xref: /openbmc/qemu/hw/i386/x86.c (revision ad9e5aa2)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
37 #include "trace.h"
38 
39 #include "hw/i386/x86.h"
40 #include "target/i386/cpu.h"
41 #include "hw/i386/topology.h"
42 #include "hw/i386/fw_cfg.h"
43 #include "hw/intc/i8259.h"
44 
45 #include "hw/acpi/cpu_hotplug.h"
46 #include "hw/irq.h"
47 #include "hw/nmi.h"
48 #include "hw/loader.h"
49 #include "multiboot.h"
50 #include "elf.h"
51 #include "standard-headers/asm-x86/bootparam.h"
52 #include "config-devices.h"
53 #include "kvm_i386.h"
54 
55 #define BIOS_FILENAME "bios.bin"
56 
57 /* Physical Address of PVH entry point read from kernel ELF NOTE */
58 static size_t pvh_start_addr;
59 
60 inline void init_topo_info(X86CPUTopoInfo *topo_info,
61                            const X86MachineState *x86ms)
62 {
63     MachineState *ms = MACHINE(x86ms);
64 
65     topo_info->nodes_per_pkg = ms->numa_state->num_nodes / ms->smp.sockets;
66     topo_info->dies_per_pkg = x86ms->smp_dies;
67     topo_info->cores_per_die = ms->smp.cores;
68     topo_info->threads_per_core = ms->smp.threads;
69 }
70 
71 /*
72  * Set up with the new EPYC topology handlers
73  *
74  * AMD uses different apic id encoding for EPYC based cpus. Override
75  * the default topo handlers with EPYC encoding handlers.
76  */
77 static void x86_set_epyc_topo_handlers(MachineState *machine)
78 {
79     X86MachineState *x86ms = X86_MACHINE(machine);
80 
81     x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx_epyc;
82     x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid_epyc;
83     x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids_epyc;
84     x86ms->apicid_pkg_offset = apicid_pkg_offset_epyc;
85 }
86 
87 /*
88  * Calculates initial APIC ID for a specific CPU index
89  *
90  * Currently we need to be able to calculate the APIC ID from the CPU index
91  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
92  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
93  * all CPUs up to max_cpus.
94  */
95 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
96                                     unsigned int cpu_index)
97 {
98     X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
99     X86CPUTopoInfo topo_info;
100     uint32_t correct_id;
101     static bool warned;
102 
103     init_topo_info(&topo_info, x86ms);
104 
105     correct_id = x86ms->apicid_from_cpu_idx(&topo_info, cpu_index);
106     if (x86mc->compat_apic_id_mode) {
107         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
108             error_report("APIC IDs set in compatibility mode, "
109                          "CPU topology won't match the configuration");
110             warned = true;
111         }
112         return cpu_index;
113     } else {
114         return correct_id;
115     }
116 }
117 
118 
119 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
120 {
121     Error *local_err = NULL;
122     Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
123 
124     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
125     if (local_err) {
126         goto out;
127     }
128     qdev_realize(DEVICE(cpu), NULL, &local_err);
129 
130 out:
131     object_unref(cpu);
132     error_propagate(errp, local_err);
133 }
134 
135 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
136 {
137     int i;
138     const CPUArchIdList *possible_cpus;
139     MachineState *ms = MACHINE(x86ms);
140     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
141 
142     /* Check for apicid encoding */
143     if (cpu_x86_use_epyc_apic_id_encoding(ms->cpu_type)) {
144         x86_set_epyc_topo_handlers(ms);
145     }
146 
147     x86_cpu_set_default_version(default_cpu_version);
148 
149     /*
150      * Calculates the limit to CPU APIC ID values
151      *
152      * Limit for the APIC ID value, so that all
153      * CPU APIC IDs are < x86ms->apic_id_limit.
