1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/option.h" 26 #include "qemu/cutils.h" 27 #include "qemu/units.h" 28 #include "qemu-common.h" 29 #include "qemu/datadir.h" 30 #include "qapi/error.h" 31 #include "qapi/qmp/qerror.h" 32 #include "qapi/qapi-visit-common.h" 33 #include "qapi/visitor.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/whpx.h" 36 #include "sysemu/numa.h" 37 #include "sysemu/replay.h" 38 #include "sysemu/sysemu.h" 39 #include "sysemu/cpu-timers.h" 40 #include "trace.h" 41 42 #include "hw/i386/x86.h" 43 #include "target/i386/cpu.h" 44 #include "hw/i386/topology.h" 45 #include "hw/i386/fw_cfg.h" 46 #include "hw/intc/i8259.h" 47 #include "hw/rtc/mc146818rtc.h" 48 49 #include "hw/acpi/cpu_hotplug.h" 50 #include "hw/irq.h" 51 #include "hw/nmi.h" 52 #include "hw/loader.h" 53 #include "multiboot.h" 54 #include "elf.h" 55 #include "standard-headers/asm-x86/bootparam.h" 56 #include CONFIG_DEVICES 57 #include "kvm/kvm_i386.h" 58 59 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 60 static size_t pvh_start_addr; 61 62 inline void init_topo_info(X86CPUTopoInfo *topo_info, 63 const X86MachineState *x86ms) 64 { 65 MachineState *ms = MACHINE(x86ms); 66 67 topo_info->dies_per_pkg = x86ms->smp_dies; 68 topo_info->cores_per_die = ms->smp.cores; 69 topo_info->threads_per_core = ms->smp.threads; 70 } 71 72 /* 73 * Calculates initial APIC ID for a specific CPU index 74 * 75 * Currently we need to be able to calculate the APIC ID from the CPU index 76 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 77 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 78 * all CPUs up to max_cpus. 79 */ 80 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, 81 unsigned int cpu_index) 82 { 83 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms); 84 X86CPUTopoInfo topo_info; 85 uint32_t correct_id; 86 static bool warned; 87 88 init_topo_info(&topo_info, x86ms); 89 90 correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index); 91 if (x86mc->compat_apic_id_mode) { 92 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 93 error_report("APIC IDs set in compatibility mode, " 94 "CPU topology won't match the configuration"); 95 warned = true; 96 } 97 return cpu_index; 98 } else { 99 return correct_id; 100 } 101 } 102 103 104 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 105 { 106 Object *cpu = object_new(MACHINE(x86ms)->cpu_type); 107 108 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { 109 goto out; 110 } 111 qdev_realize(DEVICE(cpu), NULL, errp); 112 113 out: 114 object_unref(cpu); 115 } 116 117 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 118 { 119 int i; 120 const CPUArchIdList *possible_cpus; 121 MachineState *ms = MACHINE(x86ms); 122 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 123 124 x86_cpu_set_default_version(default_cpu_version); 125 126 /* 127 * Calculates the limit to CPU APIC ID values 128 * 129 * Limit for the APIC ID value, so that all 130 * CPU APIC IDs are < x86ms->apic_id_limit. 131 * 132 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 133 */ 134 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 135 ms->smp.max_cpus - 1) + 1; 136 possible_cpus = mc->possible_cpu_arch_ids(ms); 137 for (i = 0; i < ms->smp.cpus; i++) { 138 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 139 } 140 } 141 142 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 143 { 144 if (cpus_count > 0xff) { 145 /* 146 * If the number of CPUs can't be represented in 8 bits, the 147 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 148 * to make old BIOSes fail more predictably. 149 */ 150 rtc_set_memory(rtc, 0x5f, 0); 151 } else { 152 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 153 } 154 } 155 156 static int x86_apic_cmp(const void *a, const void *b) 157 { 158 CPUArchId *apic_a = (CPUArchId *)a; 159 CPUArchId *apic_b = (CPUArchId *)b; 160 161 return apic_a->arch_id - apic_b->arch_id; 162 } 163 164 /* 165 * returns pointer to CPUArchId descriptor that matches CPU's apic_id 166 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 167 * entry corresponding to CPU's apic_id returns NULL. 168 */ 169 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 170 { 171 CPUArchId apic_id, *found_cpu; 172 173 apic_id.arch_id = id; 174 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 175 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 176 x86_apic_cmp); 177 if (found_cpu && idx) { 178 *idx = found_cpu - ms->possible_cpus->cpus; 179 } 180 return found_cpu; 181 } 182 183 void