xref: /openbmc/qemu/hw/i386/x86.c (revision d73415a3)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
37 #include "trace.h"
38 
39 #include "hw/i386/x86.h"
40 #include "target/i386/cpu.h"
41 #include "hw/i386/topology.h"
42 #include "hw/i386/fw_cfg.h"
43 #include "hw/intc/i8259.h"
44 #include "hw/rtc/mc146818rtc.h"
45 
46 #include "hw/acpi/cpu_hotplug.h"
47 #include "hw/irq.h"
48 #include "hw/nmi.h"
49 #include "hw/loader.h"
50 #include "multiboot.h"
51 #include "elf.h"
52 #include "standard-headers/asm-x86/bootparam.h"
53 #include CONFIG_DEVICES
54 #include "kvm_i386.h"
55 
56 #define BIOS_FILENAME "bios.bin"
57 
58 /* Physical Address of PVH entry point read from kernel ELF NOTE */
59 static size_t pvh_start_addr;
60 
61 inline void init_topo_info(X86CPUTopoInfo *topo_info,
62                            const X86MachineState *x86ms)
63 {
64     MachineState *ms = MACHINE(x86ms);
65 
66     topo_info->dies_per_pkg = x86ms->smp_dies;
67     topo_info->cores_per_die = ms->smp.cores;
68     topo_info->threads_per_core = ms->smp.threads;
69 }
70 
71 /*
72  * Calculates initial APIC ID for a specific CPU index
73  *
74  * Currently we need to be able to calculate the APIC ID from the CPU index
75  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
76  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
77  * all CPUs up to max_cpus.
78  */
79 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
80                                     unsigned int cpu_index)
81 {
82     X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
83     X86CPUTopoInfo topo_info;
84     uint32_t correct_id;
85     static bool warned;
86 
87     init_topo_info(&topo_info, x86ms);
88 
89     correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index);
90     if (x86mc->compat_apic_id_mode) {
91         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
92             error_report("APIC IDs set in compatibility mode, "
93                          "CPU topology won't match the configuration");
94             warned = true;
95         }
96         return cpu_index;
97     } else {
98         return correct_id;
99     }
100 }
101 
102 
103 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
104 {
105     Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
106 
107     if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
108         goto out;
109     }
110     qdev_realize(DEVICE(cpu), NULL, errp);
111 
112 out:
113     object_unref(cpu);
114 }
115 
116 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
117 {
118     int i;
119     const CPUArchIdList *possible_cpus;
120     MachineState *ms = MACHINE(x86ms);
121     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
122 
123     x86_cpu_set_default_version(default_cpu_version);
124 
125     /*
126      * Calculates the limit to CPU APIC ID values
127      *
128      * Limit for the APIC ID value, so that all
129      * CPU APIC IDs are < x86ms->apic_id_limit.
130      *
131      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
132      */
133     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
134                                                       ms->smp.max_cpus - 1) + 1;
135     possible_cpus = mc->possible_cpu_arch_ids(ms);
136     for (i = 0; i < ms->smp.cpus; i++) {
137         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
138     }
139 }
140 
141 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
142 {
143     if (cpus_count > 0xff) {
144         /*
145          * If the number of CPUs can't be represented in 8 bits, the
146          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
147          * to make old BIOSes fail more predictably.
148          */
149         rtc_set_memory(rtc, 0x5f, 0);
150     } else {
151         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
152     }
153 }
154 
155 static int x86_apic_cmp(const void *a, const void *b)
156 {
157    CPUArchId *apic_a = (CPUArchId *)a;
158    CPUArchId *apic_b = (CPUArchId *)b;
159 
160    return apic_a->arch_id - apic_b->arch_id;
161 }
162 
163 /*
164  * returns pointer to CPUArchId descriptor that matches CPU's apic_id
165  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
166  * entry corresponding to CPU's apic_id returns NULL.