154      *
155      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
156      */
157     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
158                                                       ms->smp.max_cpus - 1) + 1;
159     possible_cpus = mc->possible_cpu_arch_ids(ms);
160 
161     for (i = 0; i < ms->possible_cpus->len; i++) {
162         ms->possible_cpus->cpus[i].arch_id =
163             x86_cpu_apic_id_from_index(x86ms, i);
164     }
165 
166     for (i = 0; i < ms->smp.cpus; i++) {
167         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
168     }
169 }
170 
171 CpuInstanceProperties
172 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
173 {
174     MachineClass *mc = MACHINE_GET_CLASS(ms);
175     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
176 
177     assert(cpu_index < possible_cpus->len);
178     return possible_cpus->cpus[cpu_index].props;
179 }
180 
181 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
182 {
183    X86CPUTopoIDs topo_ids;
184    X86MachineState *x86ms = X86_MACHINE(ms);
185    X86CPUTopoInfo topo_info;
186 
187    init_topo_info(&topo_info, x86ms);
188 
189    assert(idx < ms->possible_cpus->len);
190    x86_topo_ids_from_idx(&topo_info, idx, &topo_ids);
191    return topo_ids.pkg_id % ms->numa_state->num_nodes;
192 }
193 
194 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
195 {
196     X86MachineState *x86ms = X86_MACHINE(ms);
197     unsigned int max_cpus = ms->smp.max_cpus;
198     X86CPUTopoInfo topo_info;
199     int i;
200 
201     if (ms->possible_cpus) {
202         /*
203          * make sure that max_cpus hasn't changed since the first use, i.e.
204          * -smp hasn't been parsed after it
205          */
206         assert(ms->possible_cpus->len == max_cpus);
207         return ms->possible_cpus;
208     }
209 
210     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
211                                   sizeof(CPUArchId) * max_cpus);
212     ms->possible_cpus->len = max_cpus;
213 
214     init_topo_info(&topo_info, x86ms);
215 
216     for (i = 0; i < ms->possible_cpus->len; i++) {
217         X86CPUTopoIDs topo_ids;
218 
219         ms->possible_cpus->cpus[i].type = ms->cpu_type;
220         ms->possible_cpus->cpus[i].vcpus_count = 1;
221         x86_topo_ids_from_idx(&topo_info, i, &topo_ids);
222         ms->possible_cpus->cpus[i].props.has_socket_id = true;
223         ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
224         if (x86ms->smp_dies > 1) {
225             ms->possible_cpus->cpus[i].props.has_die_id = true;
226             ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
227         }
228         ms->possible_cpus->cpus[i].props.has_core_id = true;
229         ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
230         ms->possible_cpus->cpus[i].props.has_thread_id = true;
231         ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
232     }
233     return ms->possible_cpus;
234 }
235 
236 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
237 {
238     /* cpu index isn't used */
239     CPUState *cs;
240 
241     CPU_FOREACH(cs) {
242         X86CPU *cpu = X86_CPU(cs);
243 
244         if (!cpu->apic_state) {
245             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
246         } else {
247             apic_deliver_nmi(cpu->apic_state);
248         }
249     }
250 }
251 
252 static long get_file_size(FILE *f)
253 {
254     long where, size;
255 
256     /* XXX: on Unix systems, using fstat() probably makes more sense */
257 
258     where = ftell(f);
259     fseek(f, 0, SEEK_END);
260     size = ftell(f);
261     fseek(f, where, SEEK_SET);
262 
263     return size;
264 }
265 
266 /* TSC handling */
267 uint64_t cpu_get_tsc(CPUX86State *env)
268 {
269     return cpu_get_ticks();
270 }
271 
272 /* IRQ handling */
273 static void pic_irq_request(void *opaque, int irq, int level)
274 {
275     CPUState *cs = first_cpu;
276     X86CPU *cpu = X86_CPU(cs);
277 
278     trace_x86_pic_interrupt(irq, level);
279     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
280         CPU_FOREACH(cs) {
281             cpu = X86_CPU(cs);
282             if (apic_accept_pic_intr(cpu->apic_state)) {
283                 apic_deliver_pic_intr(cpu->apic_state, level);
284             }
285         }
286     } else {
287         if (level) {
288             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
289         } else {
290             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
291         }
292     }
293 }
294 
295 qemu_irq x86_allocate_cpu_irq(void)
296 {
297     return qemu_allocate_irq(pic_irq_request, NULL, 0);
298 }
299 
