xref: /openbmc/qemu/hw/i386/x86.c (revision 9cd909ac)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu/datadir.h"
29 #include "qapi/error.h"
30 #include "qapi/qapi-visit-common.h"
31 #include "qapi/clone-visitor.h"
32 #include "qapi/qapi-visit-machine.h"
33 #include "qapi/visitor.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/whpx.h"
36 #include "sysemu/numa.h"
37 #include "sysemu/replay.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/cpu-timers.h"
40 #include "sysemu/xen.h"
41 #include "trace.h"
42 
43 #include "hw/i386/x86.h"
44 #include "target/i386/cpu.h"
45 #include "hw/i386/topology.h"
46 #include "hw/i386/fw_cfg.h"
47 #include "hw/intc/i8259.h"
48 #include "hw/rtc/mc146818rtc.h"
49 #include "target/i386/sev.h"
50 
51 #include "hw/acpi/cpu_hotplug.h"
52 #include "hw/irq.h"
53 #include "hw/nmi.h"
54 #include "hw/loader.h"
55 #include "multiboot.h"
56 #include "elf.h"
57 #include "standard-headers/asm-x86/bootparam.h"
58 #include CONFIG_DEVICES
59 #include "kvm/kvm_i386.h"
60 
61 #ifdef CONFIG_XEN_EMU
62 #include "hw/xen/xen.h"
63 #include "hw/i386/kvm/xen_evtchn.h"
64 #endif
65 
66 /* Physical Address of PVH entry point read from kernel ELF NOTE */
67 static size_t pvh_start_addr;
68 
69 static void init_topo_info(X86CPUTopoInfo *topo_info,
70                            const X86MachineState *x86ms)
71 {
72     MachineState *ms = MACHINE(x86ms);
73 
74     topo_info->dies_per_pkg = ms->smp.dies;
75     topo_info->cores_per_die = ms->smp.cores;
76     topo_info->threads_per_core = ms->smp.threads;
77 }
78 
79 /*
80  * Calculates initial APIC ID for a specific CPU index
81  *
82  * Currently we need to be able to calculate the APIC ID from the CPU index
83  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
84  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
85  * all CPUs up to max_cpus.
86  */
87 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
88                                     unsigned int cpu_index)
89 {
90     X86CPUTopoInfo topo_info;
91 
92     init_topo_info(&topo_info, x86ms);
93 
94     return x86_apicid_from_cpu_idx(&topo_info, cpu_index);
95 }
96 
97 
98 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
99 {
100     Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
101 
102     if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
103         goto out;
104     }
105     qdev_realize(DEVICE(cpu), NULL, errp);
106 
107 out:
108     object_unref(cpu);
109 }
110 
111 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
112 {
113     int i;
114     const CPUArchIdList *possible_cpus;
115     MachineState *ms = MACHINE(x86ms);
116     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
117 
118     x86_cpu_set_default_version(default_cpu_version);
119 
120     /*
121      * Calculates the limit to CPU APIC ID values
122      *
123      * Limit for the APIC ID value, so that all
124      * CPU APIC IDs are < x86ms->apic_id_limit.
125      *
126      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
127      */
128     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
129                                                       ms->smp.max_cpus - 1) + 1;
130 
131     /*
132      * Can we support APIC ID 255 or higher?  With KVM, that requires
133      * both in-kernel lapic and X2APIC userspace API.
134      *
135      * kvm_enabled() must go first to ensure that kvm_* references are
136      * not emitted for the linker to consume (kvm_enabled() is
137      * a literal `0` in configurations where kvm_* aren't defined)
138      */
139     if (kvm_enabled() && x86ms->apic_id_limit > 255 &&
140         kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) {
141         error_report("current -smp configuration requires kernel "
142                      "irqchip and X2APIC API support.");
143         exit(EXIT_FAILURE);
144     }
145 
146     if (kvm_enabled()) {
147         kvm_set_max_apic_id(x86ms->apic_id_limit);
148     }
149 
150     if (!kvm_irqchip_in_kernel()) {
151         apic_set_max_apic_id(x86ms->apic_id_limit);
152     }
153 
154     possible_cpus = mc->possible_cpu_arch_ids(ms);
155     for (i = 0; i < ms->smp.cpus; i++) {
156         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
157     }
158 }
159 
160 void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count)
161 {
162     MC146818RtcState *rtc = MC146818_RTC(s);
163 
164     if (cpus_count > 0xff) {
165         /*
166          * If the number of CPUs can't be represented in 8 bits, the
167          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
168          * to make old BIOSes fail more predictably.
169          */
170         mc146818rtc_set_cmos_data(rtc, 0x5f, 0);
171     } else {
172         mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1);
173     }
174 }
175 
176 static int x86_apic_cmp(const void *a, const void *b)
177 {
178    CPUArchId *apic_a = (CPUArchId *)a;
179    CPUArchId *apic_b = (CPUArchId *)b;
180 
181    return apic_a->arch_id - apic_b->arch_id;
182 }
183 
184 /*
185  * returns pointer to CPUArchId descriptor that matches CPU's apic_id
186  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
187  * entry corresponding to CPU's apic_id returns NULL.
