xref: /openbmc/qemu/hw/i386/x86.c (revision db0f08df)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
37 #include "trace.h"
38 
39 #include "hw/i386/x86.h"
40 #include "target/i386/cpu.h"
41 #include "hw/i386/topology.h"
42 #include "hw/i386/fw_cfg.h"
43 #include "hw/intc/i8259.h"
44 #include "hw/rtc/mc146818rtc.h"
45 
46 #include "hw/acpi/cpu_hotplug.h"
47 #include "hw/irq.h"
48 #include "hw/nmi.h"
49 #include "hw/loader.h"
50 #include "multiboot.h"
51 #include "elf.h"
52 #include "standard-headers/asm-x86/bootparam.h"
53 #include CONFIG_DEVICES
54 #include "kvm_i386.h"
55 
56 #define BIOS_FILENAME "bios.bin"
57 
58 /* Physical Address of PVH entry point read from kernel ELF NOTE */
59 static size_t pvh_start_addr;
60 
61 inline void init_topo_info(X86CPUTopoInfo *topo_info,
62                            const X86MachineState *x86ms)
63 {
64     MachineState *ms = MACHINE(x86ms);
65 
66     topo_info->dies_per_pkg = x86ms->smp_dies;
67     topo_info->cores_per_die = ms->smp.cores;
68     topo_info->threads_per_core = ms->smp.threads;
69 }
70 
71 /*
72  * Calculates initial APIC ID for a specific CPU index
73  *
74  * Currently we need to be able to calculate the APIC ID from the CPU index
75  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
76  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
77  * all CPUs up to max_cpus.
78  */
79 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
80                                     unsigned int cpu_index)
81 {
82     X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
83     X86CPUTopoInfo topo_info;
84     uint32_t correct_id;
85     static bool warned;
86 
87     init_topo_info(&topo_info, x86ms);
88 
89     correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index);
90     if (x86mc->compat_apic_id_mode) {
91         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
92             error_report("APIC IDs set in compatibility mode, "
93                          "CPU topology won't match the configuration");
94             warned = true;
95         }
96         return cpu_index;
97     } else {
98         return correct_id;
99     }
100 }
101 
102 
103 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
104 {
105     Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
106 
107     if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
108         goto out;
109     }
110     qdev_realize(DEVICE(cpu), NULL, errp);
111 
112 out:
113     object_unref(cpu);
114 }
115 
116 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
117 {
118     int i;
119     const CPUArchIdList *possible_cpus;
120     MachineState *ms = MACHINE(x86ms);
121     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
122 
123     x86_cpu_set_default_version(default_cpu_version);
124 
125     /*
126      * Calculates the limit to CPU APIC ID values
127      *
128      * Limit for the APIC ID value, so that all
129      * CPU APIC IDs are < x86ms->apic_id_limit.
130      *
131      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
132      */
133     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
134                                                       ms->smp.max_cpus - 1) + 1;
135     possible_cpus = mc->possible_cpu_arch_ids(ms);
136     for (i = 0; i < ms->smp.cpus; i++) {
137         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
138     }
139 }
140 
141 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
142 {
143     if (cpus_count > 0xff) {
144         /*
145          * If the number of CPUs can't be represented in 8 bits, the
146          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
147          * to make old BIOSes fail more predictably.
148          */
149         rtc_set_memory(rtc, 0x5f, 0);
150     } else {
151         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
152     }
153 }
154 
155 static int x86_apic_cmp(const void *a, const void *b)
156 {
157    CPUArchId *apic_a = (CPUArchId *)a;
158    CPUArchId *apic_b = (CPUArchId *)b;
159 
160    return apic_a->arch_id - apic_b->arch_id;
161 }
162 
163 /*
164  * returns pointer to CPUArchId descriptor that matches CPU's apic_id
165  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
166  * entry corresponding to CPU's apic_id returns NULL.