300 int cpu_get_pic_interrupt(CPUX86State *env)
301 {
302     X86CPU *cpu = env_archcpu(env);
303     int intno;
304 
305     if (!kvm_irqchip_in_kernel()) {
306         intno = apic_get_interrupt(cpu->apic_state);
307         if (intno >= 0) {
308             return intno;
309         }
310         /* read the irq from the PIC */
311         if (!apic_accept_pic_intr(cpu->apic_state)) {
312             return -1;
313         }
314     }
315 
316     intno = pic_read_irq(isa_pic);
317     return intno;
318 }
319 
320 DeviceState *cpu_get_current_apic(void)
321 {
322     if (current_cpu) {
323         X86CPU *cpu = X86_CPU(current_cpu);
324         return cpu->apic_state;
325     } else {
326         return NULL;
327     }
328 }
329 
330 void gsi_handler(void *opaque, int n, int level)
331 {
332     GSIState *s = opaque;
333 
334     trace_x86_gsi_interrupt(n, level);
335     if (n < ISA_NUM_IRQS) {
336         /* Under KVM, Kernel will forward to both PIC and IOAPIC */
337         qemu_set_irq(s->i8259_irq[n], level);
338     }
339     qemu_set_irq(s->ioapic_irq[n], level);
340 }
341 
342 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
343 {
344     DeviceState *dev;
345     SysBusDevice *d;
346     unsigned int i;
347 
348     assert(parent_name);
349     if (kvm_ioapic_in_kernel()) {
350         dev = qdev_new(TYPE_KVM_IOAPIC);
351     } else {
352         dev = qdev_new(TYPE_IOAPIC);
353     }
354     object_property_add_child(object_resolve_path(parent_name, NULL),
355                               "ioapic", OBJECT(dev));
356     d = SYS_BUS_DEVICE(dev);
357     sysbus_realize_and_unref(d, &error_fatal);
358     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
359 
360     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
361         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
362     }
363 }
364 
365 struct setup_data {
366     uint64_t next;
367     uint32_t type;
368     uint32_t len;
369     uint8_t data[];
370 } __attribute__((packed));
371 
372 
373 /*
374  * The entry point into the kernel for PVH boot is different from
375  * the native entry point.  The PVH entry is defined by the x86/HVM
376  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
377  *
378  * This function is passed to load_elf() when it is called from
379  * load_elfboot() which then additionally checks for an ELF Note of
380  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
381  * parse the PVH entry address from the ELF Note.
382  *
383  * Due to trickery in elf_opts.h, load_elf() is actually available as
384  * load_elf32() or load_elf64() and this routine needs to be able
385  * to deal with being called as 32 or 64 bit.
386  *
387  * The address of the PVH entry point is saved to the 'pvh_start_addr'
388  * global variable.  (although the entry point is 32-bit, the kernel
389  * binary can be either 32-bit or 64-bit).
390  */
391 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
392 {
393     size_t *elf_note_data_addr;
394 
395     /* Check if ELF Note header passed in is valid */
396     if (arg1 == NULL) {
397         return 0;
398     }
399 
400     if (is64) {
401         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
402         uint64_t nhdr_size64 = sizeof(struct elf64_note);
403         uint64_t phdr_align = *(uint64_t *)arg2;
404         uint64_t nhdr_namesz = nhdr64->n_namesz;
405 
406         elf_note_data_addr =
407             ((void *)nhdr64) + nhdr_size64 +
408             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
409     } else {
410         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
411         uint32_t nhdr_size32 = sizeof(struct elf32_note);
412         uint32_t phdr_align = *(uint32_t *)arg2;
413         uint32_t nhdr_namesz = nhdr32->n_namesz;
414 
415         elf_note_data_addr =
416             ((void *)nhdr32) + nhdr_size32 +
417             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
418     }
419 
420     pvh_start_addr = *elf_note_data_addr;
421 
422     return pvh_start_addr;
423 }
424 
425 static bool load_elfboot(const char *kernel_filename,
426                          int kernel_file_size,
427                          uint8_t *header,
428                          size_t pvh_xen_start_addr,
429                          FWCfgState *fw_cfg)
430 {
431     uint32_t flags = 0;
432     uint32_t mh_load_addr = 0;
433     uint32_t elf_kernel_size = 0;
434     uint64_t elf_entry;
435     uint64_t elf_low, elf_high;
436     int kernel_size;
437 
438     if (ldl_p(header) != 0x464c457f) {
439         return false; /* no elfboot */
440     }
441 
442     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
443     flags = elf_is64 ?