188  */
189 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
190 {
191     CPUArchId apic_id, *found_cpu;
192 
193     apic_id.arch_id = id;
194     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
195         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
196         x86_apic_cmp);
197     if (found_cpu && idx) {
198         *idx = found_cpu - ms->possible_cpus->cpus;
199     }
200     return found_cpu;
201 }
202 
203 void x86_cpu_plug(HotplugHandler *hotplug_dev,
204                   DeviceState *dev, Error **errp)
205 {
206     CPUArchId *found_cpu;
207     Error *local_err = NULL;
208     X86CPU *cpu = X86_CPU(dev);
209     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
210 
211     if (x86ms->acpi_dev) {
212         hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
213         if (local_err) {
214             goto out;
215         }
216     }
217 
218     /* increment the number of CPUs */
219     x86ms->boot_cpus++;
220     if (x86ms->rtc) {
221         x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
222     }
223     if (x86ms->fw_cfg) {
224         fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
225     }
226 
227     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
228     found_cpu->cpu = OBJECT(dev);
229 out:
230     error_propagate(errp, local_err);
231 }
232 
233 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
234                                DeviceState *dev, Error **errp)
235 {
236     int idx = -1;
237     X86CPU *cpu = X86_CPU(dev);
238     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
239 
240     if (!x86ms->acpi_dev) {
241         error_setg(errp, "CPU hot unplug not supported without ACPI");
242         return;
243     }
244 
245     x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
246     assert(idx != -1);
247     if (idx == 0) {
248         error_setg(errp, "Boot CPU is unpluggable");
249         return;
250     }
251 
252     hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
253                                    errp);
254 }
255 
256 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
257                        DeviceState *dev, Error **errp)
258 {
259     CPUArchId *found_cpu;
260     Error *local_err = NULL;
261     X86CPU *cpu = X86_CPU(dev);
262     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
263 
264     hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
265     if (local_err) {
266         goto out;
267     }
268 
269     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
270     found_cpu->cpu = NULL;
271     qdev_unrealize(dev);
272 
273     /* decrement the number of CPUs */
274     x86ms->boot_cpus--;
275     /* Update the number of CPUs in CMOS */
276     x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
277     fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
278  out:
279     error_propagate(errp, local_err);
280 }
281 
282 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
283                       DeviceState *dev, Error **errp)
284 {
285     int idx;
286     CPUState *cs;
287     CPUArchId *cpu_slot;
288     X86CPUTopoIDs topo_ids;
289     X86CPU *cpu = X86_CPU(dev);
290     CPUX86State *env = &cpu->env;
291     MachineState *ms = MACHINE(hotplug_dev);
292     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
293     unsigned int smp_cores = ms->smp.cores;
294     unsigned int smp_threads = ms->smp.threads;
295     X86CPUTopoInfo topo_info;
296 
297     if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
298         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
299                    ms->cpu_type);
300         return;
301     }
302 
303     if (x86ms->acpi_dev) {
304         Error *local_err = NULL;
305 
306         hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
307                                  &local_err);
308         if (local_err) {
309             error_propagate(errp, local_err);
310             return;
311         }
312     }
313 
314     init_topo_info(&topo_info, x86ms);
315 
316     env->nr_dies = ms->smp.dies;
317 
318     /*
319      * If APIC ID is not set,
320      * set it based on socket/die/core/thread properties.
321      */
322     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
323         int max_socket = (ms->smp.max_cpus - 1) /
324                                 smp_threads / smp_cores / ms->smp.dies;
325 
326         /*
327          * die-id was optional in QEMU 4.0 and older, so keep it optional
328          * if there's only one die per socket.
329          */
330         if (cpu->die_id < 0 && ms->smp.dies == 1) {
331             cpu->die_id = 0;
332         }
333 
334         if (cpu->socket_id < 0) {
335             error_setg(errp, "CPU socket-id is not set");
336             return;
337         } else if (cpu->socket_id > max_socket) {
338             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
339                        cpu->socket_id, max_socket);
340             return;
341         }
342         if (cpu->die_id < 0) {
343             error_setg(errp, "CPU die-id is not set");
344             return;
345         } else if (cpu->die_id > ms->smp.dies - 1) {
346             error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
347                        cpu->die_id, ms->smp.dies - 1);
348             return;
349         }
350         if (cpu->core_id < 0) {
351             error_setg(errp, "CPU core-id is not set");
352             return;
353         } else if (cpu->core_id > (smp_cores - 1)) {
354             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
355                        cpu->core_id, smp_cores - 1);
356             return;
357         }
358         if (cpu->thread_id < 0) {
359             error_setg(errp, "CPU thread-id is not set");
360             return;
361         } else if (cpu->thread_id > (smp_threads - 1)) {
362             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
363                        cpu->thread_id, smp_threads - 1);
364             return;
365         }
366 
367         topo_ids.pkg_id = cpu->socket_id;
368         topo_ids.die_id = cpu->die_id;
369         topo_ids.core_id = cpu->core_id;
370         topo_ids.smt_id = cpu->thread_id;
371         cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
372     }
373 
374     cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
375     if (!cpu_slot) {
376         x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
377         error_setg(errp,
378             "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
379             " APIC ID %" PRIu32 ", valid index range 0:%d",
380             topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
381             cpu->apic_id, ms->possible_cpus->len - 1);
382         return;
383     }
384 
385     if (cpu_slot->cpu) {
386         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
387                    idx, cpu->apic_id);
388         return;
389     }
390 
391     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
392      * so that machine_query_hotpluggable_cpus would show correct values
393      */
394     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
395      * once -smp refactoring is complete and there will be CPU private
396      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
397     x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
398     if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
399         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
400             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
401             topo_ids.pkg_id);
402         return;
403     }
404     cpu->socket_id = topo_ids.pkg_id;
405 
406     if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
407         error_setg(errp, "property die-id: %u doesn't match set apic-id:"
408             " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
409         return;
410     }
411     cpu->die_id = topo_ids.die_id;
412 
413     if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
414         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
415             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
416             topo_ids.core_id);
417         return;
418     }
419     cpu->core_id = topo_ids.core_id;
420 
421     if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
422         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
423             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
424             topo_ids.smt_id);
425         return;
426     }
427     cpu->thread_id = topo_ids.smt_id;
428 
429     /*
430     * kvm_enabled() must go first to ensure that kvm_* references are
431     * not emitted for the linker to consume (kvm_enabled() is
432     * a literal `0` in configurations where kvm_* aren't defined)
433     */
434     if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
435         !kvm_hv_vpindex_settable()) {
436         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
437         return;
438     }
439 
440     cs = CPU(cpu);
441     cs->cpu_index = idx;
442 
443     numa_cpu_pre_plug(cpu_slot, dev, errp);
444 }
445 
446 CpuInstanceProperties
447 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
448 {
449     MachineClass *mc = MACHINE_GET_CLASS(ms);
450     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
451 
452     assert(cpu_index < possible_cpus->len);
453     return possible_cpus->cpus[cpu_index].props;
454 }
455 
456 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
457 {
458    X86CPUTopoIDs topo_ids;
459    X86MachineState *x86ms = X86_MACHINE(ms);
460    X86CPUTopoInfo topo_info;
461 
462    init_topo_info(&topo_info, x86ms);
463 
464    assert(idx < ms->possible_cpus->len);
465    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
466                             &topo_info, &topo_ids);
467    return topo_ids.pkg_id % ms->numa_state->num_nodes;
468 }
469 
470 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
471 {
472     X86MachineState *x86ms = X86_MACHINE(ms);
473     unsigned int max_cpus = ms->smp.max_cpus;
474     X86CPUTopoInfo topo_info;
475     int i;
476 
477     if (ms->possible_cpus) {
478         /*
479          * make sure that max_cpus hasn't changed since the first use, i.e.
