1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/option.h" 26 #include "qemu/cutils.h" 27 #include "qemu/units.h" 28 #include "qemu/datadir.h" 29 #include "qapi/error.h" 30 #include "qapi/qapi-visit-common.h" 31 #include "qapi/clone-visitor.h" 32 #include "qapi/qapi-visit-machine.h" 33 #include "qapi/visitor.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/whpx.h" 36 #include "sysemu/numa.h" 37 #include "sysemu/replay.h" 38 #include "sysemu/sysemu.h" 39 #include "sysemu/cpu-timers.h" 40 #include "sysemu/xen.h" 41 #include "trace.h" 42 43 #include "hw/i386/x86.h" 44 #include "target/i386/cpu.h" 45 #include "hw/i386/topology.h" 46 #include "hw/i386/fw_cfg.h" 47 #include "hw/intc/i8259.h" 48 #include "hw/rtc/mc146818rtc.h" 49 #include "target/i386/sev.h" 50 51 #include "hw/acpi/cpu_hotplug.h" 52 #include "hw/irq.h" 53 #include "hw/nmi.h" 54 #include "hw/loader.h" 55 #include "multiboot.h" 56 #include "elf.h" 57 #include "standard-headers/asm-x86/bootparam.h" 58 #include CONFIG_DEVICES 59 #include "kvm/kvm_i386.h" 60 61 #ifdef CONFIG_XEN_EMU 62 #include "hw/xen/xen.h" 63 #include "hw/i386/kvm/xen_evtchn.h" 64 #endif 65 66 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 67 static size_t pvh_start_addr; 68 69 static void init_topo_info(X86CPUTopoInfo *topo_info, 70 const X86MachineState *x86ms) 71 { 72 MachineState *ms = MACHINE(x86ms); 73 74 topo_info->dies_per_pkg = ms->smp.dies; 75 topo_info->cores_per_die = ms->smp.cores; 76 topo_info->threads_per_core = ms->smp.threads; 77 } 78 79 /* 80 * Calculates initial APIC ID for a specific CPU index 81 * 82 * Currently we need to be able to calculate the APIC ID from the CPU index 83 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 84 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 85 * all CPUs up to max_cpus. 86 */ 87 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, 88 unsigned int cpu_index) 89 { 90 X86CPUTopoInfo topo_info; 91 92 init_topo_info(&topo_info, x86ms); 93 94 return x86_apicid_from_cpu_idx(&topo_info, cpu_index); 95 } 96 97 98 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 99 { 100 Object *cpu = object_new(MACHINE(x86ms)->cpu_type); 101 102 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { 103 goto out; 104 } 105 qdev_realize(DEVICE(cpu), NULL, errp); 106 107 out: 108 object_unref(cpu); 109 } 110 111 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 112 { 113 int i; 114 const CPUArchIdList *possible_cpus; 115 MachineState *ms = MACHINE(x86ms); 116 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 117 118 x86_cpu_set_default_version(default_cpu_version); 119 120 /* 121 * Calculates the limit to CPU APIC ID values 122 * 123 * Limit for the APIC ID value, so that all 124 * CPU APIC IDs are < x86ms->apic_id_limit. 125 * 126 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 127 */ 128 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 129 ms->smp.max_cpus - 1) + 1; 130 131 /* 132 * Can we support APIC ID 255 or higher? With KVM, that requires 133 * both in-kernel lapic and X2APIC userspace API. 134 * 135 * kvm_enabled() must go first to ensure that kvm_* references are 136 * not emitted for the linker to consume (kvm_enabled() is 137 * a literal `0` in configurations where kvm_* aren't defined) 138 */ 139 if (kvm_enabled() && x86ms->apic_id_limit > 255 && 140 kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) { 141 error_report("current -smp configuration requires kernel " 142 "irqchip and X2APIC API support."); 143 exit(EXIT_FAILURE); 144 } 145 146 if (kvm_enabled()) { 147 kvm_set_max_apic_id(x86ms->apic_id_limit); 148 } 149 150 if (!kvm_irqchip_in_kernel()) { 151 apic_set_max_apic_id(x86ms->apic_id_limit); 152 } 153 154 possible_cpus = mc->possible_cpu_arch_ids(ms); 155 for (i = 0; i < ms->smp.cpus; i++) { 156 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 157 } 158 } 159 160 void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count) 161 { 162 MC146818RtcState *rtc = MC146818_RTC(s); 163 164 if (cpus_count > 0xff) { 165 /* 166 * If the number of CPUs can't be represented in 8 bits, the 167 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 168 * to make old BIOSes fail more predictably. 169 */ 170 mc146818rtc_set_cmos_data(rtc, 0x5f, 0); 171 } else { 172 mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1); 173 } 174 } 175 176 static int x86_apic_cmp(const void *a, const void *b) 177 { 178 CPUArchId *apic_a = (CPUArchId *)a; 179 CPUArchId *apic_b = (CPUArchId *)b; 180 181 return apic_a->arch_id - apic_b->arch_id; 182 } 183 184 /* 185 * returns pointer to CPUArchId descriptor that matches CPU's apic_id 186 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 187 * entry corresponding to CPU's apic_id returns NULL. 188 */ 189 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 190 { 191 CPUArchId apic_id, *found_cpu; 192 193 apic_id.arch_id = id; 194 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 195 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 196 x86_apic_cmp); 197 if (found_cpu && idx) { 198 *idx = found_cpu - ms->possible_cpus->cpus; 199 } 200 return found_cpu; 201 } 202 203 void x86_cpu_plug(HotplugHandler *hotplug_dev, 204 DeviceState *dev, Error **errp) 205 { 206 CPUArchId *found_cpu; 207 Error *local_err = NULL; 208 X86CPU *cpu = X86_CPU(dev); 209 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 210 211 if (x86ms->acpi_dev) { 212 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); 213 if (local_err) { 214 goto out; 215 } 216 } 217 218 /* increment the number of CPUs */ 219 x86ms->boot_cpus++; 220 if (x86ms->rtc) { 221 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 222 } 223 if (x86ms->fw_cfg) { 224 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 225 } 226 227 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 228 found_cpu->cpu = CPU(dev); 229 out: 230 error_propagate(errp, local_err); 231 } 232 233 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 234 DeviceState *dev, Error **errp) 235 { 236 int idx = -1; 237 X86CPU *cpu = X86_CPU(dev); 238 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 239 240 if (!x86ms->acpi_dev) { 241 error_setg(errp, "CPU hot unplug not supported without ACPI"); 242 return; 243 } 244 245 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 246 assert(idx != -1); 247 if (idx == 0) { 248 error_setg(errp, "Boot CPU is unpluggable"); 249 return; 250 } 251 252 hotplug_handler_unplug_request(x86ms->acpi_dev, dev, 253 errp); 254 } 255 256 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, 257 DeviceState *dev, Error **errp) 258 { 259 CPUArchId *found_cpu; 260 Error *local_err = NULL; 261 X86CPU *cpu = X86_CPU(dev); 262 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 263 264 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); 265 if (local_err) { 266 goto out; 267 } 268 269 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 270 found_cpu->cpu = NULL; 271 qdev_unrealize(dev); 272 273 /* decrement the number of CPUs */ 274 x86ms->boot_cpus--; 275 /* Update the number of CPUs in CMOS */ 276 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 277 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 278 out: 279 error_propagate(errp, local_err); 280 } 281 282 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, 283 DeviceState *dev, Error **errp) 284 { 285 int idx; 286 CPUState *cs; 287 CPUArchId *cpu_slot; 288 X86CPUTopoIDs topo_ids; 289 X86CPU *cpu = X86_CPU(dev); 290 CPUX86State *env = &cpu->env; 291 MachineState *ms = MACHINE(hotplug_dev); 292 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 293 unsigned int smp_cores = ms->smp.cores; 294 unsigned int smp_threads = ms->smp.threads; 295 X86CPUTopoInfo topo_info; 296 297 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 298 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 299 ms->cpu_type); 300 return; 301 } 302 303 if (x86ms->acpi_dev) { 304 Error *local_err = NULL; 305 306 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, 307 &local_err); 308 if (local_err) { 309 error_propagate(errp, local_err); 310 return; 311 } 312 } 313 314 init_topo_info(&topo_info, x86ms); 315 316 env->nr_dies = ms->smp.dies; 317 318 /* 319 * If APIC ID is not set, 320 * set it based on socket/die/core/thread properties. 321 */ 322 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 323 int max_socket = (ms->smp.max_cpus - 1) / 324 smp_threads / smp_cores / ms->smp.dies; 325 326 /* 327 * die-id was optional in QEMU 4.0 and older, so keep it optional 328 * if there's only one die per socket. 329 */ 330 if (cpu->die_id < 0 && ms->smp.dies == 1) { 331 cpu->die_id = 0; 332 } 333 334 if (cpu->socket_id < 0) { 335 error_setg(errp, "CPU socket-id is not set"); 336 return; 337 } else if (cpu->socket_id > max_socket) { 338 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 339 cpu->socket_id, max_socket); 340 return; 341 } 342 if (cpu->die_id < 0) { 343 error_setg(errp, "CPU die-id is not set"); 344 return; 345 } else if (cpu->die_id > ms->smp.dies - 1) { 346 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", 347 cpu->die_id, ms->smp.dies - 1); 348 return; 349 } 350 if (cpu->core_id < 0) { 351 error_setg(errp, "CPU core-id is not set"); 352 return; 353 } else if (cpu->core_id > (smp_cores - 1)) { 354 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 355 cpu->core_id, smp_cores - 1); 356 return; 357 } 358 if (cpu->thread_id < 0) { 359 error_setg(errp, "CPU thread-id is not set"); 360 return; 361 } else if (cpu->thread_id > (smp_threads - 1)) { 362 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 363 cpu->thread_id, smp_threads - 1); 364 return; 365 } 366 367 topo_ids.pkg_id = cpu->socket_id; 368 topo_ids.die_id = cpu->die_id; 369 topo_ids.core_id = cpu->core_id; 370 topo_ids.smt_id = cpu->thread_id; 371 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids); 372 } 373 374 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 375 if (!cpu_slot) { 376 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 377 error_setg(errp, 378 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with" 379 " APIC ID %" PRIu32 ", valid index range 0:%d", 380 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id, 381 cpu->apic_id, ms->possible_cpus->len - 1); 382 return; 383 } 384 385 if (cpu_slot->cpu) { 386 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 387 idx, cpu->apic_id); 388 return; 389 } 390 391 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 392 * so that machine_query_hotpluggable_cpus would show correct values 393 */ 394 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 395 * once -smp refactoring is complete and there will be CPU private 396 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 397 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 398 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { 399 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 400 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, 401 topo_ids.pkg_id); 402 return; 403 } 404 cpu->socket_id = topo_ids.pkg_id; 405 406 