167  */
168 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
169 {
170     CPUArchId apic_id, *found_cpu;
171 
172     apic_id.arch_id = id;
173     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
174         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
175         x86_apic_cmp);
176     if (found_cpu && idx) {
177         *idx = found_cpu - ms->possible_cpus->cpus;
178     }
179     return found_cpu;
180 }
181 
182 void x86_cpu_plug(HotplugHandler *hotplug_dev,
183                   DeviceState *dev, Error **errp)
184 {
185     CPUArchId *found_cpu;
186     Error *local_err = NULL;
187     X86CPU *cpu = X86_CPU(dev);
188     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
189 
190     if (x86ms->acpi_dev) {
191         hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
192         if (local_err) {
193             goto out;
194         }
195     }
196 
197     /* increment the number of CPUs */
198     x86ms->boot_cpus++;
199     if (x86ms->rtc) {
200         x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
201     }
202     if (x86ms->fw_cfg) {
203         fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
204     }
205 
206     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
207     found_cpu->cpu = OBJECT(dev);
208 out:
209     error_propagate(errp, local_err);
210 }
211 
212 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
213                                DeviceState *dev, Error **errp)
214 {
215     int idx = -1;
216     X86CPU *cpu = X86_CPU(dev);
217     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
218 
219     if (!x86ms->acpi_dev) {
220         error_setg(errp, "CPU hot unplug not supported without ACPI");
221         return;
222     }
223 
224     x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
225     assert(idx != -1);
226     if (idx == 0) {
227         error_setg(errp, "Boot CPU is unpluggable");
228         return;
229     }
230 
231     hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
232                                    errp);
233 }
234 
235 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
236                        DeviceState *dev, Error **errp)
237 {
238     CPUArchId *found_cpu;
239     Error *local_err = NULL;
240     X86CPU *cpu = X86_CPU(dev);
241     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
242 
243     hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
244     if (local_err) {
245         goto out;
246     }
247 
248     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
249     found_cpu->cpu = NULL;
250     qdev_unrealize(dev);
251 
252     /* decrement the number of CPUs */
253     x86ms->boot_cpus--;
254     /* Update the number of CPUs in CMOS */
255     x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
256     fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
257  out:
258     error_propagate(errp, local_err);
259 }
260 
261 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
262                       DeviceState *dev, Error **errp)
263 {
264     int idx;
265     CPUState *cs;
266     CPUArchId *cpu_slot;
267     X86CPUTopoIDs topo_ids;
268     X86CPU *cpu = X86_CPU(dev);
269     CPUX86State *env = &cpu->env;
270     MachineState *ms = MACHINE(hotplug_dev);
271     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
272     unsigned int smp_cores = ms->smp.cores;
273     unsigned int smp_threads = ms->smp.threads;
274     X86CPUTopoInfo topo_info;
275 
276     if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
277         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
278                    ms->cpu_type);
279         return;
280     }
281 
282     init_topo_info(&topo_info, x86ms);
283 
284     env->nr_dies = x86ms->smp_dies;
285 
286     /*
287      * If APIC ID is not set,
288      * set it based on socket/die/core/thread properties.
289      */
290     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
291         int max_socket = (ms->smp.max_cpus - 1) /
292                                 smp_threads / smp_cores / x86ms->smp_dies;
293 
294         /*
295          * die-id was optional in QEMU 4.0 and older, so keep it optional
296          * if there's only one die per socket.
297          */
298         if (cpu->die_id < 0 && x86ms->smp_dies == 1) {
299             cpu->die_id = 0;
300         }
301 
302         if (cpu->socket_id < 0) {
303             error_setg(errp, "CPU socket-id is not set");
304             return;
305         } else if (cpu->socket_id > max_socket) {
306             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
307                        cpu->socket_id, max_socket);
308             return;
309         }
310         if (cpu->die_id < 0) {
311             error_setg(errp, "CPU die-id is not set");
312             return;
313         } else if (cpu->die_id > x86ms->smp_dies - 1) {
314             error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
315                        cpu->die_id, x86ms->smp_dies - 1);
316             return;
317         }
318         if (cpu->core_id < 0) {
319             error_setg(errp, "CPU core-id is not set");
320             return;
321         } else if (cpu->core_id > (smp_cores - 1)) {
322             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