480          * -smp hasn't been parsed after it
481          */
482         assert(ms->possible_cpus->len == max_cpus);
483         return ms->possible_cpus;
484     }
485 
486     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
487                                   sizeof(CPUArchId) * max_cpus);
488     ms->possible_cpus->len = max_cpus;
489 
490     init_topo_info(&topo_info, x86ms);
491 
492     for (i = 0; i < ms->possible_cpus->len; i++) {
493         X86CPUTopoIDs topo_ids;
494 
495         ms->possible_cpus->cpus[i].type = ms->cpu_type;
496         ms->possible_cpus->cpus[i].vcpus_count = 1;
497         ms->possible_cpus->cpus[i].arch_id =
498             x86_cpu_apic_id_from_index(x86ms, i);
499         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
500                                  &topo_info, &topo_ids);
501         ms->possible_cpus->cpus[i].props.has_socket_id = true;
502         ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
503         if (ms->smp.dies > 1) {
504             ms->possible_cpus->cpus[i].props.has_die_id = true;
505             ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
506         }
507         ms->possible_cpus->cpus[i].props.has_core_id = true;
508         ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
509         ms->possible_cpus->cpus[i].props.has_thread_id = true;
510         ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
511     }
512     return ms->possible_cpus;
513 }
514 
515 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
516 {
517     /* cpu index isn't used */
518     CPUState *cs;
519 
520     CPU_FOREACH(cs) {
521         X86CPU *cpu = X86_CPU(cs);
522 
523         if (cpu_is_apic_enabled(cpu->apic_state)) {
524             apic_deliver_nmi(cpu->apic_state);
525         } else {
526             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
527         }
528     }
529 }
530 
531 static long get_file_size(FILE *f)
532 {
533     long where, size;
534 
535     /* XXX: on Unix systems, using fstat() probably makes more sense */
536 
537     where = ftell(f);
538     fseek(f, 0, SEEK_END);
539     size = ftell(f);
540     fseek(f, where, SEEK_SET);
541 
542     return size;
543 }
544 
545 /* TSC handling */
546 uint64_t cpu_get_tsc(CPUX86State *env)
547 {
548     return cpus_get_elapsed_ticks();
549 }
550 
551 /* IRQ handling */
552 static void pic_irq_request(void *opaque, int irq, int level)
553 {
554     CPUState *cs = first_cpu;
555     X86CPU *cpu = X86_CPU(cs);
556 
557     trace_x86_pic_interrupt(irq, level);
558     if (cpu_is_apic_enabled(cpu->apic_state) && !kvm_irqchip_in_kernel() &&
559         !whpx_apic_in_platform()) {
560         CPU_FOREACH(cs) {
561             cpu = X86_CPU(cs);
562             if (apic_accept_pic_intr(cpu->apic_state)) {
563                 apic_deliver_pic_intr(cpu->apic_state, level);
564             }
565         }
566     } else {
567         if (level) {
568             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
569         } else {
570             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
571         }
572     }
573 }
574 
575 qemu_irq x86_allocate_cpu_irq(void)
576 {
577     return qemu_allocate_irq(pic_irq_request, NULL, 0);
578 }
579 
580 int cpu_get_pic_interrupt(CPUX86State *env)
581 {
582     X86CPU *cpu = env_archcpu(env);
583     int intno;
584 
585     if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
586         intno = apic_get_interrupt(cpu->apic_state);
587         if (intno >= 0) {
588             return intno;
589         }
590         /* read the irq from the PIC */
591         if (!apic_accept_pic_intr(cpu->apic_state)) {
592             return -1;
593         }
594     }
595 
596     intno = pic_read_irq(isa_pic);
597     return intno;
598 }
599 
600 DeviceState *cpu_get_current_apic(void)
601 {
602     if (current_cpu) {
603         X86CPU *cpu = X86_CPU(current_cpu);
604         return cpu->apic_state;
605     } else {
606         return NULL;
607     }
608 }
609 
610 void gsi_handler(void *opaque, int n, int level)
611 {
612     GSIState *s = opaque;
613 
614     trace_x86_gsi_interrupt(n, level);
615     switch (n) {
616     case 0 ... ISA_NUM_IRQS - 1:
617         if (s->i8259_irq[n]) {
618             /* Under KVM, Kernel will forward to both PIC and IOAPIC */
619             qemu_set_irq(s->i8259_irq[n], level);
620         }
621         /* fall through */
622     case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
623 #ifdef CONFIG_XEN_EMU
624         /*
625          * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC
626          * routing actually works properly under Xen). And then to
627          * *either* the PIRQ handling or the I/OAPIC depending on
628          * whether the former wants it.