167  */
168 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
169 {
170     CPUArchId apic_id, *found_cpu;
171 
172     apic_id.arch_id = id;
173     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
174         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
175         x86_apic_cmp);
176     if (found_cpu && idx) {
177         *idx = found_cpu - ms->possible_cpus->cpus;
178     }
179     return found_cpu;
180 }
181 
182 void x86_cpu_plug(HotplugHandler *hotplug_dev,
183                   DeviceState *dev, Error **errp)
184 {
185     CPUArchId *found_cpu;
186     Error *local_err = NULL;
187     X86CPU *cpu = X86_CPU(dev);
188     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
189 
190     if (x86ms->acpi_dev) {
191         hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
192         if (local_err) {
193             goto out;
194         }
195     }
196 
197     /* increment the number of CPUs */
198     x86ms->boot_cpus++;
199     if (x86ms->rtc) {
200         x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
201     }
202     if (x86ms->fw_cfg) {
203         fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
204     }
205 
206     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
207     found_cpu->cpu = OBJECT(dev);
208 out:
209     error_propagate(errp, local_err);
210 }
211 
212 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
213                                DeviceState *dev, Error **errp)
214 {
215     int idx = -1;
216     X86CPU *cpu = X86_CPU(dev);
217     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
218 
219     if (!x86ms->acpi_dev) {
220         error_setg(errp, "CPU hot unplug not supported without ACPI");
221         return;
222     }
223 
224     x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
225     assert(idx != -1);
226     if (idx == 0) {
227         error_setg(errp, "Boot CPU is unpluggable");
228         return;
229     }
230 
231     hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
232                                    errp);
233 }
234 
235 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
236                        DeviceState *dev, Error **errp)
237 {
238     CPUArchId *found_cpu;
239     Error *local_err = NULL;
240     X86CPU *cpu = X86_CPU(dev);
241     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
242 
243     hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
244     if (local_err) {
245         goto out;
246     }
247 
248     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
249     found_cpu->cpu = NULL;
250     qdev_unrealize(dev);
251 
252     /* decrement the number of CPUs */
253     x86ms->boot_cpus--;
254     /* Update the number of CPUs in CMOS */
255     x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
256     fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
257  out:
258     error_propagate(errp, local_err);
259 }
260 
261 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
262                       DeviceState *dev, Error **errp)
263 {
264     int idx;
265     CPUState *cs;
266     CPUArchId *cpu_slot;
267     X86CPUTopoIDs topo_ids;
268     X86CPU *cpu = X86_CPU(dev);
269     CPUX86State *env = &cpu->env;
270     MachineState *ms = MACHINE(hotplug_dev);
271     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
272     unsigned int smp_cores = ms->smp.cores;
273     unsigned int smp_threads = ms->smp.threads;
274     X86CPUTopoInfo topo_info;
275 
276     if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
277         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
278                    ms->cpu_type);
279         return;
280     }
281 
282     if (x86ms->acpi_dev) {
283         Error *local_err = NULL;
284 
285         hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
286                                  &local_err);
287         if (local_err) {
288             error_propagate(errp, local_err);
289             return;
290         }
291     }
292 
293     init_topo_info(&topo_info, x86ms);
294 
295     env->nr_dies = x86ms->smp_dies;
296 
297     /*
298      * If APIC ID is not set,
299      * set it based on socket/die/core/thread properties.
300      */
301     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
302         int max_socket = (ms->smp.max_cpus - 1) /
303                                 smp_threads / smp_cores / x86ms->smp_dies;
304 
305         /*
306          * die-id was optional in QEMU 4.0 and older, so keep it optional
307          * if there's only one die per socket.