323                        cpu->core_id, smp_cores - 1);
324             return;
325         }
326         if (cpu->thread_id < 0) {
327             error_setg(errp, "CPU thread-id is not set");
328             return;
329         } else if (cpu->thread_id > (smp_threads - 1)) {
330             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
331                        cpu->thread_id, smp_threads - 1);
332             return;
333         }
334 
335         topo_ids.pkg_id = cpu->socket_id;
336         topo_ids.die_id = cpu->die_id;
337         topo_ids.core_id = cpu->core_id;
338         topo_ids.smt_id = cpu->thread_id;
339         cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
340     }
341 
342     cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
343     if (!cpu_slot) {
344         MachineState *ms = MACHINE(x86ms);
345 
346         x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
347         error_setg(errp,
348             "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
349             " APIC ID %" PRIu32 ", valid index range 0:%d",
350             topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
351             cpu->apic_id, ms->possible_cpus->len - 1);
352         return;
353     }
354 
355     if (cpu_slot->cpu) {
356         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
357                    idx, cpu->apic_id);
358         return;
359     }
360 
361     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
362      * so that machine_query_hotpluggable_cpus would show correct values
363      */
364     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
365      * once -smp refactoring is complete and there will be CPU private
366      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
367     x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
368     if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
369         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
370             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
371             topo_ids.pkg_id);
372         return;
373     }
374     cpu->socket_id = topo_ids.pkg_id;
375 
376     if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
377         error_setg(errp, "property die-id: %u doesn't match set apic-id:"
378             " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
379         return;
380     }
381     cpu->die_id = topo_ids.die_id;
382 
383     if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
384         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
385             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
386             topo_ids.core_id);
387         return;
388     }
389     cpu->core_id = topo_ids.core_id;
390 
391     if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
392         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
393             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
394             topo_ids.smt_id);
395         return;
396     }
397     cpu->thread_id = topo_ids.smt_id;
398 
399     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
400         !kvm_hv_vpindex_settable()) {
401         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
402         return;
403     }
404 
405     cs = CPU(cpu);
406     cs->cpu_index = idx;
407 
408     numa_cpu_pre_plug(cpu_slot, dev, errp);
409 }
410 
411 CpuInstanceProperties
412 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
413 {
414     MachineClass *mc = MACHINE_GET_CLASS(ms);
415     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
416 
417     assert(cpu_index < possible_cpus->len);
418     return possible_cpus->cpus[cpu_index].props;
419 }
420 
421 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
422 {
423    X86CPUTopoIDs topo_ids;
424    X86MachineState *x86ms = X86_MACHINE(ms);
425    X86CPUTopoInfo topo_info;
426 
427    init_topo_info(&topo_info, x86ms);
428 
429    assert(idx < ms->possible_cpus->len);
430    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
431                             &topo_info, &topo_ids);
432    return topo_ids.pkg_id % ms->numa_state->num_nodes;
433 }
434 
435 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
436 {
437     X86MachineState *x86ms = X86_MACHINE(ms);
438     unsigned int max_cpus = ms->smp.max_cpus;
439     X86CPUTopoInfo topo_info;
440     int i;
441 
442     if (ms->possible_cpus) {
443         /*
444          * make sure that max_cpus hasn't changed since the first use, i.e.
445          * -smp hasn't been parsed after it
446          */
447         assert(ms->possible_cpus->len == max_cpus);
448         return ms->possible_cpus;
449     }
450 
451     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
452                                   sizeof(CPUArchId) * max_cpus);
453     ms->possible_cpus->len = max_cpus;
454 
455     init_topo_info(&topo_info, x86ms);
456 
457     for (i = 0; i < ms->possible_cpus->len; i++) {
458         X86CPUTopoIDs topo_ids;
459 
460         ms->possible_cpus->cpus[i].type = ms->cpu_type;
461         ms->possible_cpus->cpus[i].vcpus_count = 1;
462         ms->possible_cpus->cpus[i].arch_id =
463             x86_cpu_apic_id_from_index(x86ms, i);
464         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