x86_cpu_plug(HotplugHandler *hotplug_dev, 184 DeviceState *dev, Error **errp) 185 { 186 CPUArchId *found_cpu; 187 Error *local_err = NULL; 188 X86CPU *cpu = X86_CPU(dev); 189 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 190 191 if (x86ms->acpi_dev) { 192 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); 193 if (local_err) { 194 goto out; 195 } 196 } 197 198 /* increment the number of CPUs */ 199 x86ms->boot_cpus++; 200 if (x86ms->rtc) { 201 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 202 } 203 if (x86ms->fw_cfg) { 204 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 205 } 206 207 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 208 found_cpu->cpu = OBJECT(dev); 209 out: 210 error_propagate(errp, local_err); 211 } 212 213 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 214 DeviceState *dev, Error **errp) 215 { 216 int idx = -1; 217 X86CPU *cpu = X86_CPU(dev); 218 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 219 220 if (!x86ms->acpi_dev) { 221 error_setg(errp, "CPU hot unplug not supported without ACPI"); 222 return; 223 } 224 225 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 226 assert(idx != -1); 227 if (idx == 0) { 228 error_setg(errp, "Boot CPU is unpluggable"); 229 return; 230 } 231 232 hotplug_handler_unplug_request(x86ms->acpi_dev, dev, 233 errp); 234 } 235 236 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, 237 DeviceState *dev, Error **errp) 238 { 239 CPUArchId *found_cpu; 240 Error *local_err = NULL; 241 X86CPU *cpu = X86_CPU(dev); 242 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 243 244 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); 245 if (local_err) { 246 goto out; 247 } 248 249 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 250 found_cpu->cpu = NULL; 251 qdev_unrealize(dev); 252 253 /* decrement the number of CPUs */ 254 x86ms->boot_cpus--; 255 /* Update the number of CPUs in CMOS */ 256 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 257 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 258 out: 259 error_propagate(errp, local_err); 260 } 261 262 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, 263 DeviceState *dev, Error **errp) 264 { 265 int idx; 266 CPUState *cs; 267 CPUArchId *cpu_slot; 268 X86CPUTopoIDs topo_ids; 269 X86CPU *cpu = X86_CPU(dev); 270 CPUX86State *env = &cpu->env; 271 MachineState *ms = MACHINE(hotplug_dev); 272 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 273 unsigned int smp_cores = ms->smp.cores; 274 unsigned int smp_threads = ms->smp.threads; 275 X86CPUTopoInfo topo_info; 276 277 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 278 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 279 ms->cpu_type); 280 return; 281 } 282 283 if (x86ms->acpi_dev) { 284 Error *local_err = NULL; 285 286 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, 287 &local_err); 288 if (local_err) { 289 error_propagate(errp, local_err); 290 return; 291 } 292 } 293 294 init_topo_info(&topo_info, x86ms); 295 296 env->nr_dies = x86ms->smp_dies; 297 298 /* 299 * If APIC ID is not set, 300 * set it based on socket/die/core/thread properties. 301 */ 302 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 303 int max_socket = (ms->smp.max_cpus - 1) / 304 smp_threads / smp_cores / x86ms->smp_dies; 305 306 /* 307 * die-id was optional in QEMU 4.0 and older, so keep it optional 308 * if there's only one die per socket. 309 */ 310 if (cpu->die_id < 0 && x86ms->smp_dies == 1) { 311 cpu->die_id = 0; 312 } 313 314 if (cpu->socket_id < 0) { 315 error_setg(errp, "CPU socket-id is not set"); 316 return; 317 } else if (cpu->socket_id > max_socket) { 318 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 319 cpu->socket_id, max_socket); 320 return; 321 } 322 if (cpu->die_id < 0) { 323 error_setg(errp, "CPU die-id is not set"); 324 return; 325 } else if (cpu->die_id > x86ms->smp_dies - 1) { 326 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", 327 cpu->die_id, x86ms->smp_dies - 1); 328 return; 329 } 330 if (cpu->core_id < 0) { 331 error_setg(errp, "CPU core-id is not set"); 332 return; 333 } else if (cpu->core_id > (smp_cores - 1)) { 334 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 335 cpu->core_id, smp_cores - 1); 336 return; 337 } 338 if (cpu->thread_id < 0) { 339 error_setg(errp, "CPU thread-id is not set"); 340 return; 341 } else if (cpu->thread_id > (smp_threads - 1)) { 342 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 343 cpu->thread_id, smp_threads - 1); 344 return; 345 } 346 347 topo_ids.pkg_id = cpu->socket_id; 348 topo_ids.die_id = cpu->die_id; 349 topo_ids.core_id = cpu->core_id; 350 topo_ids.smt_id = cpu->thread_id; 351 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids); 352 } 353 354 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 355 if (!cpu_slot) { 356 MachineState *ms = MACHINE(x86ms); 357 358 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 359 error_setg(errp, 360 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with" 361 " APIC ID %" PRIu32 ", valid index range 0:%d", 362 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id, 363 cpu->apic_id, ms->possible_cpus->len - 1); 364 return; 365 } 366 367 if (cpu_slot->cpu) { 368 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 369 idx, cpu->apic_id); 370 return; 371 } 372 373 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 374 * so that machine_query_hotpluggable_cpus would show correct values 375 */ 376 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 377 * once -smp refactoring is complete and there will be CPU private 378 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 379 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 380 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { 381 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 382 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, 383 topo_ids.pkg_id); 384 return; 385 } 386 cpu->socket_id = topo_ids.pkg_id; 387 388 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { 389 error_setg(errp, "property die-id: %u doesn't match set apic-id:" 390 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); 391 return; 392 } 393 cpu->die_id = topo_ids.die_id; 394 395 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { 396 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 397 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, 398 topo_ids.core_id); 399 return; 400 } 401 cpu->core_id = topo_ids.core_id; 402 403 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { 404 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 405 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, 406 topo_ids.smt_id); 407 return; 408 } 409 cpu->thread_id = topo_ids.smt_id; 410 411 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && 412 !kvm_hv_vpindex_settable()) { 413 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 414 return; 415 } 416 417 cs = CPU(cpu); 418 cs->cpu_index = idx; 419 420 numa_cpu_pre_plug(cpu_slot, dev, errp); 421 } 422 423 CpuInstanceProperties 424 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 425 { 426 MachineClass *mc = MACHINE_GET_CLASS(ms); 427 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 428 429 assert(cpu_index < possible_cpus->len); 430 return possible_cpus->cpus[cpu_index].props; 431 } 432 433 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) 434 { 435 X86CPUTopoIDs topo_ids; 436 X86MachineState *x86ms = X86_MACHINE(ms); 437 X86CPUTopoInfo topo_info; 438 439 init_topo_info(&topo_info, x86ms); 440 441 assert(idx < ms->possible_cpus->len); 442 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 443 &topo_info, &topo_ids); 444 return topo_ids.pkg_id % ms->numa_state->num_nodes; 445 } 446 447 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) 448 { 449 X86MachineState *x86ms = X86_MACHINE(ms); 450 unsigned int max_cpus = ms->smp.max_cpus; 451 X86CPUTopoInfo topo_info; 452 int i; 453 454 if (ms->possible_cpus) { 455 /* 456 * make sure that max_cpus hasn't changed since the first use, i.e. 457 * -smp hasn't been parsed after it 458 */ 459 assert(ms->possible_cpus->len == max_cpus); 460 return ms->possible_cpus; 461 } 462 463 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 464 sizeof(CPUArchId) * max_cpus); 465 ms->possible_cpus->len = max_cpus; 466 467 init_topo_info(&topo_info, x86ms); 468 469 for (i = 0; i < ms->possible_cpus->len; i++) { 470 X86CPUTopoIDs topo_ids; 471 472 ms->possible_cpus->cpus[i].type = ms->cpu_type; 473 ms->possible_cpus->cpus[i].vcpus_count = 1; 474 ms->possible_cpus->cpus[i].arch_id = 475 x86_cpu_apic_id_from_index(x86ms, i); 476 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 477 &topo_info, &topo_ids); 478 ms->possible_cpus->cpus[i].props.has_socket_id = true; 479 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id; 480 if (x86ms->smp_dies > 1) { 481 ms->possible_cpus->cpus[i].props.has_die_id = true; 482 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id; 483 } 484 ms->possible_cpus->cpus[i].props.has_core_id = true; 485 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id; 