308          */
309         if (cpu->die_id < 0 && x86ms->smp_dies == 1) {
310             cpu->die_id = 0;
311         }
312 
313         if (cpu->socket_id < 0) {
314             error_setg(errp, "CPU socket-id is not set");
315             return;
316         } else if (cpu->socket_id > max_socket) {
317             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
318                        cpu->socket_id, max_socket);
319             return;
320         }
321         if (cpu->die_id < 0) {
322             error_setg(errp, "CPU die-id is not set");
323             return;
324         } else if (cpu->die_id > x86ms->smp_dies - 1) {
325             error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
326                        cpu->die_id, x86ms->smp_dies - 1);
327             return;
328         }
329         if (cpu->core_id < 0) {
330             error_setg(errp, "CPU core-id is not set");
331             return;
332         } else if (cpu->core_id > (smp_cores - 1)) {
333             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
334                        cpu->core_id, smp_cores - 1);
335             return;
336         }
337         if (cpu->thread_id < 0) {
338             error_setg(errp, "CPU thread-id is not set");
339             return;
340         } else if (cpu->thread_id > (smp_threads - 1)) {
341             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
342                        cpu->thread_id, smp_threads - 1);
343             return;
344         }
345 
346         topo_ids.pkg_id = cpu->socket_id;
347         topo_ids.die_id = cpu->die_id;
348         topo_ids.core_id = cpu->core_id;
349         topo_ids.smt_id = cpu->thread_id;
350         cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
351     }
352 
353     cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
354     if (!cpu_slot) {
355         MachineState *ms = MACHINE(x86ms);
356 
357         x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
358         error_setg(errp,
359             "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
360             " APIC ID %" PRIu32 ", valid index range 0:%d",
361             topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
362             cpu->apic_id, ms->possible_cpus->len - 1);
363         return;
364     }
365 
366     if (cpu_slot->cpu) {
367         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
368                    idx, cpu->apic_id);
369         return;
370     }
371 
372     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
373      * so that machine_query_hotpluggable_cpus would show correct values
374      */
375     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
376      * once -smp refactoring is complete and there will be CPU private
377      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
378     x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
379     if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
380         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
381             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
382             topo_ids.pkg_id);
383         return;
384     }
385     cpu->socket_id = topo_ids.pkg_id;
386 
387     if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
388         error_setg(errp, "property die-id: %u doesn't match set apic-id:"
389             " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
390         return;
391     }
392     cpu->die_id = topo_ids.die_id;
393 
394     if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
395         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
396             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
397             topo_ids.core_id);
398         return;
399     }
400     cpu->core_id = topo_ids.core_id;
401 
402     if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
403         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
404             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
405             topo_ids.smt_id);
406         return;
407     }
408     cpu->thread_id = topo_ids.smt_id;
409 
410     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
411         !kvm_hv_vpindex_settable()) {
412         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
413         return;
414     }
415 
416     cs = CPU(cpu);
417     cs->cpu_index = idx;
418 
419     numa_cpu_pre_plug(cpu_slot, dev, errp);
420 }
421 
422 CpuInstanceProperties
423 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
424 {
425     MachineClass *mc = MACHINE_GET_CLASS(ms);
426     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
427 
428     assert(cpu_index < possible_cpus->len);
429     return possible_cpus->cpus[cpu_index].props;
430 }
431 
432 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
433 {
434    X86CPUTopoIDs topo_ids;
435    X86MachineState *x86ms = X86_MACHINE(ms);
436    X86CPUTopoInfo topo_info;
437 
438    init_topo_info(&topo_info, x86ms);
439 
440    assert(idx < ms->possible_cpus->len);
441    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
442                             &topo_info, &topo_ids);
443    return topo_ids.pkg_id % ms->numa_state->num_nodes;
444 }
445 
446 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
447 {
448     X86MachineState *x86ms = X86_MACHINE(ms);
449     unsigned int max_cpus = ms->smp.max_cpus;
450     X86CPUTopoInfo topo_info;
451     int i;
452 
453     if (ms->possible_cpus) {
454         /*
455          * make sure that max_cpus hasn't changed since the first use, i.e.
456          * -smp hasn't been parsed after it
457          */
458         assert(ms->possible_cpus->len == max_cpus);
459         return ms->possible_cpus;
460     }
461 
462     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