465                                  &topo_info, &topo_ids);
466         ms->possible_cpus->cpus[i].props.has_socket_id = true;
467         ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
468         if (x86ms->smp_dies > 1) {
469             ms->possible_cpus->cpus[i].props.has_die_id = true;
470             ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
471         }
472         ms->possible_cpus->cpus[i].props.has_core_id = true;
473         ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
474         ms->possible_cpus->cpus[i].props.has_thread_id = true;
475         ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
476     }
477     return ms->possible_cpus;
478 }
479 
480 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
481 {
482     /* cpu index isn't used */
483     CPUState *cs;
484 
485     CPU_FOREACH(cs) {
486         X86CPU *cpu = X86_CPU(cs);
487 
488         if (!cpu->apic_state) {
489             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
490         } else {
491             apic_deliver_nmi(cpu->apic_state);
492         }
493     }
494 }
495 
496 static long get_file_size(FILE *f)
497 {
498     long where, size;
499 
500     /* XXX: on Unix systems, using fstat() probably makes more sense */
501 
502     where = ftell(f);
503     fseek(f, 0, SEEK_END);
504     size = ftell(f);
505     fseek(f, where, SEEK_SET);
506 
507     return size;
508 }
509 
510 /* TSC handling */
511 uint64_t cpu_get_tsc(CPUX86State *env)
512 {
513     return cpu_get_ticks();
514 }
515 
516 /* IRQ handling */
517 static void pic_irq_request(void *opaque, int irq, int level)
518 {
519     CPUState *cs = first_cpu;
520     X86CPU *cpu = X86_CPU(cs);
521 
522     trace_x86_pic_interrupt(irq, level);
523     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
524         CPU_FOREACH(cs) {
525             cpu = X86_CPU(cs);
526             if (apic_accept_pic_intr(cpu->apic_state)) {
527                 apic_deliver_pic_intr(cpu->apic_state, level);
528             }
529         }
530     } else {
531         if (level) {
532             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
533         } else {
534             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
535         }
536     }
537 }
538 
539 qemu_irq x86_allocate_cpu_irq(void)
540 {
541     return qemu_allocate_irq(pic_irq_request, NULL, 0);
542 }
543 
544 int cpu_get_pic_interrupt(CPUX86State *env)
545 {
546     X86CPU *cpu = env_archcpu(env);
547     int intno;
548 
549     if (!kvm_irqchip_in_kernel()) {
550         intno = apic_get_interrupt(cpu->apic_state);
551         if (intno >= 0) {
552             return intno;
553         }
554         /* read the irq from the PIC */
555         if (!apic_accept_pic_intr(cpu->apic_state)) {
556             return -1;
557         }
558     }
559 
560     intno = pic_read_irq(isa_pic);
561     return intno;
562 }
563 
564 DeviceState *cpu_get_current_apic(void)
565 {
566     if (current_cpu) {
567         X86CPU *cpu = X86_CPU(current_cpu);
568         return cpu->apic_state;
569     } else {
570         return NULL;
571     }
572 }
573 
574 void gsi_handler(void *opaque, int n, int level)
575 {
576     GSIState *s = opaque;
577 
578     trace_x86_gsi_interrupt(n, level);
579     if (n < ISA_NUM_IRQS) {
580         /* Under KVM, Kernel will forward to both PIC and IOAPIC */
581         qemu_set_irq(s->i8259_irq[n], level);
582     }
583     qemu_set_irq(s->ioapic_irq[n], level);
584 }
585 
586 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
587 {
588     DeviceState *dev;
589     SysBusDevice *d;
590     unsigned int i;
591 
592     assert(parent_name);
593     if (kvm_ioapic_in_kernel()) {
594         dev = qdev_new(TYPE_KVM_IOAPIC);
595     } else {
596         dev = qdev_new(TYPE_IOAPIC);
597     }
598     object_property_add_child(object_resolve_path(parent_name, NULL),
599                               "ioapic", OBJECT(dev));
600     d = SYS_BUS_DEVICE(dev);
601     sysbus_realize_and_unref(d, &error_fatal);
602     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
603 
604     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
605         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
606     }
607 }
608 
609 struct setup_data {
610     uint64_t next;
611     uint32_t type;
612     uint32_t len;
613     uint8_t data[];
614 } __attribute__((packed));
615 
616 
617 /*
618  * The entry point into the kernel for PVH boot is different from
619  * the native entry point.  The PVH entry is defined by the x86/HVM
620  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
621  *
622  * This function is passed to load_elf() when it is called from
623  * load_elfboot() which then additionally checks for an ELF Note of
624  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
625  * parse the PVH entry address from the ELF Note.
626  *
627  * Due to trickery in elf_opts.h, load_elf() is actually available as
628  * load_elf32() or load_elf64() and this routine needs to be able
629  * to deal with being called as 32 or 64 bit.
630  *
631  * The address of the PVH entry point is saved to the 'pvh_start_addr'
632  * global variable.  (although the entry point is 32-bit, the kernel
633  * binary can be either 32-bit or 64-bit).
