176 1177 x86ms->smm = ON_OFF_AUTO_AUTO; 1178 x86ms->acpi = ON_OFF_AUTO_AUTO; 1179 x86ms->smp_dies = 1; 1180 } 1181 1182 static void x86_machine_class_init(ObjectClass *oc, void *data) 1183 { 1184 MachineClass *mc = MACHINE_CLASS(oc); 1185 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); 1186 NMIClass *nc = NMI_CLASS(oc); 1187 1188 mc->cpu_index_to_instance_props = x86_cpu_index_to_props; 1189 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; 1190 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; 1191 x86mc->compat_apic_id_mode = false; 1192 x86mc->save_tsc_khz = true; 1193 nc->nmi_monitor_handler = x86_nmi; 1194 1195 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto", 1196 x86_machine_get_smm, x86_machine_set_smm, 1197 NULL, NULL); 1198 object_class_property_set_description(oc, X86_MACHINE_SMM, 1199 "Enable SMM"); 1200 1201 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto", 1202 x86_machine_get_acpi, x86_machine_set_acpi, 1203 NULL, NULL); 1204 object_class_property_set_description(oc, X86_MACHINE_ACPI, 1205 "Enable ACPI"); 1206 } 1207 1208 static const TypeInfo x86_machine_info = { 1209 .name = TYPE_X86_MACHINE, 1210 .parent = TYPE_MACHINE, 1211 .abstract = true, 1212 .instance_size = sizeof(X86MachineState), 1213 .instance_init = x86_machine_initfn, 1214 .class_size = sizeof(X86MachineClass), 1215 .class_init = x86_machine_class_init, 1216 .interfaces = (InterfaceInfo[]) { 1217 { TYPE_NMI }, 1218 { } 1219 }, 1220 }; 1221 1222 static void x86_machine_register_types(void) 1223 { 1224 type_register_static(&x86_machine_info); 1225 } 1226 1227 type_init(x86_machine_register_types) 1228