463                                   sizeof(CPUArchId) * max_cpus);
464     ms->possible_cpus->len = max_cpus;
465 
466     init_topo_info(&topo_info, x86ms);
467 
468     for (i = 0; i < ms->possible_cpus->len; i++) {
469         X86CPUTopoIDs topo_ids;
470 
471         ms->possible_cpus->cpus[i].type = ms->cpu_type;
472         ms->possible_cpus->cpus[i].vcpus_count = 1;
473         ms->possible_cpus->cpus[i].arch_id =
474             x86_cpu_apic_id_from_index(x86ms, i);
475         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
476                                  &topo_info, &topo_ids);
477         ms->possible_cpus->cpus[i].props.has_socket_id = true;
478         ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
479         if (x86ms->smp_dies > 1) {
480             ms->possible_cpus->cpus[i].props.has_die_id = true;
481             ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
482         }
483         ms->possible_cpus->cpus[i].props.has_core_id = true;
484         ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
485         ms->possible_cpus->cpus[i].props.has_thread_id = true;
486         ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
487     }
488     return ms->possible_cpus;
489 }
490 
491 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
492 {
493     /* cpu index isn't used */
494     CPUState *cs;
495 
496     CPU_FOREACH(cs) {
497         X86CPU *cpu = X86_CPU(cs);
498 
499         if (!cpu->apic_state) {
500             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
501         } else {
502             apic_deliver_nmi(cpu->apic_state);
503         }
504     }
505 }
506 
507 static long get_file_size(FILE *f)
508 {
509     long where, size;
510 
511     /* XXX: on Unix systems, using fstat() probably makes more sense */
512 
513     where = ftell(f);
514     fseek(f, 0, SEEK_END);
515     size = ftell(f);
516     fseek(f, where, SEEK_SET);
517 
518     return size;
519 }
520 
521 /* TSC handling */
522 uint64_t cpu_get_tsc(CPUX86State *env)
523 {
524     return cpu_get_ticks();
525 }
526 
527 /* IRQ handling */
528 static void pic_irq_request(void *opaque, int irq, int level)
529 {
530     CPUState *cs = first_cpu;
531     X86CPU *cpu = X86_CPU(cs);
532 
533     trace_x86_pic_interrupt(irq, level);
534     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
535         CPU_FOREACH(cs) {
536             cpu = X86_CPU(cs);
537             if (apic_accept_pic_intr(cpu->apic_state)) {
538                 apic_deliver_pic_intr(cpu->apic_state, level);
539             }
540         }
541     } else {
542         if (level) {
543             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
544         } else {
545             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
546         }
547     }
548 }
549 
550 qemu_irq x86_allocate_cpu_irq(void)
551 {
552     return qemu_allocate_irq(pic_irq_request, NULL, 0);
553 }
554 
555 int cpu_get_pic_interrupt(CPUX86State *env)
556 {
557     X86CPU *cpu = env_archcpu(env);
558     int intno;
559 
560     if (!kvm_irqchip_in_kernel()) {
561         intno = apic_get_interrupt(cpu->apic_state);
562         if (intno >= 0) {
563             return intno;
564         }
565         /* read the irq from the PIC */
566         if (!apic_accept_pic_intr(cpu->apic_state)) {
567             return -1;
568         }
569     }
570 
571     intno = pic_read_irq(isa_pic);
572     return intno;
573 }
574 
575 DeviceState *cpu_get_current_apic(void)
576 {
577     if (current_cpu) {
578         X86CPU *cpu = X86_CPU(current_cpu);
579         return cpu->apic_state;
580     } else {
581         return NULL;
582     }
583 }
584 
585 void gsi_handler(void *opaque, int n, int level)
586 {
587     GSIState *s = opaque;
588 
589     trace_x86_gsi_interrupt(n, level);
590     if (n < ISA_NUM_IRQS) {
591         /* Under KVM, Kernel will forward to both PIC and IOAPIC */
592         qemu_set_irq(s->i8259_irq[n], level);
593     }
594     qemu_set_irq(s->ioapic_irq[n], level);
595 }
596 
597 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
598 {
599     DeviceState *dev;
600     SysBusDevice *d;
601     unsigned int i;
602 
603     assert(parent_name);
604     if (kvm_ioapic_in_kernel()) {
605         dev = qdev_new(TYPE_KVM_IOAPIC);
606     } else {
607         dev = qdev_new(TYPE_IOAPIC);
608     }
609     object_property_add_child(object_resolve_path(parent_name, NULL),
610                               "ioapic", OBJECT(dev));
611     d = SYS_BUS_DEVICE(dev);
612     sysbus_realize_and_unref(d, &error_fatal);
613     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
614 
615     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
616         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
617     }
618 }
619 
620 struct setup_data {
621     uint64_t next;
622     uint32_t type;
623     uint32_t len;
624     uint8_t data[];
625 } __attribute__((packed));
626 
627 
628 /*
629  * The entry point into the kernel for PVH boot is different from
630  * the native entry point.  The PVH entry is defined by the x86/HVM
631  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
632  *
633  * This function is passed to load_elf() when it is called from
634  * load_elfboot() which then additionally checks for an ELF Note of
635  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
636  * parse the PVH entry address from the ELF Note.
637  *
638  * Due to trickery in elf_opts.h, load_elf() is actually available as
639  * load_elf32() or load_elf64() and this routine needs to be able
640  * to deal with being called as 32 or 64 bit.
641  *
642  * The address of the PVH entry point is saved to the 'pvh_start_addr'
643  * global variable.  (although the entry point is 32-bit, the kernel
644  * binary can be either 32-bit or 64-bit).