634  */
635 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
636 {
637     size_t *elf_note_data_addr;
638 
639     /* Check if ELF Note header passed in is valid */
640     if (arg1 == NULL) {
641         return 0;
642     }
643 
644     if (is64) {
645         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
646         uint64_t nhdr_size64 = sizeof(struct elf64_note);
647         uint64_t phdr_align = *(uint64_t *)arg2;
648         uint64_t nhdr_namesz = nhdr64->n_namesz;
649 
650         elf_note_data_addr =
651             ((void *)nhdr64) + nhdr_size64 +
652             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
653     } else {
654         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
655         uint32_t nhdr_size32 = sizeof(struct elf32_note);
656         uint32_t phdr_align = *(uint32_t *)arg2;
657         uint32_t nhdr_namesz = nhdr32->n_namesz;
658 
659         elf_note_data_addr =
660             ((void *)nhdr32) + nhdr_size32 +
661             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
662     }
663 
664     pvh_start_addr = *elf_note_data_addr;
665 
666     return pvh_start_addr;
667 }
668 
669 static bool load_elfboot(const char *kernel_filename,
670                          int kernel_file_size,
671                          uint8_t *header,
672                          size_t pvh_xen_start_addr,
673                          FWCfgState *fw_cfg)
674 {
675     uint32_t flags = 0;
676     uint32_t mh_load_addr = 0;
677     uint32_t elf_kernel_size = 0;
678     uint64_t elf_entry;
679     uint64_t elf_low, elf_high;
680     int kernel_size;
681 
682     if (ldl_p(header) != 0x464c457f) {
683         return false; /* no elfboot */
684     }
685 
686     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
687     flags = elf_is64 ?
688         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
689 
690     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
691         error_report("elfboot unsupported flags = %x", flags);
692         exit(1);
693     }
694 
695     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
696     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
697                            NULL, &elf_note_type, &elf_entry,
698                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
699                            0, 0);
700 
701     if (kernel_size < 0) {
702         error_report("Error while loading elf kernel");
703         exit(1);
704     }
705     mh_load_addr = elf_low;
706     elf_kernel_size = elf_high - elf_low;
707 
708     if (pvh_start_addr == 0) {
709         error_report("Error loading uncompressed kernel without PVH ELF Note");
710         exit(1);
711     }
712     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
713     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
714     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
715 
716     return true;
717 }
718 
719 void x86_load_linux(X86MachineState *x86ms,
720                     FWCfgState *fw_cfg,
721                     int acpi_data_size,
722                     bool pvh_enabled,
723                     bool linuxboot_dma_enabled)
724 {
725     uint16_t protocol;
726     int setup_size, kernel_size, cmdline_size;
727     int dtb_size, setup_data_offset;
728     uint32_t initrd_max;
729     uint8_t header[8192], *setup, *kernel;
730     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
731     FILE *f;
732     char *vmode;
733     MachineState *machine = MACHINE(x86ms);
734     struct setup_data *setup_data;
735     const char *kernel_filename = machine->kernel_filename;
736     const char *initrd_filename = machine->initrd_filename;
737     const char *dtb_filename = machine->dtb;
738     const char *kernel_cmdline = machine->kernel_cmdline;
739 
740     /* Align to 16 bytes as a paranoia measure */
741     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
742 
743     /* load the kernel header */
744     f = fopen(kernel_filename, "rb");
745     if (!f) {
746         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
747                 kernel_filename, strerror(errno));
748         exit(1);
749     }
750 
751     kernel_size = get_file_size(f);
752     if (!kernel_size ||
753         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
754         MIN(ARRAY_SIZE(header), kernel_size)) {
755         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
756                 kernel_filename, strerror(errno));
757         exit(1);
758     }
759 
760     /* kernel protocol version */
761     if (ldl_p(header + 0x202) == 0x53726448) {
762         protocol = lduw_p(header + 0x206);
763     } else {
764         /*
765          * This could be a multiboot kernel. If it is, let's stop treating it
766          * like a Linux kernel.
767          * Note: some multiboot images could be in the ELF format (the same of
768          * PVH), so we try multiboot first since we check the multiboot magic
769          * header before to load it.
770          */
771         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
772                            kernel_cmdline, kernel_size, header)) {
773             return;
774         }
775         /*
776          * Check if the file is an uncompressed kernel file (ELF) and load it,
777          * saving the PVH entry point used by the x86/HVM direct boot ABI.
778          * If load_elfboot() is successful, populate the fw_cfg info.