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { 407 error_setg(errp, "property die-id: %u doesn't match set apic-id:" 408 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); 409 return; 410 } 411 cpu->die_id = topo_ids.die_id; 412 413 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { 414 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 415 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, 416 topo_ids.core_id); 417 return; 418 } 419 cpu->core_id = topo_ids.core_id; 420 421 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { 422 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 423 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, 424 topo_ids.smt_id); 425 return; 426 } 427 cpu->thread_id = topo_ids.smt_id; 428 429 /* 430 * kvm_enabled() must go first to ensure that kvm_* references are 431 * not emitted for the linker to consume (kvm_enabled() is 432 * a literal `0` in configurations where kvm_* aren't defined) 433 */ 434 if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && 435 !kvm_hv_vpindex_settable()) { 436 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 437 return; 438 } 439 440 cs = CPU(cpu); 441 cs->cpu_index = idx; 442 443 numa_cpu_pre_plug(cpu_slot, dev, errp); 444 } 445 446 CpuInstanceProperties 447 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 448 { 449 MachineClass *mc = MACHINE_GET_CLASS(ms); 450 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 451 452 assert(cpu_index < possible_cpus->len); 453 return possible_cpus->cpus[cpu_index].props; 454 } 455 456 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) 457 { 458 X86CPUTopoIDs topo_ids; 459 X86MachineState *x86ms = X86_MACHINE(ms); 460 X86CPUTopoInfo topo_info; 461 462 init_topo_info(&topo_info, x86ms); 463 464 assert(idx < ms->possible_cpus->len); 465 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 466 &topo_info, &topo_ids); 467 return topo_ids.pkg_id % ms->numa_state->num_nodes; 468 } 469 470 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) 471 { 472 X86MachineState *x86ms = X86_MACHINE(ms); 473 unsigned int max_cpus = ms->smp.max_cpus; 474 X86CPUTopoInfo topo_info; 475 int i; 476 477 if (ms->possible_cpus) { 478 /* 479 * make sure that max_cpus hasn't changed since the first use, i.e. 480 * -smp hasn't been parsed after it 481 */ 482 assert(ms->possible_cpus->len == max_cpus); 483 return ms->possible_cpus; 484 } 485 486 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 487 sizeof(CPUArchId) * max_cpus); 488 ms->possible_cpus->len = max_cpus; 489 490 init_topo_info(&topo_info, x86ms); 491 492 for (i = 0; i < ms->possible_cpus->len; i++) { 493 X86CPUTopoIDs topo_ids; 494 495 ms->possible_cpus->cpus[i].type = ms->cpu_type; 496 ms->possible_cpus->cpus[i].vcpus_count = 1; 497 ms->possible_cpus->cpus[i].arch_id = 498 x86_cpu_apic_id_from_index(x86ms, i); 499 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 500 &topo_info, &topo_ids); 501 ms->possible_cpus->cpus[i].props.has_socket_id = true; 502 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id; 503 if (ms->smp.dies > 1) { 504 ms->possible_cpus->cpus[i].props.has_die_id = true; 505 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id; 506 } 507 ms->possible_cpus->cpus[i].props.has_core_id = true; 508 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id; 509 ms->possible_cpus->cpus[i].props.has_thread_id = true; 510 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id; 511 } 512 return ms->possible_cpus; 513 } 514 515 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 516 { 517 /* cpu index isn't used */ 518 CPUState *cs; 519 520 CPU_FOREACH(cs) { 521 X86CPU *cpu = X86_CPU(cs); 522 523 if (cpu_is_apic_enabled(cpu->apic_state)) { 524 apic_deliver_nmi(cpu->apic_state); 525 } else { 526 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 527 } 528 } 529 } 530 531 static long get_file_size(FILE *f) 532 { 533 long where, size; 534 535 /* XXX: on Unix systems, using fstat() probably makes more sense */ 536 537 where = ftell(f); 538 fseek(f, 0, SEEK_END); 539 size = ftell(f); 540 fseek(f, where, SEEK_SET); 541 542 return size; 543 } 544 545 /* TSC handling */ 546 uint64_t cpu_get_tsc(CPUX86State *env) 547 { 548 return cpus_get_elapsed_ticks(); 549 } 550 551 /* IRQ handling */ 552 static void pic_irq_request(void *opaque, int irq, int level) 553 { 554 CPUState *cs = first_cpu; 555 X86CPU *cpu = X86_CPU(cs); 556 557 trace_x86_pic_interrupt(irq, level); 558 if (cpu_is_apic_enabled(cpu->apic_state) && !kvm_irqchip_in_kernel() && 559 !whpx_apic_in_platform()) { 560 CPU_FOREACH(cs) { 561 cpu = X86_CPU(cs); 562 if (apic_accept_pic_intr(cpu->apic_state)) { 563 apic_deliver_pic_intr(cpu->apic_state, level); 564 } 565 } 566 } else { 567 if (level) { 568 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 569 } else { 570 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 571 } 572 } 573 } 574 575 qemu_irq x86_allocate_cpu_irq(void) 576 { 577 return qemu_allocate_irq(pic_irq_request, NULL, 0); 578 } 579 580 int cpu_get_pic_interrupt(CPUX86State *env) 581 { 582 X86CPU *cpu = env_archcpu(env); 583 int intno; 584 585 if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) { 586 intno = apic_get_interrupt(cpu->apic_state); 587 if (intno >= 0) { 588 return intno; 589 } 590 /* read the irq from the PIC */ 591 if (!apic_accept_pic_intr(cpu->apic_state)) { 592 return -1; 593 } 594 } 595 596 intno = pic_read_irq(isa_pic); 597 return intno; 598 } 599 600 DeviceState *cpu_get_current_apic(void) 601 { 602 if (current_cpu) { 603 X86CPU *cpu = X86_CPU(current_cpu); 604 return cpu->apic_state; 605 } else { 606 return NULL; 607 } 608 } 609 610 void gsi_handler(void *opaque, int n, int level) 611 { 612 GSIState *s = opaque; 613 614 trace_x86_gsi_interrupt(n, level); 615 switch (n) { 616 case 0 ... ISA_NUM_IRQS - 1: 617 if (s->i8259_irq[n]) { 618 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 619 qemu_set_irq(s->i8259_irq[n], level); 620 } 621 /* fall through */ 622 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1: 623 #ifdef CONFIG_XEN_EMU 624 /* 625 * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC 626 * routing actually works properly under Xen). And then to 627 * *either* the PIRQ handling or the I/OAPIC depending on 628 * whether the former wants it. 629 */ 630 if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) { 631 break; 632 } 633 #endif 634 qemu_set_irq(s->ioapic_irq[n], level); 635 break; 636 case IO_APIC_SECONDARY_IRQBASE 637 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1: 638 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level); 639 break; 640 } 641 } 642 643 void ioapic_init_gsi(GSIState *gsi_state, Object *parent) 644 { 645 DeviceState *dev; 646 SysBusDevice *d; 647 unsigned int i; 648 649 assert(parent); 650 if (kvm_ioapic_in_kernel()) { 651 dev = qdev_new(TYPE_KVM_IOAPIC); 652 } else { 653 dev = qdev_new(TYPE_IOAPIC); 654 } 655 object_property_add_child(parent, "ioapic", OBJECT(dev)); 656 d = SYS_BUS_DEVICE(dev); 657 sysbus_realize_and_unref(d, &error_fatal); 658 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 659 660 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 661 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 662 } 663 } 664 665 DeviceState *ioapic_init_secondary(GSIState *gsi_state) 666 { 667 DeviceState *dev; 668 SysBusDevice *d; 669 unsigned int i; 670 671 dev = qdev_new(TYPE_IOAPIC); 672 d = SYS_BUS_DEVICE(dev); 673 sysbus_realize_and_unref(d, &error_fatal); 674 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS); 675 676 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 677 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i); 678 } 679 return dev; 680 } 681 682 struct setup_data { 683 uint64_t next; 684 uint32_t type; 685 uint32_t len; 686 uint8_t data[]; 687 } __attribute__((packed)); 688 689 690 /* 691 * The entry point into the kernel for PVH boot is different from 692 * the native entry point. The PVH entry is defined by the x86/HVM 693 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 694 * 695 * This function is passed to load_elf() when it is called from 696 * load_elfboot() which then additionally checks for an ELF Note of 697 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 698 * parse the PVH entry address from the ELF Note. 699 * 700 * Due to trickery in elf_opts.h, load_elf() is actually available as 701 * load_elf32() or load_elf64() and this routine needs to be able 702 * to deal with being called as 32 or 64 bit. 703 * 704 * The address of the PVH entry point is saved to the 'pvh_start_addr' 705 * global variable. (although the entry point is 32-bit, the kernel 706 * binary can be either 32-bit or 64-bit). 707 */ 708 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 709 { 710 size_t *elf_note_data_addr; 711 712 /* Check if ELF Note header passed in is valid */ 713 if (arg1 == NULL) { 714 return 0; 715 } 716 717 if (is64) { 718 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 719 uint64_t nhdr_size64 = sizeof(struct elf64_note); 720 uint64_t phdr_align = *(uint64_t *)arg2; 721 uint64_t nhdr_namesz = nhdr64->n_namesz; 722 723 elf_note_data_addr = 724 ((void *)nhdr64) + nhdr_size64 + 725 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 726 727 pvh_start_addr = *elf_note_data_addr; 728 } else { 729 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 730 uint32_t nhdr_size32 = sizeof(struct elf32_note); 731 uint32_t phdr_align = *(uint32_t *)arg2; 732 uint32_t nhdr_namesz = nhdr32->n_namesz; 733 734 elf_note_data_addr = 735 ((void *)nhdr32) + nhdr_size32 + 736 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 737 738 pvh_start_addr = *(uint32_t *)elf_note_data_addr; 739 } 740 741 return pvh_start_addr; 742 } 743 744 static bool load_elfboot(const char *kernel_filename, 745 int kernel_file_size, 746 uint8_t *header, 747 size_t pvh_xen_start_addr, 748 FWCfgState *fw_cfg) 749 { 750 uint32_t flags = 0; 751 uint32_t mh_load_addr = 0; 752 uint32_t elf_kernel_size = 0; 753 uint64_t elf_entry; 754 uint64_t elf_low, elf_high; 755 int kernel_size; 756 757 if (ldl_p(header) != 0x464c457f) { 758 return false; /* no elfboot */ 759 } 760 761 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 762 flags = elf_is64 ? 