645  */
646 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
647 {
648     size_t *elf_note_data_addr;
649 
650     /* Check if ELF Note header passed in is valid */
651     if (arg1 == NULL) {
652         return 0;
653     }
654 
655     if (is64) {
656         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
657         uint64_t nhdr_size64 = sizeof(struct elf64_note);
658         uint64_t phdr_align = *(uint64_t *)arg2;
659         uint64_t nhdr_namesz = nhdr64->n_namesz;
660 
661         elf_note_data_addr =
662             ((void *)nhdr64) + nhdr_size64 +
663             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
664     } else {
665         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
666         uint32_t nhdr_size32 = sizeof(struct elf32_note);
667         uint32_t phdr_align = *(uint32_t *)arg2;
668         uint32_t nhdr_namesz = nhdr32->n_namesz;
669 
670         elf_note_data_addr =
671             ((void *)nhdr32) + nhdr_size32 +
672             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
673     }
674 
675     pvh_start_addr = *elf_note_data_addr;
676 
677     return pvh_start_addr;
678 }
679 
680 static bool load_elfboot(const char *kernel_filename,
681                          int kernel_file_size,
682                          uint8_t *header,
683                          size_t pvh_xen_start_addr,
684                          FWCfgState *fw_cfg)
685 {
686     uint32_t flags = 0;
687     uint32_t mh_load_addr = 0;
688     uint32_t elf_kernel_size = 0;
689     uint64_t elf_entry;
690     uint64_t elf_low, elf_high;
691     int kernel_size;
692 
693     if (ldl_p(header) != 0x464c457f) {
694         return false; /* no elfboot */
695     }
696 
697     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
698     flags = elf_is64 ?
699         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
700 
701     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
702         error_report("elfboot unsupported flags = %x", flags);
703         exit(1);
704     }
705 
706     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
707     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
708                            NULL, &elf_note_type, &elf_entry,
709                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
710                            0, 0);
711 
712     if (kernel_size < 0) {
713         error_report("Error while loading elf kernel");
714         exit(1);
715     }
716     mh_load_addr = elf_low;
717     elf_kernel_size = elf_high - elf_low;
718 
719     if (pvh_start_addr == 0) {
720         error_report("Error loading uncompressed kernel without PVH ELF Note");
721         exit(1);
722     }
723     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
724     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
725     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
726 
727     return true;
728 }
729 
730 void x86_load_linux(X86MachineState *x86ms,
731                     FWCfgState *fw_cfg,
732                     int acpi_data_size,
733                     bool pvh_enabled,
734                     bool linuxboot_dma_enabled)
735 {
736     uint16_t protocol;
737     int setup_size, kernel_size, cmdline_size;
738     int dtb_size, setup_data_offset;
739     uint32_t initrd_max;
740     uint8_t header[8192], *setup, *kernel;
741     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
742     FILE *f;
743     char *vmode;
744     MachineState *machine = MACHINE(x86ms);
745     struct setup_data *setup_data;
746     const char *kernel_filename = machine->kernel_filename;
747     const char *initrd_filename = machine->initrd_filename;
748     const char *dtb_filename = machine->dtb;
749     const char *kernel_cmdline = machine->kernel_cmdline;
750 
751     /* Align to 16 bytes as a paranoia measure */
752     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
753 
754     /* load the kernel header */
755     f = fopen(kernel_filename, "rb");
756     if (!f) {
757         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
758                 kernel_filename, strerror(errno));
759         exit(1);
760     }
761 
762     kernel_size = get_file_size(f);
763     if (!kernel_size ||
764         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
765         MIN(ARRAY_SIZE(header), kernel_size)) {
766         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
767                 kernel_filename, strerror(errno));
768         exit(1);
769     }
770 
771     /* kernel protocol version */
772     if (ldl_p(header + 0x202) == 0x53726448) {
773         protocol = lduw_p(header + 0x206);
774     } else {
775         /*
776          * This could be a multiboot kernel. If it is, let's stop treating it
777          * like a Linux kernel.
778          * Note: some multiboot images could be in the ELF format (the same of
779          * PVH), so we try multiboot first since we check the multiboot magic
780          * header before to load it.
781          */
782         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
783                            kernel_cmdline, kernel_size, header)) {
784             return;
785         }
786         /*
787          * Check if the file is an uncompressed kernel file (ELF) and load it,
788          * saving the PVH entry point used by the x86/HVM direct boot ABI.
789          * If load_elfboot() is successful, populate the fw_cfg info.