779          */
780         if (pvh_enabled &&
781             load_elfboot(kernel_filename, kernel_size,
782                          header, pvh_start_addr, fw_cfg)) {
783             fclose(f);
784 
785             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
786                 strlen(kernel_cmdline) + 1);
787             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
788 
789             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
790             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
791                              header, sizeof(header));
792 
793             /* load initrd */
794             if (initrd_filename) {
795                 GMappedFile *mapped_file;
796                 gsize initrd_size;
797                 gchar *initrd_data;
798                 GError *gerr = NULL;
799 
800                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
801                 if (!mapped_file) {
802                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
803                             initrd_filename, gerr->message);
804                     exit(1);
805                 }
806                 x86ms->initrd_mapped_file = mapped_file;
807 
808                 initrd_data = g_mapped_file_get_contents(mapped_file);
809                 initrd_size = g_mapped_file_get_length(mapped_file);
810                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
811                 if (initrd_size >= initrd_max) {
812                     fprintf(stderr, "qemu: initrd is too large, cannot support."
813                             "(max: %"PRIu32", need %"PRId64")\n",
814                             initrd_max, (uint64_t)initrd_size);
815                     exit(1);
816                 }
817 
818                 initrd_addr = (initrd_max - initrd_size) & ~4095;
819 
820                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
821                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
822                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
823                                  initrd_size);
824             }
825 
826             option_rom[nb_option_roms].bootindex = 0;
827             option_rom[nb_option_roms].name = "pvh.bin";
828             nb_option_roms++;
829 
830             return;
831         }
832         protocol = 0;
833     }
834 
835     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
836         /* Low kernel */
837         real_addr    = 0x90000;
838         cmdline_addr = 0x9a000 - cmdline_size;
839         prot_addr    = 0x10000;
840     } else if (protocol < 0x202) {
841         /* High but ancient kernel */
842         real_addr    = 0x90000;
843         cmdline_addr = 0x9a000 - cmdline_size;
844         prot_addr    = 0x100000;
845     } else {
846         /* High and recent kernel */
847         real_addr    = 0x10000;
848         cmdline_addr = 0x20000;
849         prot_addr    = 0x100000;
850     }
851 
852     /* highest address for loading the initrd */
853     if (protocol >= 0x20c &&
854         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
855         /*
856          * Linux has supported initrd up to 4 GB for a very long time (2007,
857          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
858          * though it only sets initrd_max to 2 GB to "work around bootloader
859          * bugs". Luckily, QEMU firmware(which does something like bootloader)
860          * has supported this.
861          *
862          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
863          * be loaded into any address.
864          *
865          * In addition, initrd_max is uint32_t simply because QEMU doesn't
866          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
867          * field).
868          *
869          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
870          */
871         initrd_max = UINT32_MAX;
872     } else if (protocol >= 0x203) {
873         initrd_max = ldl_p(header + 0x22c);
874     } else {
875         initrd_max = 0x37ffffff;
876     }
877 
878     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
879         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
880     }
881 
882     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
883     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
884     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
885 
886     if (protocol >= 0x202) {
887         stl_p(header + 0x228, cmdline_addr);
888     } else {
889         stw_p(header + 0x20, 0xA33F);
890         stw_p(header + 0x22, cmdline_addr - real_addr);
891     }
892 
893     /* handle vga= parameter */
894     vmode = strstr(kernel_cmdline, "vga=");
895     if (vmode) {
896         unsigned int video_mode;
897         const char *end;
898         int ret;
899         /* skip "vga=" */
900         vmode += 4;
901         if (!strncmp(vmode, "normal", 6)) {
902             video_mode = 0xffff;
903         } else if (!strncmp(vmode, "ext", 3)) {
904             video_mode = 0xfffe;
905         } else if (!strncmp(vmode, "ask", 3)) {
906             video_mode = 0xfffd;
907         } else {
908             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
909             if (ret != 0 || (*end && *end != ' ')) {
910                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
911                 exit(1);
912             }
913         }
914         stw_p(header + 0x1fa, video_mode);
915     }
916 
917     /* loader type */
918     /*
919      * High nybble = B reserved for QEMU; low nybble is revision number.
920      * If this code is substantially changed, you may want to consider
921      * incrementing the revision.