629          */
630         if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) {
631             break;
632         }
633 #endif
634         qemu_set_irq(s->ioapic_irq[n], level);
635         break;
636     case IO_APIC_SECONDARY_IRQBASE
637         ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
638         qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
639         break;
640     }
641 }
642 
643 void ioapic_init_gsi(GSIState *gsi_state, Object *parent)
644 {
645     DeviceState *dev;
646     SysBusDevice *d;
647     unsigned int i;
648 
649     assert(parent);
650     if (kvm_ioapic_in_kernel()) {
651         dev = qdev_new(TYPE_KVM_IOAPIC);
652     } else {
653         dev = qdev_new(TYPE_IOAPIC);
654     }
655     object_property_add_child(parent, "ioapic", OBJECT(dev));
656     d = SYS_BUS_DEVICE(dev);
657     sysbus_realize_and_unref(d, &error_fatal);
658     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
659 
660     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
661         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
662     }
663 }
664 
665 DeviceState *ioapic_init_secondary(GSIState *gsi_state)
666 {
667     DeviceState *dev;
668     SysBusDevice *d;
669     unsigned int i;
670 
671     dev = qdev_new(TYPE_IOAPIC);
672     d = SYS_BUS_DEVICE(dev);
673     sysbus_realize_and_unref(d, &error_fatal);
674     sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
675 
676     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
677         gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
678     }
679     return dev;
680 }
681 
682 struct setup_data {
683     uint64_t next;
684     uint32_t type;
685     uint32_t len;
686     uint8_t data[];
687 } __attribute__((packed));
688 
689 
690 /*
691  * The entry point into the kernel for PVH boot is different from
692  * the native entry point.  The PVH entry is defined by the x86/HVM
693  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
694  *
695  * This function is passed to load_elf() when it is called from
696  * load_elfboot() which then additionally checks for an ELF Note of
697  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
698  * parse the PVH entry address from the ELF Note.
699  *
700  * Due to trickery in elf_opts.h, load_elf() is actually available as
701  * load_elf32() or load_elf64() and this routine needs to be able
702  * to deal with being called as 32 or 64 bit.
703  *
704  * The address of the PVH entry point is saved to the 'pvh_start_addr'
705  * global variable.  (although the entry point is 32-bit, the kernel
706  * binary can be either 32-bit or 64-bit).
707  */
708 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
709 {
710     size_t *elf_note_data_addr;
711 
712     /* Check if ELF Note header passed in is valid */
713     if (arg1 == NULL) {
714         return 0;
715     }
716 
717     if (is64) {
718         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
719         uint64_t nhdr_size64 = sizeof(struct elf64_note);
720         uint64_t phdr_align = *(uint64_t *)arg2;
721         uint64_t nhdr_namesz = nhdr64->n_namesz;
722 
723         elf_note_data_addr =
724             ((void *)nhdr64) + nhdr_size64 +
725             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
726 
727         pvh_start_addr = *elf_note_data_addr;
728     } else {
729         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
730         uint32_t nhdr_size32 = sizeof(struct elf32_note);
731         uint32_t phdr_align = *(uint32_t *)arg2;
732         uint32_t nhdr_namesz = nhdr32->n_namesz;
733 
734         elf_note_data_addr =
735             ((void *)nhdr32) + nhdr_size32 +
736             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
737 
738         pvh_start_addr = *(uint32_t *)elf_note_data_addr;
739     }
740 
741     return pvh_start_addr;
742 }
743 
744 static bool load_elfboot(const char *kernel_filename,
745                          int kernel_file_size,
746                          uint8_t *header,
747                          size_t pvh_xen_start_addr,
748                          FWCfgState *fw_cfg)
749 {
750     uint32_t flags = 0;
751     uint32_t mh_load_addr = 0;
752     uint32_t elf_kernel_size = 0;
753     uint64_t elf_entry;
754     uint64_t elf_low, elf_high;
755     int kernel_size;
756 
757     if (ldl_p(header) != 0x464c457f) {
758         return false; /* no elfboot */
759     }
760 
761     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
762     flags = elf_is64 ?