790          */
791         if (pvh_enabled &&
792             load_elfboot(kernel_filename, kernel_size,
793                          header, pvh_start_addr, fw_cfg)) {
794             fclose(f);
795 
796             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
797                 strlen(kernel_cmdline) + 1);
798             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
799 
800             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
801             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
802                              header, sizeof(header));
803 
804             /* load initrd */
805             if (initrd_filename) {
806                 GMappedFile *mapped_file;
807                 gsize initrd_size;
808                 gchar *initrd_data;
809                 GError *gerr = NULL;
810 
811                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
812                 if (!mapped_file) {
813                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
814                             initrd_filename, gerr->message);
815                     exit(1);
816                 }
817                 x86ms->initrd_mapped_file = mapped_file;
818 
819                 initrd_data = g_mapped_file_get_contents(mapped_file);
820                 initrd_size = g_mapped_file_get_length(mapped_file);
821                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
822                 if (initrd_size >= initrd_max) {
823                     fprintf(stderr, "qemu: initrd is too large, cannot support."
824                             "(max: %"PRIu32", need %"PRId64")\n",
825                             initrd_max, (uint64_t)initrd_size);
826                     exit(1);
827                 }
828 
829                 initrd_addr = (initrd_max - initrd_size) & ~4095;
830 
831                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
832                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
833                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
834                                  initrd_size);
835             }
836 
837             option_rom[nb_option_roms].bootindex = 0;
838             option_rom[nb_option_roms].name = "pvh.bin";
839             nb_option_roms++;
840 
841             return;
842         }
843         protocol = 0;
844     }
845 
846     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
847         /* Low kernel */
848         real_addr    = 0x90000;
849         cmdline_addr = 0x9a000 - cmdline_size;
850         prot_addr    = 0x10000;
851     } else if (protocol < 0x202) {
852         /* High but ancient kernel */
853         real_addr    = 0x90000;
854         cmdline_addr = 0x9a000 - cmdline_size;
855         prot_addr    = 0x100000;
856     } else {
857         /* High and recent kernel */
858         real_addr    = 0x10000;
859         cmdline_addr = 0x20000;
860         prot_addr    = 0x100000;
861     }
862 
863     /* highest address for loading the initrd */
864     if (protocol >= 0x20c &&
865         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
866         /*
867          * Linux has supported initrd up to 4 GB for a very long time (2007,
868          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
869          * though it only sets initrd_max to 2 GB to "work around bootloader
870          * bugs". Luckily, QEMU firmware(which does something like bootloader)
871          * has supported this.
872          *
873          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
874          * be loaded into any address.
875          *
876          * In addition, initrd_max is uint32_t simply because QEMU doesn't
877          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
878          * field).
879          *
880          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
881          */
882         initrd_max = UINT32_MAX;
883     } else if (protocol >= 0x203) {
884         initrd_max = ldl_p(header + 0x22c);
885     } else {
886         initrd_max = 0x37ffffff;
887     }
888 
889     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
890         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
891     }
892 
893     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
894     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
895     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
896 
897     if (protocol >= 0x202) {
898         stl_p(header + 0x228, cmdline_addr);
899     } else {
900         stw_p(header + 0x20, 0xA33F);
901         stw_p(header + 0x22, cmdline_addr - real_addr);
902     }
903 
904     /* handle vga= parameter */
905     vmode = strstr(kernel_cmdline, "vga=");
906     if (vmode) {
907         unsigned int video_mode;
908         const char *end;
909         int ret;
910         /* skip "vga=" */
911         vmode += 4;
912         if (!strncmp(vmode, "normal", 6)) {
913             video_mode = 0xffff;
914         } else if (!strncmp(vmode, "ext", 3)) {
915             video_mode = 0xfffe;
916         } else if (!strncmp(vmode, "ask", 3)) {
917             video_mode = 0xfffd;
918         } else {
919             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
920             if (ret != 0 || (*end && *end != ' ')) {
921                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
922                 exit(1);
923             }
924         }
925         stw_p(header + 0x1fa, video_mode);
926     }
927 
928     /* loader type */
929     /*
930      * High nybble = B reserved for QEMU; low nybble is revision number.
931      * If this code is substantially changed, you may want to consider
932      * incrementing the revision.