922      */
923     if (protocol >= 0x200) {
924         header[0x210] = 0xB0;
925     }
926     /* heap */
927     if (protocol >= 0x201) {
928         header[0x211] |= 0x80; /* CAN_USE_HEAP */
929         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
930     }
931 
932     /* load initrd */
933     if (initrd_filename) {
934         GMappedFile *mapped_file;
935         gsize initrd_size;
936         gchar *initrd_data;
937         GError *gerr = NULL;
938 
939         if (protocol < 0x200) {
940             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
941             exit(1);
942         }
943 
944         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
945         if (!mapped_file) {
946             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
947                     initrd_filename, gerr->message);
948             exit(1);
949         }
950         x86ms->initrd_mapped_file = mapped_file;
951 
952         initrd_data = g_mapped_file_get_contents(mapped_file);
953         initrd_size = g_mapped_file_get_length(mapped_file);
954         if (initrd_size >= initrd_max) {
955             fprintf(stderr, "qemu: initrd is too large, cannot support."
956                     "(max: %"PRIu32", need %"PRId64")\n",
957                     initrd_max, (uint64_t)initrd_size);
958             exit(1);
959         }
960 
961         initrd_addr = (initrd_max - initrd_size) & ~4095;
962 
963         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
964         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
965         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
966 
967         stl_p(header + 0x218, initrd_addr);
968         stl_p(header + 0x21c, initrd_size);
969     }
970 
971     /* load kernel and setup */
972     setup_size = header[0x1f1];
973     if (setup_size == 0) {
974         setup_size = 4;
975     }
976     setup_size = (setup_size + 1) * 512;
977     if (setup_size > kernel_size) {
978         fprintf(stderr, "qemu: invalid kernel header\n");
979         exit(1);
980     }
981     kernel_size -= setup_size;
982 
983     setup  = g_malloc(setup_size);
984     kernel = g_malloc(kernel_size);
985     fseek(f, 0, SEEK_SET);
986     if (fread(setup, 1, setup_size, f) != setup_size) {
987         fprintf(stderr, "fread() failed\n");
988         exit(1);
989     }
990     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
991         fprintf(stderr, "fread() failed\n");
992         exit(1);
993     }
994     fclose(f);
995 
996     /* append dtb to kernel */
997     if (dtb_filename) {
998         if (protocol < 0x209) {
999             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1000             exit(1);
1001         }
1002 
1003         dtb_size = get_image_size(dtb_filename);
1004         if (dtb_size <= 0) {
1005             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1006                     dtb_filename, strerror(errno));
1007             exit(1);
1008         }
1009 
1010         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1011         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1012         kernel = g_realloc(kernel, kernel_size);
1013 
1014         stq_p(header + 0x250, prot_addr + setup_data_offset);
1015 
1016         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1017         setup_data->next = 0;
1018         setup_data->type = cpu_to_le32(SETUP_DTB);
1019         setup_data->len = cpu_to_le32(dtb_size);
1020 
1021         load_image_size(dtb_filename, setup_data->data, dtb_size);
1022     }
1023 
1024     memcpy(setup, header, MIN(sizeof(header), setup_size));
1025 
1026     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1027     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1028     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1029 
1030     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1031     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1032     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1033 
1034     option_rom[nb_option_roms].bootindex = 0;
1035     option_rom[nb_option_roms].name = "linuxboot.bin";
1036     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1037         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1038     }
1039     nb_option_roms++;
1040 }
1041 
1042 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
1043 {
1044     char *filename;
1045     MemoryRegion *bios, *isa_bios;
1046     int bios_size, isa_bios_size;
1047     int ret;
1048 
1049     /* BIOS load */
1050     if (bios_name == NULL) {
1051         bios_name = BIOS_FILENAME;
1052     }
1053     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1054     if (filename) {
1055         bios_size = get_image_size(filename);
1056     } else {
1057         bios_size = -1;
1058     }
1059     if (bios_size <= 0 ||
1060         (bios_size % 65536) != 0) {
1061         goto bios_error;
1062     }
1063     bios = g_malloc(sizeof(*bios));
1064     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1065     if (!isapc_ram_fw) {