486 ms->possible_cpus->cpus[i].props.has_thread_id = true; 487 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id; 488 } 489 return ms->possible_cpus; 490 } 491 492 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 493 { 494 /* cpu index isn't used */ 495 CPUState *cs; 496 497 CPU_FOREACH(cs) { 498 X86CPU *cpu = X86_CPU(cs); 499 500 if (!cpu->apic_state) { 501 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 502 } else { 503 apic_deliver_nmi(cpu->apic_state); 504 } 505 } 506 } 507 508 static long get_file_size(FILE *f) 509 { 510 long where, size; 511 512 /* XXX: on Unix systems, using fstat() probably makes more sense */ 513 514 where = ftell(f); 515 fseek(f, 0, SEEK_END); 516 size = ftell(f); 517 fseek(f, where, SEEK_SET); 518 519 return size; 520 } 521 522 /* TSC handling */ 523 uint64_t cpu_get_tsc(CPUX86State *env) 524 { 525 return cpus_get_elapsed_ticks(); 526 } 527 528 /* IRQ handling */ 529 static void pic_irq_request(void *opaque, int irq, int level) 530 { 531 CPUState *cs = first_cpu; 532 X86CPU *cpu = X86_CPU(cs); 533 534 trace_x86_pic_interrupt(irq, level); 535 if (cpu->apic_state && !kvm_irqchip_in_kernel() && 536 !whpx_apic_in_platform()) { 537 CPU_FOREACH(cs) { 538 cpu = X86_CPU(cs); 539 if (apic_accept_pic_intr(cpu->apic_state)) { 540 apic_deliver_pic_intr(cpu->apic_state, level); 541 } 542 } 543 } else { 544 if (level) { 545 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 546 } else { 547 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 548 } 549 } 550 } 551 552 qemu_irq x86_allocate_cpu_irq(void) 553 { 554 return qemu_allocate_irq(pic_irq_request, NULL, 0); 555 } 556 557 int cpu_get_pic_interrupt(CPUX86State *env) 558 { 559 X86CPU *cpu = env_archcpu(env); 560 int intno; 561 562 if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) { 563 intno = apic_get_interrupt(cpu->apic_state); 564 if (intno >= 0) { 565 return intno; 566 } 567 /* read the irq from the PIC */ 568 if (!apic_accept_pic_intr(cpu->apic_state)) { 569 return -1; 570 } 571 } 572 573 intno = pic_read_irq(isa_pic); 574 return intno; 575 } 576 577 DeviceState *cpu_get_current_apic(void) 578 { 579 if (current_cpu) { 580 X86CPU *cpu = X86_CPU(current_cpu); 581 return cpu->apic_state; 582 } else { 583 return NULL; 584 } 585 } 586 587 void gsi_handler(void *opaque, int n, int level) 588 { 589 GSIState *s = opaque; 590 591 trace_x86_gsi_interrupt(n, level); 592 switch (n) { 593 case 0 ... ISA_NUM_IRQS - 1: 594 if (s->i8259_irq[n]) { 595 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 596 qemu_set_irq(s->i8259_irq[n], level); 597 } 598 /* fall through */ 599 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1: 600 qemu_set_irq(s->ioapic_irq[n], level); 601 break; 602 case IO_APIC_SECONDARY_IRQBASE 603 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1: 604 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level); 605 break; 606 } 607 } 608 609 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 610 { 611 DeviceState *dev; 612 SysBusDevice *d; 613 unsigned int i; 614 615 assert(parent_name); 616 if (kvm_ioapic_in_kernel()) { 617 dev = qdev_new(TYPE_KVM_IOAPIC); 618 } else { 619 dev = qdev_new(TYPE_IOAPIC); 620 } 621 object_property_add_child(object_resolve_path(parent_name, NULL), 622 "ioapic", OBJECT(dev)); 623 d = SYS_BUS_DEVICE(dev); 624 sysbus_realize_and_unref(d, &error_fatal); 625 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 626 627 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 628 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 629 } 630 } 631 632 DeviceState *ioapic_init_secondary(GSIState *gsi_state) 633 { 634 DeviceState *dev; 635 SysBusDevice *d; 636 unsigned int i; 637 638 dev = qdev_new(TYPE_IOAPIC); 639 d = SYS_BUS_DEVICE(dev); 640 sysbus_realize_and_unref(d, &error_fatal); 641 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS); 642 643 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 644 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i); 645 } 646 return dev; 647 } 648 649 struct setup_data { 650 uint64_t next; 651 uint32_t type; 652 uint32_t len; 653 uint8_t data[]; 654 } __attribute__((packed)); 655 656 657 /* 658 * The entry point into the kernel for PVH boot is different from 659 * the native entry point. The PVH entry is defined by the x86/HVM 660 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 661 * 662 * This function is passed to load_elf() when it is called from 663 * load_elfboot() which then additionally checks for an ELF Note of 664 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 665 * parse the PVH entry address from the ELF Note. 666 * 667 * Due to trickery in elf_opts.h, load_elf() is actually available as 668 * load_elf32() or load_elf64() and this routine needs to be able 669 * to deal with being called as 32 or 64 bit. 670 * 671 * The address of the PVH entry point is saved to the 'pvh_start_addr' 672 * global variable. (although the entry point is 32-bit, the kernel 673 * binary can be either 32-bit or 64-bit). 