763 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 764 765 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 766 error_report("elfboot unsupported flags = %x", flags); 767 exit(1); 768 } 769 770 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 771 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 772 NULL, &elf_note_type, &elf_entry, 773 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 774 0, 0); 775 776 if (kernel_size < 0) { 777 error_report("Error while loading elf kernel"); 778 exit(1); 779 } 780 mh_load_addr = elf_low; 781 elf_kernel_size = elf_high - elf_low; 782 783 if (pvh_start_addr == 0) { 784 error_report("Error loading uncompressed kernel without PVH ELF Note"); 785 exit(1); 786 } 787 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 788 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 789 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 790 791 return true; 792 } 793 794 void x86_load_linux(X86MachineState *x86ms, 795 FWCfgState *fw_cfg, 796 int acpi_data_size, 797 bool pvh_enabled) 798 { 799 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled; 800 uint16_t protocol; 801 int setup_size, kernel_size, cmdline_size; 802 int dtb_size, setup_data_offset; 803 uint32_t initrd_max; 804 uint8_t header[8192], *setup, *kernel; 805 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 806 FILE *f; 807 char *vmode; 808 MachineState *machine = MACHINE(x86ms); 809 struct setup_data *setup_data; 810 const char *kernel_filename = machine->kernel_filename; 811 const char *initrd_filename = machine->initrd_filename; 812 const char *dtb_filename = machine->dtb; 813 const char *kernel_cmdline = machine->kernel_cmdline; 814 SevKernelLoaderContext sev_load_ctx = {}; 815 816 /* Align to 16 bytes as a paranoia measure */ 817 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 818 819 /* load the kernel header */ 820 f = fopen(kernel_filename, "rb"); 821 if (!f) { 822 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 823 kernel_filename, strerror(errno)); 824 exit(1); 825 } 826 827 kernel_size = get_file_size(f); 828 if (!kernel_size || 829 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 830 MIN(ARRAY_SIZE(header), kernel_size)) { 831 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 832 kernel_filename, strerror(errno)); 833 exit(1); 834 } 835 836 /* kernel protocol version */ 837 if (ldl_p(header + 0x202) == 0x53726448) { 838 protocol = lduw_p(header + 0x206); 839 } else { 840 /* 841 * This could be a multiboot kernel. If it is, let's stop treating it 842 * like a Linux kernel. 843 * Note: some multiboot images could be in the ELF format (the same of 844 * PVH), so we try multiboot first since we check the multiboot magic 845 * header before to load it. 846 */ 847 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename, 848 kernel_cmdline, kernel_size, header)) { 849 return; 850 } 851 /* 852 * Check if the file is an uncompressed kernel file (ELF) and load it, 853 * saving the PVH entry point used by the x86/HVM direct boot ABI. 854 * If load_elfboot() is successful, populate the fw_cfg info. 855 */ 856 if (pvh_enabled && 857 load_elfboot(kernel_filename, kernel_size, 858 header, pvh_start_addr, fw_cfg)) { 859 fclose(f); 860 861 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 862 strlen(kernel_cmdline) + 1); 863 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 864 865 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 866 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 867 header, sizeof(header)); 868 869 /* load initrd */ 870 if (initrd_filename) { 871 GMappedFile *mapped_file; 872 gsize initrd_size; 873 gchar *initrd_data; 874 GError *gerr = NULL; 875 876 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 877 if (!mapped_file) { 878 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 879 initrd_filename, gerr->message); 880 exit(1); 881 } 882 x86ms->initrd_mapped_file = mapped_file; 883 884 initrd_data = g_mapped_file_get_contents(mapped_file); 885 initrd_size = g_mapped_file_get_length(mapped_file); 886 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 887 if (initrd_size >= initrd_max) { 888 fprintf(stderr, "qemu: initrd is too large, cannot support." 889 "(max: %"PRIu32", need %"PRId64")\n", 890 initrd_max, (uint64_t)initrd_size); 891 exit(1); 892 } 893 894 initrd_addr = (initrd_max - initrd_size) & ~4095; 895 896 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 897 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 898 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 899 initrd_size); 900 } 901 902 option_rom[nb_option_roms].bootindex = 0; 903 option_rom[nb_option_roms].name = "pvh.bin"; 904 nb_option_roms++; 905 906 return; 907 } 908 protocol = 0; 909 } 910 911 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 912 /* Low kernel */ 913 real_addr = 0x90000; 914 cmdline_addr = 0x9a000 - cmdline_size; 915 prot_addr = 0x10000; 916 } else if (protocol < 0x202) { 917 /* High but ancient kernel */ 918 real_addr = 0x90000; 919 cmdline_addr = 0x9a000 - cmdline_size; 920 prot_addr = 0x100000; 921 } else { 922 /* High and recent kernel */ 923 real_addr = 0x10000; 924 cmdline_addr = 0x20000; 925 prot_addr = 0x100000; 926 } 927 928 /* highest address for loading the initrd */ 929 if (protocol >= 0x20c && 930 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 931 /* 932 * Linux has supported initrd up to 4 GB for a very long time (2007, 933 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 934 * though it only sets initrd_max to 2 GB to "work around bootloader 935 * bugs". Luckily, QEMU firmware(which does something like bootloader) 936 * has supported this. 937 * 938 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 939 * be loaded into any address. 940 * 941 * In addition, initrd_max is uint32_t simply because QEMU doesn't 942 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 943 * field). 