444         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
445 
446     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
447         error_report("elfboot unsupported flags = %x", flags);
448         exit(1);
449     }
450 
451     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
452     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
453                            NULL, &elf_note_type, &elf_entry,
454                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
455                            0, 0);
456 
457     if (kernel_size < 0) {
458         error_report("Error while loading elf kernel");
459         exit(1);
460     }
461     mh_load_addr = elf_low;
462     elf_kernel_size = elf_high - elf_low;
463 
464     if (pvh_start_addr == 0) {
465         error_report("Error loading uncompressed kernel without PVH ELF Note");
466         exit(1);
467     }
468     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
469     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
470     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
471 
472     return true;
473 }
474 
475 void x86_load_linux(X86MachineState *x86ms,
476                     FWCfgState *fw_cfg,
477                     int acpi_data_size,
478                     bool pvh_enabled,
479                     bool linuxboot_dma_enabled)
480 {
481     uint16_t protocol;
482     int setup_size, kernel_size, cmdline_size;
483     int dtb_size, setup_data_offset;
484     uint32_t initrd_max;
485     uint8_t header[8192], *setup, *kernel;
486     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
487     FILE *f;
488     char *vmode;
489     MachineState *machine = MACHINE(x86ms);
490     struct setup_data *setup_data;
491     const char *kernel_filename = machine->kernel_filename;
492     const char *initrd_filename = machine->initrd_filename;
493     const char *dtb_filename = machine->dtb;
494     const char *kernel_cmdline = machine->kernel_cmdline;
495 
496     /* Align to 16 bytes as a paranoia measure */
497     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
498 
499     /* load the kernel header */
500     f = fopen(kernel_filename, "rb");
501     if (!f) {
502         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
503                 kernel_filename, strerror(errno));
504         exit(1);
505     }
506 
507     kernel_size = get_file_size(f);
508     if (!kernel_size ||
509         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
510         MIN(ARRAY_SIZE(header), kernel_size)) {
511         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
512                 kernel_filename, strerror(errno));
513         exit(1);
514     }
515 
516     /* kernel protocol version */
517     if (ldl_p(header + 0x202) == 0x53726448) {
518         protocol = lduw_p(header + 0x206);
519     } else {
520         /*
521          * This could be a multiboot kernel. If it is, let's stop treating it
522          * like a Linux kernel.
523          * Note: some multiboot images could be in the ELF format (the same of
524          * PVH), so we try multiboot first since we check the multiboot magic
525          * header before to load it.
526          */
527         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
528                            kernel_cmdline, kernel_size, header)) {
529             return;
530         }
531         /*
532          * Check if the file is an uncompressed kernel file (ELF) and load it,
533          * saving the PVH entry point used by the x86/HVM direct boot ABI.
534          * If load_elfboot() is successful, populate the fw_cfg info.
535          */
536         if (pvh_enabled &&
537             load_elfboot(kernel_filename, kernel_size,
538                          header, pvh_start_addr, fw_cfg)) {
539             fclose(f);
540 
541             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
542                 strlen(kernel_cmdline) + 1);
543             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
544 
545             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
546             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
547                              header, sizeof(header));
548 
549             /* load initrd */
550             if (initrd_filename) {
551                 GMappedFile *mapped_file;
552                 gsize initrd_size;
553                 gchar *initrd_data;
554                 GError *gerr = NULL;
555 
556                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
557                 if (!mapped_file) {
558                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
559                             initrd_filename, gerr->message);
560                     exit(1);
561                 }
562                 x86ms->initrd_mapped_file = mapped_file;
563 
564                 initrd_data = g_mapped_file_get_contents(mapped_file);
565                 initrd_size = g_mapped_file_get_length(mapped_file);
566                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
567                 if (initrd_size >= initrd_max) {
568                     fprintf(stderr, "qemu: initrd is too large, cannot support."