674 */ 675 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 676 { 677 size_t *elf_note_data_addr; 678 679 /* Check if ELF Note header passed in is valid */ 680 if (arg1 == NULL) { 681 return 0; 682 } 683 684 if (is64) { 685 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 686 uint64_t nhdr_size64 = sizeof(struct elf64_note); 687 uint64_t phdr_align = *(uint64_t *)arg2; 688 uint64_t nhdr_namesz = nhdr64->n_namesz; 689 690 elf_note_data_addr = 691 ((void *)nhdr64) + nhdr_size64 + 692 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 693 694 pvh_start_addr = *elf_note_data_addr; 695 } else { 696 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 697 uint32_t nhdr_size32 = sizeof(struct elf32_note); 698 uint32_t phdr_align = *(uint32_t *)arg2; 699 uint32_t nhdr_namesz = nhdr32->n_namesz; 700 701 elf_note_data_addr = 702 ((void *)nhdr32) + nhdr_size32 + 703 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 704 705 pvh_start_addr = *(uint32_t *)elf_note_data_addr; 706 } 707 708 return pvh_start_addr; 709 } 710 711 static bool load_elfboot(const char *kernel_filename, 712 int kernel_file_size, 713 uint8_t *header, 714 size_t pvh_xen_start_addr, 715 FWCfgState *fw_cfg) 716 { 717 uint32_t flags = 0; 718 uint32_t mh_load_addr = 0; 719 uint32_t elf_kernel_size = 0; 720 uint64_t elf_entry; 721 uint64_t elf_low, elf_high; 722 int kernel_size; 723 724 if (ldl_p(header) != 0x464c457f) { 725 return false; /* no elfboot */ 726 } 727 728 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 729 flags = elf_is64 ? 730 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 731 732 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 733 error_report("elfboot unsupported flags = %x", flags); 734 exit(1); 735 } 736 737 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 738 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 739 NULL, &elf_note_type, &elf_entry, 740 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 741 0, 0); 742 743 if (kernel_size < 0) { 744 error_report("Error while loading elf kernel"); 745 exit(1); 746 } 747 mh_load_addr = elf_low; 748 elf_kernel_size = elf_high - elf_low; 749 750 if (pvh_start_addr == 0) { 751 error_report("Error loading uncompressed kernel without PVH ELF Note"); 752 exit(1); 753 } 754 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 755 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 756 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 757 758 return true; 759 } 760 761 void x86_load_linux(X86MachineState *x86ms, 762 FWCfgState *fw_cfg, 763 int acpi_data_size, 764 bool pvh_enabled, 765 bool linuxboot_dma_enabled) 766 { 767 uint16_t protocol; 768 int setup_size, kernel_size, cmdline_size; 769 int dtb_size, setup_data_offset; 770 uint32_t initrd_max; 771 uint8_t header[8192], *setup, *kernel; 772 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 773 FILE *f; 774 char *vmode; 775 MachineState *machine = MACHINE(x86ms); 776 struct setup_data *setup_data; 777 const char *kernel_filename = machine->kernel_filename; 778 const char *initrd_filename = machine->initrd_filename; 779 const char *dtb_filename = machine->dtb; 780 const char *kernel_cmdline = machine->kernel_cmdline; 781 782 /* Align to 16 bytes as a paranoia measure */ 783 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 784 785 /* load the kernel header */ 786 f = fopen(kernel_filename, "rb"); 787 if (!f) { 788 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 789 kernel_filename, strerror(errno)); 790 exit(1); 791 } 792 793 kernel_size = get_file_size(f); 794 if (!kernel_size || 795 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 796 MIN(ARRAY_SIZE(header), kernel_size)) { 797 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 798 kernel_filename, strerror(errno)); 799 exit(1); 800 } 801 802 /* kernel protocol version */ 803 if (ldl_p(header + 0x202) == 0x53726448) { 804 protocol = lduw_p(header + 0x206); 805 } else { 806 /* 807 * This could be a multiboot kernel. If it is, let's stop treating it 808 * like a Linux kernel. 