944 * 945 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 946 */ 947 initrd_max = UINT32_MAX; 948 } else if (protocol >= 0x203) { 949 initrd_max = ldl_p(header + 0x22c); 950 } else { 951 initrd_max = 0x37ffffff; 952 } 953 954 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 955 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 956 } 957 958 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 959 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 960 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 961 sev_load_ctx.cmdline_data = (char *)kernel_cmdline; 962 sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1; 963 964 if (protocol >= 0x202) { 965 stl_p(header + 0x228, cmdline_addr); 966 } else { 967 stw_p(header + 0x20, 0xA33F); 968 stw_p(header + 0x22, cmdline_addr - real_addr); 969 } 970 971 /* handle vga= parameter */ 972 vmode = strstr(kernel_cmdline, "vga="); 973 if (vmode) { 974 unsigned int video_mode; 975 const char *end; 976 int ret; 977 /* skip "vga=" */ 978 vmode += 4; 979 if (!strncmp(vmode, "normal", 6)) { 980 video_mode = 0xffff; 981 } else if (!strncmp(vmode, "ext", 3)) { 982 video_mode = 0xfffe; 983 } else if (!strncmp(vmode, "ask", 3)) { 984 video_mode = 0xfffd; 985 } else { 986 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 987 if (ret != 0 || (*end && *end != ' ')) { 988 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 989 exit(1); 990 } 991 } 992 stw_p(header + 0x1fa, video_mode); 993 } 994 995 /* loader type */ 996 /* 997 * High nybble = B reserved for QEMU; low nybble is revision number. 998 * If this code is substantially changed, you may want to consider 999 * incrementing the revision. 1000 */ 1001 if (protocol >= 0x200) { 1002 header[0x210] = 0xB0; 1003 } 1004 /* heap */ 1005 if (protocol >= 0x201) { 1006 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 1007 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 1008 } 1009 1010 /* load initrd */ 1011 if (initrd_filename) { 1012 GMappedFile *mapped_file; 1013 gsize initrd_size; 1014 gchar *initrd_data; 1015 GError *gerr = NULL; 1016 1017 if (protocol < 0x200) { 1018 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 1019 exit(1); 1020 } 1021 1022 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 1023 if (!mapped_file) { 1024 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 1025 initrd_filename, gerr->message); 1026 exit(1); 1027 } 1028 x86ms->initrd_mapped_file = mapped_file; 1029 1030 initrd_data = g_mapped_file_get_contents(mapped_file); 1031 initrd_size = g_mapped_file_get_length(mapped_file); 1032 if (initrd_size >= initrd_max) { 1033 fprintf(stderr, "qemu: initrd is too large, cannot support." 1034 "(max: %"PRIu32", need %"PRId64")\n", 1035 initrd_max, (uint64_t)initrd_size); 1036 exit(1); 1037 } 1038 1039 initrd_addr = (initrd_max - initrd_size) & ~4095; 1040 1041 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 1042 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1043 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 1044 sev_load_ctx.initrd_data = initrd_data; 1045 sev_load_ctx.initrd_size = initrd_size; 1046 1047 stl_p(header + 0x218, initrd_addr); 1048 stl_p(header + 0x21c, initrd_size); 1049 } 1050 1051 /* load kernel and setup */ 1052 setup_size = header[0x1f1]; 1053 if (setup_size == 0) { 1054 setup_size = 4; 1055 } 1056 setup_size = (setup_size + 1) * 512; 1057 if (setup_size > kernel_size) { 1058 fprintf(stderr, "qemu: invalid kernel header\n"); 1059 exit(1); 1060 } 1061 kernel_size -= setup_size; 1062 1063 setup = g_malloc(setup_size); 1064 kernel = g_malloc(kernel_size); 1065 fseek(f, 0, SEEK_SET); 1066 if (fread(setup, 1, setup_size, f) != setup_size) { 1067 fprintf(stderr, "fread() failed\n"); 1068 exit(1); 1069 } 1070 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1071 fprintf(stderr, "fread() failed\n"); 1072 exit(1); 1073 } 1074 fclose(f); 1075 1076 /* append dtb to kernel */ 1077 if (dtb_filename) { 1078 if (protocol < 0x209) { 1079 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1080 exit(1); 1081 } 1082 1083 dtb_size = get_image_size(dtb_filename); 1084 if (dtb_size <= 0) { 1085 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1086 dtb_filename, strerror(errno)); 1087 exit(1); 1088 } 1089 1090 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1091 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1092 kernel = g_realloc(kernel, kernel_size); 1093 1094 stq_p(header + 0x250, prot_addr + setup_data_offset); 1095 1096 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1097 setup_data->next = 0; 1098 setup_data->type = cpu_to_le32(SETUP_DTB); 1099 setup_data->len = cpu_to_le32(dtb_size); 1100 1101 load_image_size(dtb_filename, setup_data->data, dtb_size); 1102 } 1103 1104 /* 1105 * If we're starting an encrypted VM, it will be OVMF based, which uses the 1106 * efi stub for booting and doesn't require any values to be placed in the 1107 * kernel header. We therefore don't update the header so the hash of the 1108 * kernel on the other side of the fw_cfg interface matches the hash of the 1109 * file the user passed in. 1110 */ 1111 if (!sev_enabled()) { 1112 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1113 } 1114 1115 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1116 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1117 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1118 sev_load_ctx.kernel_data = (char *)kernel; 1119 sev_load_ctx.kernel_size = kernel_size; 1120 1121 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1122 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1123 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1124 sev_load_ctx.setup_data = (char *)setup; 1125 sev_load_ctx.setup_size = setup_size; 1126 1127 if (sev_enabled()) { 1128 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal); 1129 } 1130 1131 option_rom[nb_option_roms].bootindex = 0; 1132 