569                             "(max: %"PRIu32", need %"PRId64")\n",
570                             initrd_max, (uint64_t)initrd_size);
571                     exit(1);
572                 }
573 
574                 initrd_addr = (initrd_max - initrd_size) & ~4095;
575 
576                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
577                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
578                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
579                                  initrd_size);
580             }
581 
582             option_rom[nb_option_roms].bootindex = 0;
583             option_rom[nb_option_roms].name = "pvh.bin";
584             nb_option_roms++;
585 
586             return;
587         }
588         protocol = 0;
589     }
590 
591     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
592         /* Low kernel */
593         real_addr    = 0x90000;
594         cmdline_addr = 0x9a000 - cmdline_size;
595         prot_addr    = 0x10000;
596     } else if (protocol < 0x202) {
597         /* High but ancient kernel */
598         real_addr    = 0x90000;
599         cmdline_addr = 0x9a000 - cmdline_size;
600         prot_addr    = 0x100000;
601     } else {
602         /* High and recent kernel */
603         real_addr    = 0x10000;
604         cmdline_addr = 0x20000;
605         prot_addr    = 0x100000;
606     }
607 
608     /* highest address for loading the initrd */
609     if (protocol >= 0x20c &&
610         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
611         /*
612          * Linux has supported initrd up to 4 GB for a very long time (2007,
613          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
614          * though it only sets initrd_max to 2 GB to "work around bootloader
615          * bugs". Luckily, QEMU firmware(which does something like bootloader)
616          * has supported this.
617          *
618          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
619          * be loaded into any address.
620          *
621          * In addition, initrd_max is uint32_t simply because QEMU doesn't
622          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
623          * field).
624          *
625          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
626          */
627         initrd_max = UINT32_MAX;
628     } else if (protocol >= 0x203) {
629         initrd_max = ldl_p(header + 0x22c);
630     } else {
631         initrd_max = 0x37ffffff;
632     }
633 
634     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
635         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
636     }
637 
638     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
639     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
640     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
641 
642     if (protocol >= 0x202) {
643         stl_p(header + 0x228, cmdline_addr);
644     } else {
645         stw_p(header + 0x20, 0xA33F);
646         stw_p(header + 0x22, cmdline_addr - real_addr);
647     }
648 
649     /* handle vga= parameter */
650     vmode = strstr(kernel_cmdline, "vga=");
651     if (vmode) {
652         unsigned int video_mode;
653         const char *end;
654         int ret;
655         /* skip "vga=" */
656         vmode += 4;
657         if (!strncmp(vmode, "normal", 6)) {
658             video_mode = 0xffff;
659         } else if (!strncmp(vmode, "ext", 3)) {
660             video_mode = 0xfffe;
661         } else if (!strncmp(vmode, "ask", 3)) {
662             video_mode = 0xfffd;
663         } else {
664             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
665             if (ret != 0 || (*end && *end != ' ')) {
666                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
667                 exit(1);
668             }
669         }
670         stw_p(header + 0x1fa, video_mode);
671     }
672 
673     /* loader type */
674     /*
675      * High nybble = B reserved for QEMU; low nybble is revision number.
676      * If this code is substantially changed, you may want to consider
677      * incrementing the revision.
678      */
679     if (protocol >= 0x200) {
680         header[0x210] = 0xB0;
681     }
682     /* heap */
683     if (protocol >= 0x201) {
684         header[0x211] |= 0x80; /* CAN_USE_HEAP */
685         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
686     }
687 
688     /* load initrd */
689     if (initrd_filename) {
690         GMappedFile *mapped_file;
691         gsize initrd_size;
692         gchar *initrd_data;
693         GError *gerr = NULL;
694 
695         if (protocol < 0x200) {
696             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
697             exit(1);
698         }
699 
700         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
701         if (!mapped_file) {
702             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
703                     initrd_filename, gerr->message);
704             exit(1);
705         }
706         x86ms->initrd_mapped_file = mapped_file;
707 
708         initrd_data = g_mapped_file_get_contents(mapped_file);
709         initrd_size = g_mapped_file_get_length(mapped_file);
710         if (initrd_size >= initrd_max) {
711             fprintf(stderr, "qemu: initrd is too large, cannot support."