809 * Note: some multiboot images could be in the ELF format (the same of 810 * PVH), so we try multiboot first since we check the multiboot magic 811 * header before to load it. 812 */ 813 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 814 kernel_cmdline, kernel_size, header)) { 815 return; 816 } 817 /* 818 * Check if the file is an uncompressed kernel file (ELF) and load it, 819 * saving the PVH entry point used by the x86/HVM direct boot ABI. 820 * If load_elfboot() is successful, populate the fw_cfg info. 821 */ 822 if (pvh_enabled && 823 load_elfboot(kernel_filename, kernel_size, 824 header, pvh_start_addr, fw_cfg)) { 825 fclose(f); 826 827 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 828 strlen(kernel_cmdline) + 1); 829 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 830 831 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 832 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 833 header, sizeof(header)); 834 835 /* load initrd */ 836 if (initrd_filename) { 837 GMappedFile *mapped_file; 838 gsize initrd_size; 839 gchar *initrd_data; 840 GError *gerr = NULL; 841 842 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 843 if (!mapped_file) { 844 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 845 initrd_filename, gerr->message); 846 exit(1); 847 } 848 x86ms->initrd_mapped_file = mapped_file; 849 850 initrd_data = g_mapped_file_get_contents(mapped_file); 851 initrd_size = g_mapped_file_get_length(mapped_file); 852 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 853 if (initrd_size >= initrd_max) { 854 fprintf(stderr, "qemu: initrd is too large, cannot support." 855 "(max: %"PRIu32", need %"PRId64")\n", 856 initrd_max, (uint64_t)initrd_size); 857 exit(1); 858 } 859 860 initrd_addr = (initrd_max - initrd_size) & ~4095; 861 862 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 863 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 864 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 865 initrd_size); 866 } 867 868 option_rom[nb_option_roms].bootindex = 0; 869 option_rom[nb_option_roms].name = "pvh.bin"; 870 nb_option_roms++; 871 872 return; 873 } 874 protocol = 0; 875 } 876 877 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 878 /* Low kernel */ 879 real_addr = 0x90000; 880 cmdline_addr = 0x9a000 - cmdline_size; 881 prot_addr = 0x10000; 882 } else if (protocol < 0x202) { 883 /* High but ancient kernel */ 884 real_addr = 0x90000; 885 cmdline_addr = 0x9a000 - cmdline_size; 886 prot_addr = 0x100000; 887 } else { 888 /* High and recent kernel */ 889 real_addr = 0x10000; 890 cmdline_addr = 0x20000; 891 prot_addr = 0x100000; 892 } 893 894 /* highest address for loading the initrd */ 895 if (protocol >= 0x20c && 896 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 897 /* 898 * Linux has supported initrd up to 4 GB for a very long time (2007, 899 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 900 * though it only sets initrd_max to 2 GB to "work around bootloader 901 * bugs". Luckily, QEMU firmware(which does something like bootloader) 902 * has supported this. 903 * 904 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 905 * be loaded into any address. 906 * 907 * In addition, initrd_max is uint32_t simply because QEMU doesn't 908 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 909 * field). 910 * 911 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 912 */ 913 initrd_max = UINT32_MAX; 914 } else if (protocol >= 0x203) { 915 initrd_max = ldl_p(header + 0x22c); 916 } else { 917 initrd_max = 0x37ffffff; 918 } 919 920 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 921 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 922 } 923 924 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 925 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 926 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 927 928 if (protocol >= 0x202) { 929 stl_p(header + 0x228, cmdline_addr); 930 } else { 931 stw_p(header + 0x20, 0xA33F); 932 stw_p(header + 0x22, cmdline_addr - real_addr); 933 } 934 935 /* handle vga= parameter */ 936 vmode = strstr(kernel_cmdline, "vga="); 937 if (vmode) { 938 unsigned int video_mode; 939 const char *end; 940 int ret; 941 /* skip "vga=" */ 942 vmode += 4; 943 if (!strncmp(vmode, "normal", 6)) { 944 video_mode = 0xffff; 945 } else if (!strncmp(vmode, "ext", 3)) { 946 video_mode = 0xfffe; 947 } else if (!strncmp(vmode, "ask", 3)) { 948 video_mode = 0xfffd; 949 } else { 950 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 951 if (ret != 0 || (*end && *end != ' ')) { 952 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 953 exit(1); 954 } 955 } 956 stw_p(header + 0x1fa, video_mode); 957 } 958 959 /* loader type */ 960 /* 961 * High nybble = B reserved for QEMU; low nybble is revision number. 