933      */
934     if (protocol >= 0x200) {
935         header[0x210] = 0xB0;
936     }
937     /* heap */
938     if (protocol >= 0x201) {
939         header[0x211] |= 0x80; /* CAN_USE_HEAP */
940         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
941     }
942 
943     /* load initrd */
944     if (initrd_filename) {
945         GMappedFile *mapped_file;
946         gsize initrd_size;
947         gchar *initrd_data;
948         GError *gerr = NULL;
949 
950         if (protocol < 0x200) {
951             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
952             exit(1);
953         }
954 
955         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
956         if (!mapped_file) {
957             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
958                     initrd_filename, gerr->message);
959             exit(1);
960         }
961         x86ms->initrd_mapped_file = mapped_file;
962 
963         initrd_data = g_mapped_file_get_contents(mapped_file);
964         initrd_size = g_mapped_file_get_length(mapped_file);
965         if (initrd_size >= initrd_max) {
966             fprintf(stderr, "qemu: initrd is too large, cannot support."
967                     "(max: %"PRIu32", need %"PRId64")\n",
968                     initrd_max, (uint64_t)initrd_size);
969             exit(1);
970         }
971 
972         initrd_addr = (initrd_max - initrd_size) & ~4095;
973 
974         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
975         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
976         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
977 
978         stl_p(header + 0x218, initrd_addr);
979         stl_p(header + 0x21c, initrd_size);
980     }
981 
982     /* load kernel and setup */
983     setup_size = header[0x1f1];
984     if (setup_size == 0) {
985         setup_size = 4;
986     }
987     setup_size = (setup_size + 1) * 512;
988     if (setup_size > kernel_size) {
989         fprintf(stderr, "qemu: invalid kernel header\n");
990         exit(1);
991     }
992     kernel_size -= setup_size;
993 
994     setup  = g_malloc(setup_size);
995     kernel = g_malloc(kernel_size);
996     fseek(f, 0, SEEK_SET);
997     if (fread(setup, 1, setup_size, f) != setup_size) {
998         fprintf(stderr, "fread() failed\n");
999         exit(1);
1000     }
1001     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1002         fprintf(stderr, "fread() failed\n");
1003         exit(1);
1004     }
1005     fclose(f);
1006 
1007     /* append dtb to kernel */
1008     if (dtb_filename) {
1009         if (protocol < 0x209) {
1010             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1011             exit(1);
1012         }
1013 
1014         dtb_size = get_image_size(dtb_filename);
1015         if (dtb_size <= 0) {
1016             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1017                     dtb_filename, strerror(errno));
1018             exit(1);
1019         }
1020 
1021         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1022         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1023         kernel = g_realloc(kernel, kernel_size);
1024 
1025         stq_p(header + 0x250, prot_addr + setup_data_offset);
1026 
1027         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1028         setup_data->next = 0;
1029         setup_data->type = cpu_to_le32(SETUP_DTB);
1030         setup_data->len = cpu_to_le32(dtb_size);
1031 
1032         load_image_size(dtb_filename, setup_data->data, dtb_size);
1033     }
1034 
1035     memcpy(setup, header, MIN(sizeof(header), setup_size));
1036 
1037     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1038     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1039     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1040 
1041     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1042     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1043     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1044 
1045     option_rom[nb_option_roms].bootindex = 0;
1046     option_rom[nb_option_roms].name = "linuxboot.bin";
1047     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1048         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1049     }
1050     nb_option_roms++;
1051 }
1052 
1053 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
1054 {
1055     char *filename;
1056     MemoryRegion *bios, *isa_bios;
1057     int bios_size, isa_bios_size;
1058     int ret;
1059 
1060     /* BIOS load */
1061     if (bios_name == NULL) {
1062         bios_name = BIOS_FILENAME;
1063     }
1064     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1065     if (filename) {
1066         bios_size = get_image_size(filename);
1067     } else {
1068         bios_size = -1;
1069     }
1070     if (bios_size <= 0 ||
1071         (bios_size % 65536) != 0) {
1072         goto bios_error;
1073     }
1074     bios = g_malloc(sizeof(*bios));
1075     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1076     if (!isapc_ram_fw) {