option_rom[nb_option_roms].name = "linuxboot.bin"; 1133 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1134 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1135 } 1136 nb_option_roms++; 1137 } 1138 1139 void x86_bios_rom_init(MachineState *ms, const char *default_firmware, 1140 MemoryRegion *rom_memory, bool isapc_ram_fw) 1141 { 1142 const char *bios_name; 1143 char *filename; 1144 MemoryRegion *bios, *isa_bios; 1145 int bios_size, isa_bios_size; 1146 ssize_t ret; 1147 1148 /* BIOS load */ 1149 bios_name = ms->firmware ?: default_firmware; 1150 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1151 if (filename) { 1152 bios_size = get_image_size(filename); 1153 } else { 1154 bios_size = -1; 1155 } 1156 if (bios_size <= 0 || 1157 (bios_size % 65536) != 0) { 1158 goto bios_error; 1159 } 1160 bios = g_malloc(sizeof(*bios)); 1161 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); 1162 if (sev_enabled()) { 1163 /* 1164 * The concept of a "reset" simply doesn't exist for 1165 * confidential computing guests, we have to destroy and 1166 * re-launch them instead. So there is no need to register 1167 * the firmware as rom to properly re-initialize on reset. 1168 * Just go for a straight file load instead. 1169 */ 1170 void *ptr = memory_region_get_ram_ptr(bios); 1171 load_image_size(filename, ptr, bios_size); 1172 x86_firmware_configure(ptr, bios_size); 1173 } else { 1174 if (!isapc_ram_fw) { 1175 memory_region_set_readonly(bios, true); 1176 } 1177 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 1178 if (ret != 0) { 1179 goto bios_error; 1180 } 1181 } 1182 g_free(filename); 1183 1184 /* map the last 128KB of the BIOS in ISA space */ 1185 isa_bios_size = MIN(bios_size, 128 * KiB); 1186 isa_bios = g_malloc(sizeof(*isa_bios)); 1187 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 1188 bios_size - isa_bios_size, isa_bios_size); 1189 memory_region_add_subregion_overlap(rom_memory, 1190 0x100000 - isa_bios_size, 1191 isa_bios, 1192 1); 1193 if (!isapc_ram_fw) { 1194 memory_region_set_readonly(isa_bios, true); 1195 } 1196 1197 /* map all the bios at the top of memory */ 1198 memory_region_add_subregion(rom_memory, 1199 (uint32_t)(-bios_size), 1200 bios); 1201 return; 1202 1203 bios_error: 1204 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 1205 exit(1); 1206 } 1207 1208 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms) 1209 { 1210 bool smm_available = false; 1211 1212 if (x86ms->smm == ON_OFF_AUTO_OFF) { 1213 return false; 1214 } 1215 1216 if (tcg_enabled() || qtest_enabled()) { 1217 smm_available = true; 1218 } else if (kvm_enabled()) { 1219 smm_available = kvm_has_smm(); 1220 } 1221 1222 if (smm_available) { 1223 return true; 1224 } 1225 1226 if (x86ms->smm == ON_OFF_AUTO_ON) { 1227 error_report("System Management Mode not supported by this hypervisor."); 1228 exit(1); 1229 } 1230 return false; 1231 } 1232 1233 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name, 1234 void *opaque, Error **errp) 1235 { 1236 X86MachineState *x86ms = X86_MACHINE(obj); 1237 OnOffAuto smm = x86ms->smm; 1238 1239 visit_type_OnOffAuto(v, name, &smm, errp); 1240 } 1241 1242 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name, 1243 void *opaque, Error **errp) 1244 { 1245 X86MachineState *x86ms = X86_MACHINE(obj); 1246 1247 visit_type_OnOffAuto(v, name, &x86ms->smm, errp); 1248 } 1249 1250 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms) 1251 { 1252 if (x86ms->acpi == ON_OFF_AUTO_OFF) { 1253 return false; 1254 } 1255 return true; 1256 } 1257 1258 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name, 1259 void *opaque, Error **errp) 1260 { 1261 X86MachineState *x86ms = X86_MACHINE(obj); 1262 OnOffAuto acpi = x86ms->acpi; 1263 1264 visit_type_OnOffAuto(v, name, &acpi, errp); 1265 } 1266 1267 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name, 1268 void *opaque, Error **errp) 1269 { 1270 X86MachineState *x86ms = X86_MACHINE(obj); 1271 1272 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp); 1273 } 1274 1275 static void x86_machine_get_pit(Object *obj, Visitor *v, const char *name, 1276 void *opaque, Error **errp) 1277 { 1278 X86MachineState *x86ms = X86_MACHINE(obj); 1279 OnOffAuto pit = x86ms->pit; 1280 1281 visit_type_OnOffAuto(v, name, &pit, errp); 1282 } 1283 1284 static void x86_machine_set_pit(Object *obj, Visitor *v, const char *name, 1285 void *opaque, Error **errp) 1286 { 1287 X86MachineState *x86ms = X86_MACHINE(obj);; 1288 1289 visit_type_OnOffAuto(v, name, &x86ms->pit, errp); 1290 } 1291 1292 static void x86_machine_get_pic(Object *obj, Visitor *v, const char *name, 1293 void *opaque, Error **errp) 1294 { 1295 X86MachineState *x86ms = X86_MACHINE(obj); 1296 OnOffAuto pic = x86ms->pic; 1297 1298 visit_type_OnOffAuto(v, name, &pic, errp); 1299 } 1300 1301 static void x86_machine_set_pic(Object *obj, Visitor *v, const char *name, 1302 void *opaque, Error **errp) 1303 { 1304 X86MachineState *x86ms = X86_MACHINE(obj); 1305 1306 visit_type_OnOffAuto(v, name, &x86ms->pic, errp); 1307 } 1308 1309 static char *x86_machine_get_oem_id(Object *obj, Error **errp) 1310 { 1311 X86MachineState *x86ms = X86_MACHINE(obj); 1312 1313 return g_strdup(x86ms->oem_id); 1314 } 1315 1316 static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp) 1317 { 1318 X86MachineState *x86ms = X86_MACHINE(obj); 1319 size_t len = strlen(value); 1320 1321 if (len > 6) { 1322 error_setg(errp, 1323 "User specified "X86_MACHINE_OEM_ID" value is bigger than " 1324 "6 bytes in size"); 1325 return; 1326 } 