962 * If this code is substantially changed, you may want to consider 963 * incrementing the revision. 964 */ 965 if (protocol >= 0x200) { 966 header[0x210] = 0xB0; 967 } 968 /* heap */ 969 if (protocol >= 0x201) { 970 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 971 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 972 } 973 974 /* load initrd */ 975 if (initrd_filename) { 976 GMappedFile *mapped_file; 977 gsize initrd_size; 978 gchar *initrd_data; 979 GError *gerr = NULL; 980 981 if (protocol < 0x200) { 982 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 983 exit(1); 984 } 985 986 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 987 if (!mapped_file) { 988 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 989 initrd_filename, gerr->message); 990 exit(1); 991 } 992 x86ms->initrd_mapped_file = mapped_file; 993 994 initrd_data = g_mapped_file_get_contents(mapped_file); 995 initrd_size = g_mapped_file_get_length(mapped_file); 996 if (initrd_size >= initrd_max) { 997 fprintf(stderr, "qemu: initrd is too large, cannot support." 998 "(max: %"PRIu32", need %"PRId64")\n", 999 initrd_max, (uint64_t)initrd_size); 1000 exit(1); 1001 } 1002 1003 initrd_addr = (initrd_max - initrd_size) & ~4095; 1004 1005 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 1006 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1007 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 1008 1009 stl_p(header + 0x218, initrd_addr); 1010 stl_p(header + 0x21c, initrd_size); 1011 } 1012 1013 /* load kernel and setup */ 1014 setup_size = header[0x1f1]; 1015 if (setup_size == 0) { 1016 setup_size = 4; 1017 } 1018 setup_size = (setup_size + 1) * 512; 1019 if (setup_size > kernel_size) { 1020 fprintf(stderr, "qemu: invalid kernel header\n"); 1021 exit(1); 1022 } 1023 kernel_size -= setup_size; 1024 1025 setup = g_malloc(setup_size); 1026 kernel = g_malloc(kernel_size); 1027 fseek(f, 0, SEEK_SET); 1028 if (fread(setup, 1, setup_size, f) != setup_size) { 1029 fprintf(stderr, "fread() failed\n"); 1030 exit(1); 1031 } 1032 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1033 fprintf(stderr, "fread() failed\n"); 1034 exit(1); 1035 } 1036 fclose(f); 1037 1038 /* append dtb to kernel */ 1039 if (dtb_filename) { 1040 if (protocol < 0x209) { 1041 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1042 exit(1); 1043 } 1044 1045 dtb_size = get_image_size(dtb_filename); 1046 if (dtb_size <= 0) { 1047 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1048 dtb_filename, strerror(errno)); 1049 exit(1); 1050 } 1051 1052 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1053 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1054 kernel = g_realloc(kernel, kernel_size); 1055 1056 stq_p(header + 0x250, prot_addr + setup_data_offset); 1057 1058 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1059 setup_data->next = 0; 1060 setup_data->type = cpu_to_le32(SETUP_DTB); 1061 setup_data->len = cpu_to_le32(dtb_size); 1062 1063 load_image_size(dtb_filename, setup_data->data, dtb_size); 1064 } 1065 1066 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1067 1068 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1069 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1070 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1071 1072 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1073 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1074 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1075 1076 option_rom[nb_option_roms].bootindex = 0; 1077 option_rom[nb_option_roms].name = "linuxboot.bin"; 1078 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1079 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1080 } 1081 nb_option_roms++; 1082 } 1083 1084 void x86_bios_rom_init(MachineState *ms, const char *default_firmware, 1085 MemoryRegion *rom_memory, bool isapc_ram_fw) 1086 { 1087 const char *bios_name; 1088 char *filename; 1089 MemoryRegion *bios, *isa_bios; 1090 int bios_size, isa_bios_size; 1091 int ret; 1092 1093 /* BIOS load */ 1094 bios_name = ms->firmware ?: default_firmware; 1095 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1096 if (filename) { 1097 bios_size = get_image_size(filename); 1098 } else { 1099 bios_size = -1; 1100 } 1101 if (bios_size <= 0 || 1102 (bios_size % 65536) != 0) { 1103 goto bios_error; 1104 } 1105 bios = g_malloc(sizeof(*bios)); 1106 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); 1107 if (!isapc_ram_fw) { 1108 memory_region_set_readonly(bios, true); 1109 } 1110 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 1111 if (ret != 0) { 1112 bios_error: 1113 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 1114 exit(1); 1115 } 1116 g_free(filename); 1117 1118 /* map the last 128KB of the BIOS in ISA space */ 1119 isa_bios_size = MIN(bios_size, 128 * KiB); 1120 isa_bios = g_malloc(sizeof(*isa_bios)); 1121 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 1122 bios_size - isa_bios_size, isa_bios_size); 1123 memory_region_add_subregion_overlap(rom_memory, 1124 0x100000 - isa_bios_size, 1125 isa_bios, 1126 1); 1127 if (!isapc_ram_fw) { 1128 memory_region_set_readonly(isa_bios, true); 1129 } 1130 1131 /* map all the bios at the top of memory */ 1132 memory_region_add_subregion(rom_memory, 1133 (uint32_t)(-bios_size), 1134 bios); 1135 } 1136 1137 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms) 1138 { 1139 bool smm_available = false; 1140 1141 if (x86ms->smm == ON_OFF_AUTO_OFF) { 1142 return false; 1143 } 1144 1145 if (tcg_enabled() || qtest_enabled()) { 1146 smm_available = true; 1147 } else if (kvm_enabled()) { 1148 smm_available = kvm_has_smm(); 1149 } 1150 1151 if (smm_available) { 1152 return true; 1153 } 1154 1155 if (x86ms->smm == ON_OFF_AUTO_ON) { 1156 error_report("System Management Mode not supported by this hypervisor."); 1157 exit(1); 1158 } 1159 return false; 1160 } 1161 1162 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name, 1163 void *opaque, Error **errp) 1164 { 1165 X86MachineState *x86ms = X86_MACHINE(obj); 1166 OnOffAuto smm = x86ms->smm; 1167 1168 visit_type_OnOffAuto(v, name, &smm, errp); 1169 } 1170 1171 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name, 1172 void *opaque, Error **errp) 1173 { 1174 X86MachineState *x86ms = X86_MACHINE(obj); 1175 1176 visit_type_OnOffAuto(v, name, &x86ms->smm, errp); 1177 } 1178 1179 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms) 1180 { 1181 if (x86ms->acpi == ON_OFF_AUTO_OFF) { 1182 return false; 1183 } 1184 return true; 1185 } 1186 1187 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name, 1188 void *opaque, Error **errp) 1189 { 1190 X86MachineState *x86ms = X86_MACHINE(obj); 1191 OnOffAuto acpi = x86ms->acpi; 1192 1193 visit_type_OnOffAuto(v, name, &acpi, errp); 1194 } 1195 1196 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name, 1197 void *opaque, Error **errp) 1198 { 1199 X86MachineState *x86ms = X86_MACHINE(obj); 1200 1201 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp); 1202 } 1203 1204 static void x86_machine_initfn(Object *obj) 1205 { 1206 X86MachineState *x86ms = X86_MACHINE(obj); 1207 1208 x86ms->smm = ON_OFF_AUTO_AUTO; 1209 x86ms->acpi = ON_OFF_AUTO_AUTO; 1210 x86ms->smp_dies = 1; 1211 x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS; 1212 } 1213 1214 static void x86_machine_class_init(ObjectClass *oc, void *data) 1215 { 1216 MachineClass *mc = MACHINE_CLASS(oc); 1217 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); 1218 NMIClass *nc = NMI_CLASS(oc); 1219 1220 mc->cpu_index_to_instance_props = x86_cpu_index_to_props; 1221 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; 1222 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; 1223 x86mc->compat_apic_id_mode = false; 1224 x86mc->save_tsc_khz = true; 1225 nc->nmi_monitor_handler = x86_nmi; 1226 1227 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto", 1228 x86_machine_get_smm, x86_machine_set_smm, 1229 NULL, NULL); 1230 object_class_property_set_description(oc, X86_MACHINE_SMM, 1231 "Enable SMM"); 1232 1233 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto", 1234 x86_machine_get_acpi, x86_machine_set_acpi, 1235 NULL, NULL); 1236 object_class_property_set_description(oc, X86_MACHINE_ACPI, 1237 "Enable ACPI"); 1238 } 1239 1240 static const TypeInfo x86_machine_info = { 1241 .name = TYPE_X86_MACHINE, 1242 .parent = TYPE_MACHINE, 1243 .abstract = true, 1244 .instance_size = sizeof(X86MachineState), 1245 .instance_init = x86_machine_initfn, 1246 .class_size = sizeof(X86MachineClass), 1247 .class_init = x86_machine_class_init, 1248 .interfaces = (InterfaceInfo[]) { 1249 { TYPE_NMI }, 1250 { } 1251 }, 1252 }; 1253 1254 static void x86_machine_register_types(void) 1255 { 1256 type_register_static(&x86_machine_info); 1257 } 1258 1259 type_init(x86_machine_register_types) 1260