763         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
764 
765     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
766         error_report("elfboot unsupported flags = %x", flags);
767         exit(1);
768     }
769 
770     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
771     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
772                            NULL, &elf_note_type, &elf_entry,
773                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
774                            0, 0);
775 
776     if (kernel_size < 0) {
777         error_report("Error while loading elf kernel");
778         exit(1);
779     }
780     mh_load_addr = elf_low;
781     elf_kernel_size = elf_high - elf_low;
782 
783     if (pvh_start_addr == 0) {
784         error_report("Error loading uncompressed kernel without PVH ELF Note");
785         exit(1);
786     }
787     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
788     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
789     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
790 
791     return true;
792 }
793 
794 void x86_load_linux(X86MachineState *x86ms,
795                     FWCfgState *fw_cfg,
796                     int acpi_data_size,
797                     bool pvh_enabled)
798 {
799     bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
800     uint16_t protocol;
801     int setup_size, kernel_size, cmdline_size;
802     int dtb_size, setup_data_offset;
803     uint32_t initrd_max;
804     uint8_t header[8192], *setup, *kernel;
805     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
806     FILE *f;
807     char *vmode;
808     MachineState *machine = MACHINE(x86ms);
809     struct setup_data *setup_data;
810     const char *kernel_filename = machine->kernel_filename;
811     const char *initrd_filename = machine->initrd_filename;
812     const char *dtb_filename = machine->dtb;
813     const char *kernel_cmdline = machine->kernel_cmdline;
814     SevKernelLoaderContext sev_load_ctx = {};
815 
816     /* Align to 16 bytes as a paranoia measure */
817     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
818 
819     /* load the kernel header */
820     f = fopen(kernel_filename, "rb");
821     if (!f) {
822         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
823                 kernel_filename, strerror(errno));
824         exit(1);
825     }
826 
827     kernel_size = get_file_size(f);
828     if (!kernel_size ||
829         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
830         MIN(ARRAY_SIZE(header), kernel_size)) {
831         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
832                 kernel_filename, strerror(errno));
833         exit(1);
834     }
835 
836     /* kernel protocol version */
837     if (ldl_p(header + 0x202) == 0x53726448) {
838         protocol = lduw_p(header + 0x206);
839     } else {
840         /*
841          * This could be a multiboot kernel. If it is, let's stop treating it
842          * like a Linux kernel.
843          * Note: some multiboot images could be in the ELF format (the same of
844          * PVH), so we try multiboot first since we check the multiboot magic
845          * header before to load it.
846          */
847         if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
848                            kernel_cmdline, kernel_size, header)) {
849             return;
850         }
851         /*
852          * Check if the file is an uncompressed kernel file (ELF) and load it,
853          * saving the PVH entry point used by the x86/HVM direct boot ABI.
854          * If load_elfboot() is successful, populate the fw_cfg info.
855          */
856         if (pvh_enabled &&
857             load_elfboot(kernel_filename, kernel_size,
858                          header, pvh_start_addr, fw_cfg)) {
859             fclose(f);
860 
861             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
862                 strlen(kernel_cmdline) + 1);
863             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
864 
865             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
866             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
867                              header, sizeof(header));
868 
869             /* load initrd */
870             if (initrd_filename) {
871                 GMappedFile *mapped_file;
872                 gsize initrd_size;
873                 gchar *initrd_data;
874                 GError *gerr = NULL;
875 
876                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
877                 if (!mapped_file) {
878                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
879                             initrd_filename, gerr->message);
880                     exit(1);
881                 }
882                 x86ms->initrd_mapped_file = mapped_file;
883 
884                 initrd_data = g_mapped_file_get_contents(mapped_file);
885                 initrd_size = g_mapped_file_get_length(mapped_file);
886                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
887                 if (initrd_size >= initrd_max) {
888                     fprintf(stderr, "qemu: initrd is too large, cannot support."
889                             "(max: %"PRIu32", need %"PRId64")\n",
890                             initrd_max, (uint64_t)initrd_size);
891                     exit(1);
892                 }
893 
894                 initrd_addr = (initrd_max - initrd_size) & ~4095;
895 
896                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
897                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
898                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
899                                  initrd_size);
900             }
901 
902             option_rom[nb_option_roms].bootindex = 0;
903             option_rom[nb_option_roms].name = "pvh.bin";
904             nb_option_roms++;
905 
906             return;
907         }
908         protocol = 0;
909     }
910 
911     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
912         /* Low kernel */
913         real_addr    = 0x90000;
914         cmdline_addr = 0x9a000 - cmdline_size;
915         prot_addr    = 0x10000;
916     } else if (protocol < 0x202) {
917         /* High but ancient kernel */
918         real_addr    = 0x90000;
919         cmdline_addr = 0x9a000 - cmdline_size;
920         prot_addr    = 0x100000;
921     } else {
922         /* High and recent kernel */
923         real_addr    = 0x10000;
924         cmdline_addr = 0x20000;
925         prot_addr    = 0x100000;
926     }
927 
928     /* highest address for loading the initrd */
929     if (protocol >= 0x20c &&
930         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
931         /*
932          * Linux has supported initrd up to 4 GB for a very long time (2007,
933          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
934          * though it only sets initrd_max to 2 GB to "work around bootloader
935          * bugs". Luckily, QEMU firmware(which does something like bootloader)
936          * has supported this.
937          *
938          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
939          * be loaded into any address.
940          *
941          * In addition, initrd_max is uint32_t simply because QEMU doesn't
942          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
943          * field).
944          *
945          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
946          */
947         initrd_max = UINT32_MAX;
948     } else if (protocol >= 0x203) {
949         initrd_max = ldl_p(header + 0x22c);
950     } else {
951         initrd_max = 0x37ffffff;
952     }
953 
954     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
955         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
956     }
957 
958     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
959     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
960     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
961     sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
962     sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
963 
964     if (protocol >= 0x202) {
965         stl_p(header + 0x228, cmdline_addr);
966     } else {
967         stw_p(header + 0x20, 0xA33F);
968         stw_p(header + 0x22, cmdline_addr - real_addr);
969     }
970 
971     /* handle vga= parameter */
972     vmode = strstr(kernel_cmdline, "vga=");
973     if (vmode) {
974         unsigned int video_mode;
975         const char *end;
976         int ret;
977         /* skip "vga=" */
978         vmode += 4;
979         if (!strncmp(vmode, "normal", 6)) {
980             video_mode = 0xffff;
981         } else if (!strncmp(vmode, "ext", 3)) {
982             video_mode = 0xfffe;
983         } else if (!strncmp(vmode, "ask", 3)) {
984             video_mode = 0xfffd;
985         } else {
986             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
987             if (ret != 0 || (*end && *end != ' ')) {
988                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
989                 exit(1);
990             }
991         }
992         stw_p(header + 0x1fa, video_mode);
993     }
994 
995     /* loader type */
996     /*
997      * High nybble = B reserved for QEMU; low nybble is revision number.