1327 1328 strncpy(x86ms->oem_id, value, 6); 1329 } 1330 1331 static char *x86_machine_get_oem_table_id(Object *obj, Error **errp) 1332 { 1333 X86MachineState *x86ms = X86_MACHINE(obj); 1334 1335 return g_strdup(x86ms->oem_table_id); 1336 } 1337 1338 static void x86_machine_set_oem_table_id(Object *obj, const char *value, 1339 Error **errp) 1340 { 1341 X86MachineState *x86ms = X86_MACHINE(obj); 1342 size_t len = strlen(value); 1343 1344 if (len > 8) { 1345 error_setg(errp, 1346 "User specified "X86_MACHINE_OEM_TABLE_ID 1347 " value is bigger than " 1348 "8 bytes in size"); 1349 return; 1350 } 1351 strncpy(x86ms->oem_table_id, value, 8); 1352 } 1353 1354 static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v, 1355 const char *name, void *opaque, Error **errp) 1356 { 1357 X86MachineState *x86ms = X86_MACHINE(obj); 1358 uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit; 1359 1360 visit_type_uint64(v, name, &bus_lock_ratelimit, errp); 1361 } 1362 1363 static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v, 1364 const char *name, void *opaque, Error **errp) 1365 { 1366 X86MachineState *x86ms = X86_MACHINE(obj); 1367 1368 visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp); 1369 } 1370 1371 static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name, 1372 void *opaque, Error **errp) 1373 { 1374 X86MachineState *x86ms = X86_MACHINE(obj); 1375 SgxEPCList *list = x86ms->sgx_epc_list; 1376 1377 visit_type_SgxEPCList(v, name, &list, errp); 1378 } 1379 1380 static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name, 1381 void *opaque, Error **errp) 1382 { 1383 X86MachineState *x86ms = X86_MACHINE(obj); 1384 SgxEPCList *list; 1385 1386 list = x86ms->sgx_epc_list; 1387 visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp); 1388 1389 qapi_free_SgxEPCList(list); 1390 } 1391 1392 static void x86_machine_initfn(Object *obj) 1393 { 1394 X86MachineState *x86ms = X86_MACHINE(obj); 1395 1396 x86ms->smm = ON_OFF_AUTO_AUTO; 1397 x86ms->acpi = ON_OFF_AUTO_AUTO; 1398 x86ms->pit = ON_OFF_AUTO_AUTO; 1399 x86ms->pic = ON_OFF_AUTO_AUTO; 1400 x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS; 1401 x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 1402 x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 1403 x86ms->bus_lock_ratelimit = 0; 1404 x86ms->above_4g_mem_start = 4 * GiB; 1405 } 1406 1407 static void x86_machine_class_init(ObjectClass *oc, void *data) 1408 { 1409 MachineClass *mc = MACHINE_CLASS(oc); 1410 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); 1411 NMIClass *nc = NMI_CLASS(oc); 1412 1413 mc->cpu_index_to_instance_props = x86_cpu_index_to_props; 1414 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; 1415 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; 1416 x86mc->save_tsc_khz = true; 1417 x86mc->fwcfg_dma_enabled = true; 1418 nc->nmi_monitor_handler = x86_nmi; 1419 1420 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto", 1421 x86_machine_get_smm, x86_machine_set_smm, 1422 NULL, NULL); 1423 object_class_property_set_description(oc, X86_MACHINE_SMM, 1424 "Enable SMM"); 1425 1426 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto", 1427 x86_machine_get_acpi, x86_machine_set_acpi, 1428 NULL, NULL); 1429 object_class_property_set_description(oc, X86_MACHINE_ACPI, 1430 "Enable ACPI"); 1431 1432 object_class_property_add(oc, X86_MACHINE_PIT, "OnOffAuto", 1433 x86_machine_get_pit, 1434 x86_machine_set_pit, 1435 NULL, NULL); 1436 object_class_property_set_description(oc, X86_MACHINE_PIT, 1437 "Enable i8254 PIT"); 1438 1439 object_class_property_add(oc, X86_MACHINE_PIC, "OnOffAuto", 1440 x86_machine_get_pic, 1441 x86_machine_set_pic, 1442 NULL, NULL); 1443 object_class_property_set_description(oc, X86_MACHINE_PIC, 1444 "Enable i8259 PIC"); 1445 1446 object_class_property_add_str(oc, X86_MACHINE_OEM_ID, 1447 x86_machine_get_oem_id, 1448 x86_machine_set_oem_id); 1449 object_class_property_set_description(oc, X86_MACHINE_OEM_ID, 1450 "Override the default value of field OEMID " 1451 "in ACPI table header." 1452 "The string may be up to 6 bytes in size"); 1453 1454 1455 object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID, 1456 x86_machine_get_oem_table_id, 1457 x86_machine_set_oem_table_id); 1458 object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID, 1459 "Override the default value of field OEM Table ID " 1460 "in ACPI table header." 1461 "The string may be up to 8 bytes in size"); 1462 1463 object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t", 1464 x86_machine_get_bus_lock_ratelimit, 1465 x86_machine_set_bus_lock_ratelimit, NULL, NULL); 1466 object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, 1467 "Set the ratelimit for the bus locks acquired in VMs"); 1468 1469 object_class_property_add(oc, "sgx-epc", "SgxEPC", 1470 machine_get_sgx_epc, machine_set_sgx_epc, 1471 NULL, NULL); 1472 object_class_property_set_description(oc, "sgx-epc", 1473 "SGX EPC device"); 1474 } 1475 1476 static const TypeInfo x86_machine_info = { 1477 .name = TYPE_X86_MACHINE, 1478 .parent = TYPE_MACHINE, 1479 .abstract = true, 1480 .instance_size = sizeof(X86MachineState), 1481 .instance_init = x86_machine_initfn, 1482 .class_size = sizeof(X86MachineClass), 1483 .class_init = x86_machine_class_init, 1484 .interfaces = (InterfaceInfo[]) { 1485 { TYPE_NMI }, 1486 { } 1487 }, 1488 }; 1489 1490 static void x86_machine_register_types(void) 1491 { 1492 type_register_static(&x86_machine_info); 1493 } 1494 1495 type_init(x86_machine_register_types) 1496