712                     "(max: %"PRIu32", need %"PRId64")\n",
713                     initrd_max, (uint64_t)initrd_size);
714             exit(1);
715         }
716 
717         initrd_addr = (initrd_max - initrd_size) & ~4095;
718 
719         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
720         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
721         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
722 
723         stl_p(header + 0x218, initrd_addr);
724         stl_p(header + 0x21c, initrd_size);
725     }
726 
727     /* load kernel and setup */
728     setup_size = header[0x1f1];
729     if (setup_size == 0) {
730         setup_size = 4;
731     }
732     setup_size = (setup_size + 1) * 512;
733     if (setup_size > kernel_size) {
734         fprintf(stderr, "qemu: invalid kernel header\n");
735         exit(1);
736     }
737     kernel_size -= setup_size;
738 
739     setup  = g_malloc(setup_size);
740     kernel = g_malloc(kernel_size);
741     fseek(f, 0, SEEK_SET);
742     if (fread(setup, 1, setup_size, f) != setup_size) {
743         fprintf(stderr, "fread() failed\n");
744         exit(1);
745     }
746     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
747         fprintf(stderr, "fread() failed\n");
748         exit(1);
749     }
750     fclose(f);
751 
752     /* append dtb to kernel */
753     if (dtb_filename) {
754         if (protocol < 0x209) {
755             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
756             exit(1);
757         }
758 
759         dtb_size = get_image_size(dtb_filename);
760         if (dtb_size <= 0) {
761             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
762                     dtb_filename, strerror(errno));
763             exit(1);
764         }
765 
766         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
767         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
768         kernel = g_realloc(kernel, kernel_size);
769 
770         stq_p(header + 0x250, prot_addr + setup_data_offset);
771 
772         setup_data = (struct setup_data *)(kernel + setup_data_offset);
773         setup_data->next = 0;
774         setup_data->type = cpu_to_le32(SETUP_DTB);
775         setup_data->len = cpu_to_le32(dtb_size);
776 
777         load_image_size(dtb_filename, setup_data->data, dtb_size);
778     }
779 
780     memcpy(setup, header, MIN(sizeof(header), setup_size));
781 
782     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
783     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
784     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
785 
786     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
787     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
788     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
789 
790     option_rom[nb_option_roms].bootindex = 0;
791     option_rom[nb_option_roms].name = "linuxboot.bin";
792     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
793         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
794     }
795     nb_option_roms++;
796 }
797 
798 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
799 {
800     char *filename;
801     MemoryRegion *bios, *isa_bios;
802     int bios_size, isa_bios_size;
803     int ret;
804 
805     /* BIOS load */
806     if (bios_name == NULL) {
807         bios_name = BIOS_FILENAME;
808     }
809     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
810     if (filename) {
811         bios_size = get_image_size(filename);
812     } else {
813         bios_size = -1;
814     }
815     if (bios_size <= 0 ||
816         (bios_size % 65536) != 0) {
817         goto bios_error;
818     }
819     bios = g_malloc(sizeof(*bios));
820     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
821     if (!isapc_ram_fw) {
822         memory_region_set_readonly(bios, true);
823     }
824     ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
825     if (ret != 0) {
826     bios_error:
827         fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
828         exit(1);
829     }
830     g_free(filename);
831 
832     /* map the last 128KB of the BIOS in ISA space */
833     isa_bios_size = MIN(bios_size, 128 * KiB);
834     isa_bios = g_malloc(sizeof(*isa_bios));
835     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
836                              bios_size - isa_bios_size, isa_bios_size);
837     memory_region_add_subregion_overlap(rom_memory,