998      * If this code is substantially changed, you may want to consider
999      * incrementing the revision.
1000      */
1001     if (protocol >= 0x200) {
1002         header[0x210] = 0xB0;
1003     }
1004     /* heap */
1005     if (protocol >= 0x201) {
1006         header[0x211] |= 0x80; /* CAN_USE_HEAP */
1007         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
1008     }
1009 
1010     /* load initrd */
1011     if (initrd_filename) {
1012         GMappedFile *mapped_file;
1013         gsize initrd_size;
1014         gchar *initrd_data;
1015         GError *gerr = NULL;
1016 
1017         if (protocol < 0x200) {
1018             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1019             exit(1);
1020         }
1021 
1022         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
1023         if (!mapped_file) {
1024             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1025                     initrd_filename, gerr->message);
1026             exit(1);
1027         }
1028         x86ms->initrd_mapped_file = mapped_file;
1029 
1030         initrd_data = g_mapped_file_get_contents(mapped_file);
1031         initrd_size = g_mapped_file_get_length(mapped_file);
1032         if (initrd_size >= initrd_max) {
1033             fprintf(stderr, "qemu: initrd is too large, cannot support."
1034                     "(max: %"PRIu32", need %"PRId64")\n",
1035                     initrd_max, (uint64_t)initrd_size);
1036             exit(1);
1037         }
1038 
1039         initrd_addr = (initrd_max - initrd_size) & ~4095;
1040 
1041         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1042         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1043         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1044         sev_load_ctx.initrd_data = initrd_data;
1045         sev_load_ctx.initrd_size = initrd_size;
1046 
1047         stl_p(header + 0x218, initrd_addr);
1048         stl_p(header + 0x21c, initrd_size);
1049     }
1050 
1051     /* load kernel and setup */
1052     setup_size = header[0x1f1];
1053     if (setup_size == 0) {
1054         setup_size = 4;
1055     }
1056     setup_size = (setup_size + 1) * 512;
1057     if (setup_size > kernel_size) {
1058         fprintf(stderr, "qemu: invalid kernel header\n");
1059         exit(1);
1060     }
1061     kernel_size -= setup_size;
1062 
1063     setup  = g_malloc(setup_size);
1064     kernel = g_malloc(kernel_size);
1065     fseek(f, 0, SEEK_SET);
1066     if (fread(setup, 1, setup_size, f) != setup_size) {
1067         fprintf(stderr, "fread() failed\n");
1068         exit(1);
1069     }
1070     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1071         fprintf(stderr, "fread() failed\n");
1072         exit(1);
1073     }
1074     fclose(f);
1075 
1076     /* append dtb to kernel */
1077     if (dtb_filename) {
1078         if (protocol < 0x209) {
1079             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1080             exit(1);
1081         }
1082 
1083         dtb_size = get_image_size(dtb_filename);
1084         if (dtb_size <= 0) {
1085             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1086                     dtb_filename, strerror(errno));
1087             exit(1);
1088         }
1089 
1090         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1091         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1092         kernel = g_realloc(kernel, kernel_size);
1093 
1094         stq_p(header + 0x250, prot_addr + setup_data_offset);
1095 
1096         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1097         setup_data->next = 0;
1098         setup_data->type = cpu_to_le32(SETUP_DTB);
1099         setup_data->len = cpu_to_le32(dtb_size);
1100 
1101         load_image_size(dtb_filename, setup_data->data, dtb_size);
1102     }
1103 
1104     /*
1105      * If we're starting an encrypted VM, it will be OVMF based, which uses the
1106      * efi stub for booting and doesn't require any values to be placed in the
1107      * kernel header.  We therefore don't update the header so the hash of the
1108      * kernel on the other side of the fw_cfg interface matches the hash of the
1109      * file the user passed in.
1110      */
1111     if (!sev_enabled()) {
1112         memcpy(setup, header, MIN(sizeof(header), setup_size));
1113     }
1114 
1115     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1116     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1117     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1118     sev_load_ctx.kernel_data = (char *)kernel;
1119     sev_load_ctx.kernel_size = kernel_size;
1120 
1121     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1122     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1123     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1124     sev_load_ctx.setup_data = (char *)setup;
1125     sev_load_ctx.setup_size = setup_size;
1126 
1127     if (sev_enabled()) {
1128         sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
1129     }
1130 
1131     option_rom[nb_option_roms].bootindex = 0;
1132     option_rom[nb_option_roms].name = "linuxboot.bin";
1133     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1134         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1135     }
1136     nb_option_roms++;
1137 }
1138 
1139 void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
1140                        MemoryRegion *rom_memory, bool isapc_ram_fw)
1141 {
1142     const char *bios_name;
1143     char *filename;
1144     MemoryRegion *bios, *isa_bios;
1145     int bios_size, isa_bios_size;
1146     ssize_t ret;
1147 
1148     /* BIOS load */
1149     bios_name = ms->firmware ?: default_firmware;
1150     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1151     if (filename) {
1152         bios_size = get_image_size(filename);
1153     } else {
1154         bios_size = -1;
1155     }
1156     if (bios_size <= 0 ||
1157         (bios_size % 65536) != 0) {
1158         goto bios_error;
1159     }
1160     bios = g_malloc(sizeof(*bios));
1161     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1162     if (sev_enabled()) {
1163         /*
1164          * The concept of a "reset" simply doesn't exist for
1165          * confidential computing guests, we have to destroy and
1166          * re-launch them instead.  So there is no need to register
1167          * the firmware as rom to properly re-initialize on reset.