1077         memory_region_set_readonly(bios, true);
1078     }
1079     ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1080     if (ret != 0) {
1081     bios_error:
1082         fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1083         exit(1);
1084     }
1085     g_free(filename);
1086 
1087     /* map the last 128KB of the BIOS in ISA space */
1088     isa_bios_size = MIN(bios_size, 128 * KiB);
1089     isa_bios = g_malloc(sizeof(*isa_bios));
1090     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1091                              bios_size - isa_bios_size, isa_bios_size);
1092     memory_region_add_subregion_overlap(rom_memory,
1093                                         0x100000 - isa_bios_size,
1094                                         isa_bios,
1095                                         1);
1096     if (!isapc_ram_fw) {
1097         memory_region_set_readonly(isa_bios, true);
1098     }
1099 
1100     /* map all the bios at the top of memory */
1101     memory_region_add_subregion(rom_memory,
1102                                 (uint32_t)(-bios_size),
1103                                 bios);
1104 }
1105 
1106 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1107 {
1108     bool smm_available = false;
1109 
1110     if (x86ms->smm == ON_OFF_AUTO_OFF) {
1111         return false;
1112     }
1113 
1114     if (tcg_enabled() || qtest_enabled()) {
1115         smm_available = true;
1116     } else if (kvm_enabled()) {
1117         smm_available = kvm_has_smm();
1118     }
1119 
1120     if (smm_available) {
1121         return true;
1122     }
1123 
1124     if (x86ms->smm == ON_OFF_AUTO_ON) {
1125         error_report("System Management Mode not supported by this hypervisor.");
1126         exit(1);
1127     }
1128     return false;
1129 }
1130 
1131 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1132                                void *opaque, Error **errp)
1133 {
1134     X86MachineState *x86ms = X86_MACHINE(obj);
1135     OnOffAuto smm = x86ms->smm;
1136 
1137     visit_type_OnOffAuto(v, name, &smm, errp);
1138 }
1139 
1140 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1141                                void *opaque, Error **errp)
1142 {
1143     X86MachineState *x86ms = X86_MACHINE(obj);
1144 
1145     visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1146 }
1147 
1148 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1149 {
1150     if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1151         return false;
1152     }
1153     return true;
1154 }
1155 
1156 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1157                                  void *opaque, Error **errp)
1158 {
1159     X86MachineState *x86ms = X86_MACHINE(obj);
1160     OnOffAuto acpi = x86ms->acpi;
1161 
1162     visit_type_OnOffAuto(v, name, &acpi, errp);
1163 }
1164 
1165 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1166                                  void *opaque, Error **errp)
1167 {
1168     X86MachineState *x86ms = X86_MACHINE(obj);
1169 
1170     visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1171 }
1172 
1173 static void x86_machine_initfn(Object *obj)
1174 {
1175     X86MachineState *x86ms = X86_MACHINE(obj);
1176 
1177     x86ms->smm = ON_OFF_AUTO_AUTO;
1178     x86ms->acpi = ON_OFF_AUTO_AUTO;
1179     x86ms->smp_dies = 1;
1180 }
1181 
1182 static void x86_machine_class_init(ObjectClass *oc, void *data)
1183 {
1184     MachineClass *mc = MACHINE_CLASS(oc);
1185     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1186     NMIClass *nc = NMI_CLASS(oc);
1187 
1188     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1189     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1190     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1191     x86mc->compat_apic_id_mode = false;
1192     x86mc->save_tsc_khz = true;
1193     nc->nmi_monitor_handler = x86_nmi;
1194 
1195     object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1196         x86_machine_get_smm, x86_machine_set_smm,
1197         NULL, NULL);
1198     object_class_property_set_description(oc, X86_MACHINE_SMM,
1199         "Enable SMM");
1200 
1201     object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1202         x86_machine_get_acpi, x86_machine_set_acpi,
1203         NULL, NULL);
1204     object_class_property_set_description(oc, X86_MACHINE_ACPI,
1205         "Enable ACPI");
1206 }
1207 
1208 static const TypeInfo x86_machine_info = {
1209     .name = TYPE_X86_MACHINE,
1210     .parent = TYPE_MACHINE,
1211     .abstract = true,
1212     .instance_size = sizeof(X86MachineState),
1213     .instance_init = x86_machine_initfn,
1214     .class_size = sizeof(X86MachineClass),
1215     .class_init = x86_machine_class_init,
1216     .interfaces = (InterfaceInfo[]) {
1217          { TYPE_NMI },
1218          { }
1219     },
1220 };
1221 
1222 static void x86_machine_register_types(void)
1223 {
1224     type_register_static(&x86_machine_info);
1225 }
1226 
1227 type_init(x86_machine_register_types)
1228