1066         memory_region_set_readonly(bios, true);
1067     }
1068     ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1069     if (ret != 0) {
1070     bios_error:
1071         fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1072         exit(1);
1073     }
1074     g_free(filename);
1075 
1076     /* map the last 128KB of the BIOS in ISA space */
1077     isa_bios_size = MIN(bios_size, 128 * KiB);
1078     isa_bios = g_malloc(sizeof(*isa_bios));
1079     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1080                              bios_size - isa_bios_size, isa_bios_size);
1081     memory_region_add_subregion_overlap(rom_memory,
1082                                         0x100000 - isa_bios_size,
1083                                         isa_bios,
1084                                         1);
1085     if (!isapc_ram_fw) {
1086         memory_region_set_readonly(isa_bios, true);
1087     }
1088 
1089     /* map all the bios at the top of memory */
1090     memory_region_add_subregion(rom_memory,
1091                                 (uint32_t)(-bios_size),
1092                                 bios);
1093 }
1094 
1095 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1096 {
1097     bool smm_available = false;
1098 
1099     if (x86ms->smm == ON_OFF_AUTO_OFF) {
1100         return false;
1101     }
1102 
1103     if (tcg_enabled() || qtest_enabled()) {
1104         smm_available = true;
1105     } else if (kvm_enabled()) {
1106         smm_available = kvm_has_smm();
1107     }
1108 
1109     if (smm_available) {
1110         return true;
1111     }
1112 
1113     if (x86ms->smm == ON_OFF_AUTO_ON) {
1114         error_report("System Management Mode not supported by this hypervisor.");
1115         exit(1);
1116     }
1117     return false;
1118 }
1119 
1120 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1121                                void *opaque, Error **errp)
1122 {
1123     X86MachineState *x86ms = X86_MACHINE(obj);
1124     OnOffAuto smm = x86ms->smm;
1125 
1126     visit_type_OnOffAuto(v, name, &smm, errp);
1127 }
1128 
1129 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1130                                void *opaque, Error **errp)
1131 {
1132     X86MachineState *x86ms = X86_MACHINE(obj);
1133 
1134     visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1135 }
1136 
1137 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1138 {
1139     if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1140         return false;
1141     }
1142     return true;
1143 }
1144 
1145 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1146                                  void *opaque, Error **errp)
1147 {
1148     X86MachineState *x86ms = X86_MACHINE(obj);
1149     OnOffAuto acpi = x86ms->acpi;
1150 
1151     visit_type_OnOffAuto(v, name, &acpi, errp);
1152 }
1153 
1154 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1155                                  void *opaque, Error **errp)
1156 {
1157     X86MachineState *x86ms = X86_MACHINE(obj);
1158 
1159     visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1160 }
1161 
1162 static void x86_machine_initfn(Object *obj)
1163 {
1164     X86MachineState *x86ms = X86_MACHINE(obj);
1165 
1166     x86ms->smm = ON_OFF_AUTO_AUTO;
1167     x86ms->acpi = ON_OFF_AUTO_AUTO;
1168     x86ms->smp_dies = 1;
1169 }
1170 
1171 static void x86_machine_class_init(ObjectClass *oc, void *data)
1172 {
1173     MachineClass *mc = MACHINE_CLASS(oc);
1174     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1175     NMIClass *nc = NMI_CLASS(oc);
1176 
1177     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1178     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1179     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1180     x86mc->compat_apic_id_mode = false;
1181     x86mc->save_tsc_khz = true;
1182     nc->nmi_monitor_handler = x86_nmi;
1183 
1184     object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1185         x86_machine_get_smm, x86_machine_set_smm,
1186         NULL, NULL);
1187     object_class_property_set_description(oc, X86_MACHINE_SMM,
1188         "Enable SMM");
1189 
1190     object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1191         x86_machine_get_acpi, x86_machine_set_acpi,
1192         NULL, NULL);
1193     object_class_property_set_description(oc, X86_MACHINE_ACPI,
1194         "Enable ACPI");
1195 }
1196 
1197 static const TypeInfo x86_machine_info = {
1198     .name = TYPE_X86_MACHINE,
1199     .parent = TYPE_MACHINE,
1200     .abstract = true,
1201     .instance_size = sizeof(X86MachineState),
1202     .instance_init = x86_machine_initfn,
1203     .class_size = sizeof(X86MachineClass),
1204     .class_init = x86_machine_class_init,
1205     .interfaces = (InterfaceInfo[]) {
1206          { TYPE_NMI },
1207          { }
1208     },
1209 };
1210 
1211 static void x86_machine_register_types(void)
1212 {
1213     type_register_static(&x86_machine_info);
1214 }
1215 
1216 type_init(x86_machine_register_types)
1217