1168          * Just go for a straight file load instead.
1169          */
1170         void *ptr = memory_region_get_ram_ptr(bios);
1171         load_image_size(filename, ptr, bios_size);
1172         x86_firmware_configure(ptr, bios_size);
1173     } else {
1174         if (!isapc_ram_fw) {
1175             memory_region_set_readonly(bios, true);
1176         }
1177         ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1178         if (ret != 0) {
1179             goto bios_error;
1180         }
1181     }
1182     g_free(filename);
1183 
1184     /* map the last 128KB of the BIOS in ISA space */
1185     isa_bios_size = MIN(bios_size, 128 * KiB);
1186     isa_bios = g_malloc(sizeof(*isa_bios));
1187     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1188                              bios_size - isa_bios_size, isa_bios_size);
1189     memory_region_add_subregion_overlap(rom_memory,
1190                                         0x100000 - isa_bios_size,
1191                                         isa_bios,
1192                                         1);
1193     if (!isapc_ram_fw) {
1194         memory_region_set_readonly(isa_bios, true);
1195     }
1196 
1197     /* map all the bios at the top of memory */
1198     memory_region_add_subregion(rom_memory,
1199                                 (uint32_t)(-bios_size),
1200                                 bios);
1201     return;
1202 
1203 bios_error:
1204     fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1205     exit(1);
1206 }
1207 
1208 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1209 {
1210     bool smm_available = false;
1211 
1212     if (x86ms->smm == ON_OFF_AUTO_OFF) {
1213         return false;
1214     }
1215 
1216     if (tcg_enabled() || qtest_enabled()) {
1217         smm_available = true;
1218     } else if (kvm_enabled()) {
1219         smm_available = kvm_has_smm();
1220     }
1221 
1222     if (smm_available) {
1223         return true;
1224     }
1225 
1226     if (x86ms->smm == ON_OFF_AUTO_ON) {
1227         error_report("System Management Mode not supported by this hypervisor.");
1228         exit(1);
1229     }
1230     return false;
1231 }
1232 
1233 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1234                                void *opaque, Error **errp)
1235 {
1236     X86MachineState *x86ms = X86_MACHINE(obj);
1237     OnOffAuto smm = x86ms->smm;
1238 
1239     visit_type_OnOffAuto(v, name, &smm, errp);
1240 }
1241 
1242 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1243                                void *opaque, Error **errp)
1244 {
1245     X86MachineState *x86ms = X86_MACHINE(obj);
1246 
1247     visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1248 }
1249 
1250 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1251 {
1252     if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1253         return false;
1254     }
1255     return true;
1256 }
1257 
1258 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1259                                  void *opaque, Error **errp)
1260 {
1261     X86MachineState *x86ms = X86_MACHINE(obj);
1262     OnOffAuto acpi = x86ms->acpi;
1263 
1264     visit_type_OnOffAuto(v, name, &acpi, errp);
1265 }
1266 
1267 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1268                                  void *opaque, Error **errp)
1269 {
1270     X86MachineState *x86ms = X86_MACHINE(obj);
1271 
1272     visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1273 }
1274 
1275 static void x86_machine_get_pit(Object *obj, Visitor *v, const char *name,
1276                                     void *opaque, Error **errp)
1277 {
1278     X86MachineState *x86ms = X86_MACHINE(obj);
1279     OnOffAuto pit = x86ms->pit;
1280 
1281     visit_type_OnOffAuto(v, name, &pit, errp);
1282 }
1283 
1284 static void x86_machine_set_pit(Object *obj, Visitor *v, const char *name,
1285                                     void *opaque, Error **errp)
1286 {
1287     X86MachineState *x86ms = X86_MACHINE(obj);;
1288 
1289     visit_type_OnOffAuto(v, name, &x86ms->pit, errp);
1290 }
1291 
1292 static void x86_machine_get_pic(Object *obj, Visitor *v, const char *name,
1293                                 void *opaque, Error **errp)
1294 {
1295     X86MachineState *x86ms = X86_MACHINE(obj);
1296     OnOffAuto pic = x86ms->pic;
1297 
1298     visit_type_OnOffAuto(v, name, &pic, errp);
1299 }
1300 
1301 static void x86_machine_set_pic(Object *obj, Visitor *v, const char *name,
1302                                 void *opaque, Error **errp)
1303 {
1304     X86MachineState *x86ms = X86_MACHINE(obj);
1305 
1306     visit_type_OnOffAuto(v, name, &x86ms->pic, errp);
1307 }
1308 
1309 static char *x86_machine_get_oem_id(Object *obj, Error **errp)
1310 {
1311     X86MachineState *x86ms = X86_MACHINE(obj);
1312 
1313     return g_strdup(x86ms->oem_id);
1314 }
1315 
1316 static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp)
1317 {
1318     X86MachineState *x86ms = X86_MACHINE(obj);
1319     size_t len = strlen(value);
1320 
1321     if (len > 6) {
1322         error_setg(errp,
1323                    "User specified "X86_MACHINE_OEM_ID" value is bigger than "
1324                    "6 bytes in size");
1325         return;
1326     }
1327 
1328     strncpy(x86ms->oem_id, value, 6);
1329 }
1330 
1331 static char *x86_machine_get_oem_table_id(Object *obj, Error **errp)
1332 {
1333     X86MachineState *x86ms = X86_MACHINE(obj);
1334 
1335     return g_strdup(x86ms->oem_table_id);
1336 }
1337 
1338 static void x86_machine_set_oem_table_id(Object *obj, const char *value,
1339                                          Error **errp)
1340 {
1341     X86MachineState *x86ms = X86_MACHINE(obj);
1342     size_t len = strlen(value);
1343 
1344     if (len > 8) {
1345         error_setg(errp,
1346                    "User specified "X86_MACHINE_OEM_TABLE_ID
1347                    " value is bigger than "
1348                    "8 bytes in size");
1349         return;
1350     }