838                                         0x100000 - isa_bios_size,
839                                         isa_bios,
840                                         1);
841     if (!isapc_ram_fw) {
842         memory_region_set_readonly(isa_bios, true);
843     }
844 
845     /* map all the bios at the top of memory */
846     memory_region_add_subregion(rom_memory,
847                                 (uint32_t)(-bios_size),
848                                 bios);
849 }
850 
851 bool x86_machine_is_smm_enabled(X86MachineState *x86ms)
852 {
853     bool smm_available = false;
854 
855     if (x86ms->smm == ON_OFF_AUTO_OFF) {
856         return false;
857     }
858 
859     if (tcg_enabled() || qtest_enabled()) {
860         smm_available = true;
861     } else if (kvm_enabled()) {
862         smm_available = kvm_has_smm();
863     }
864 
865     if (smm_available) {
866         return true;
867     }
868 
869     if (x86ms->smm == ON_OFF_AUTO_ON) {
870         error_report("System Management Mode not supported by this hypervisor.");
871         exit(1);
872     }
873     return false;
874 }
875 
876 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
877                                void *opaque, Error **errp)
878 {
879     X86MachineState *x86ms = X86_MACHINE(obj);
880     OnOffAuto smm = x86ms->smm;
881 
882     visit_type_OnOffAuto(v, name, &smm, errp);
883 }
884 
885 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
886                                void *opaque, Error **errp)
887 {
888     X86MachineState *x86ms = X86_MACHINE(obj);
889 
890     visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
891 }
892 
893 bool x86_machine_is_acpi_enabled(X86MachineState *x86ms)
894 {
895     if (x86ms->acpi == ON_OFF_AUTO_OFF) {
896         return false;
897     }
898     return true;
899 }
900 
901 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
902                                  void *opaque, Error **errp)
903 {
904     X86MachineState *x86ms = X86_MACHINE(obj);
905     OnOffAuto acpi = x86ms->acpi;
906 
907     visit_type_OnOffAuto(v, name, &acpi, errp);
908 }
909 
910 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
911                                  void *opaque, Error **errp)
912 {
913     X86MachineState *x86ms = X86_MACHINE(obj);
914 
915     visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
916 }
917 
918 static void x86_machine_initfn(Object *obj)
919 {
920     X86MachineState *x86ms = X86_MACHINE(obj);
921 
922     x86ms->smm = ON_OFF_AUTO_AUTO;
923     x86ms->acpi = ON_OFF_AUTO_AUTO;
924     x86ms->smp_dies = 1;
925 
926     x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx;
927     x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid;
928     x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids;
929     x86ms->apicid_pkg_offset = apicid_pkg_offset;
930 }
931 
932 static void x86_machine_class_init(ObjectClass *oc, void *data)
933 {
934     MachineClass *mc = MACHINE_CLASS(oc);
935     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
936     NMIClass *nc = NMI_CLASS(oc);
937 
938     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
939     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
940     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
941     x86mc->compat_apic_id_mode = false;
942     x86mc->save_tsc_khz = true;
943     nc->nmi_monitor_handler = x86_nmi;
944 
945     object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
946         x86_machine_get_smm, x86_machine_set_smm,
947         NULL, NULL);
948     object_class_property_set_description(oc, X86_MACHINE_SMM,
949         "Enable SMM");
950 
951     object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
952         x86_machine_get_acpi, x86_machine_set_acpi,
953         NULL, NULL);
954     object_class_property_set_description(oc, X86_MACHINE_ACPI,
955         "Enable ACPI");
956 }
957 
958 static const TypeInfo x86_machine_info = {
959     .name = TYPE_X86_MACHINE,
960     .parent = TYPE_MACHINE,
961     .abstract = true,
962     .instance_size = sizeof(X86MachineState),
963     .instance_init = x86_machine_initfn,
964     .class_size = sizeof(X86MachineClass),
965     .class_init = x86_machine_class_init,
966     .interfaces = (InterfaceInfo[]) {
967          { TYPE_NMI },
968          { }
969     },
970 };
971 
972 static void x86_machine_register_types(void)
973 {
974     type_register_static(&x86_machine_info);
975 }
976 
977 type_init(x86_machine_register_types)
978