1351     strncpy(x86ms->oem_table_id, value, 8);
1352 }
1353 
1354 static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v,
1355                                 const char *name, void *opaque, Error **errp)
1356 {
1357     X86MachineState *x86ms = X86_MACHINE(obj);
1358     uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit;
1359 
1360     visit_type_uint64(v, name, &bus_lock_ratelimit, errp);
1361 }
1362 
1363 static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v,
1364                                const char *name, void *opaque, Error **errp)
1365 {
1366     X86MachineState *x86ms = X86_MACHINE(obj);
1367 
1368     visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp);
1369 }
1370 
1371 static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name,
1372                                 void *opaque, Error **errp)
1373 {
1374     X86MachineState *x86ms = X86_MACHINE(obj);
1375     SgxEPCList *list = x86ms->sgx_epc_list;
1376 
1377     visit_type_SgxEPCList(v, name, &list, errp);
1378 }
1379 
1380 static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name,
1381                                 void *opaque, Error **errp)
1382 {
1383     X86MachineState *x86ms = X86_MACHINE(obj);
1384     SgxEPCList *list;
1385 
1386     list = x86ms->sgx_epc_list;
1387     visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp);
1388 
1389     qapi_free_SgxEPCList(list);
1390 }
1391 
1392 static void x86_machine_initfn(Object *obj)
1393 {
1394     X86MachineState *x86ms = X86_MACHINE(obj);
1395 
1396     x86ms->smm = ON_OFF_AUTO_AUTO;
1397     x86ms->acpi = ON_OFF_AUTO_AUTO;
1398     x86ms->pit = ON_OFF_AUTO_AUTO;
1399     x86ms->pic = ON_OFF_AUTO_AUTO;
1400     x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
1401     x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
1402     x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
1403     x86ms->bus_lock_ratelimit = 0;
1404     x86ms->above_4g_mem_start = 4 * GiB;
1405 }
1406 
1407 static void x86_machine_class_init(ObjectClass *oc, void *data)
1408 {
1409     MachineClass *mc = MACHINE_CLASS(oc);
1410     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1411     NMIClass *nc = NMI_CLASS(oc);
1412 
1413     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1414     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1415     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1416     x86mc->save_tsc_khz = true;
1417     x86mc->fwcfg_dma_enabled = true;
1418     nc->nmi_monitor_handler = x86_nmi;
1419 
1420     object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1421         x86_machine_get_smm, x86_machine_set_smm,
1422         NULL, NULL);
1423     object_class_property_set_description(oc, X86_MACHINE_SMM,
1424         "Enable SMM");
1425 
1426     object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1427         x86_machine_get_acpi, x86_machine_set_acpi,
1428         NULL, NULL);
1429     object_class_property_set_description(oc, X86_MACHINE_ACPI,
1430         "Enable ACPI");
1431 
1432     object_class_property_add(oc, X86_MACHINE_PIT, "OnOffAuto",
1433                               x86_machine_get_pit,
1434                               x86_machine_set_pit,
1435                               NULL, NULL);
1436     object_class_property_set_description(oc, X86_MACHINE_PIT,
1437         "Enable i8254 PIT");
1438 
1439     object_class_property_add(oc, X86_MACHINE_PIC, "OnOffAuto",
1440                               x86_machine_get_pic,
1441                               x86_machine_set_pic,
1442                               NULL, NULL);
1443     object_class_property_set_description(oc, X86_MACHINE_PIC,
1444         "Enable i8259 PIC");
1445 
1446     object_class_property_add_str(oc, X86_MACHINE_OEM_ID,
1447                                   x86_machine_get_oem_id,
1448                                   x86_machine_set_oem_id);
1449     object_class_property_set_description(oc, X86_MACHINE_OEM_ID,
1450                                           "Override the default value of field OEMID "
1451                                           "in ACPI table header."
1452                                           "The string may be up to 6 bytes in size");
1453 
1454 
1455     object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID,
1456                                   x86_machine_get_oem_table_id,
1457                                   x86_machine_set_oem_table_id);
1458     object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID,
1459                                           "Override the default value of field OEM Table ID "
1460                                           "in ACPI table header."
1461                                           "The string may be up to 8 bytes in size");
1462 
1463     object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t",
1464                                 x86_machine_get_bus_lock_ratelimit,
1465                                 x86_machine_set_bus_lock_ratelimit, NULL, NULL);
1466     object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT,
1467             "Set the ratelimit for the bus locks acquired in VMs");
1468 
1469     object_class_property_add(oc, "sgx-epc", "SgxEPC",
1470         machine_get_sgx_epc, machine_set_sgx_epc,
1471         NULL, NULL);
1472     object_class_property_set_description(oc, "sgx-epc",
1473         "SGX EPC device");
1474 }
1475 
1476 static const TypeInfo x86_machine_info = {
1477     .name = TYPE_X86_MACHINE,
1478     .parent = TYPE_MACHINE,
1479     .abstract = true,
1480     .instance_size = sizeof(X86MachineState),
1481     .instance_init = x86_machine_initfn,
1482     .class_size = sizeof(X86MachineClass),
1483     .class_init = x86_machine_class_init,
1484     .interfaces = (InterfaceInfo[]) {
1485          { TYPE_NMI },
1486          { }
1487     },
1488 };
1489 
1490 static void x86_machine_register_types(void)
1491 {
1492     type_register_static(&x86_machine_info);
1493 }
1494 
1495 type_init(x86_machine_register_types)
1496