xref: /openbmc/qemu/hw/i386/x86.c (revision 8cb30e3aec07cb85fe424191e37cf983a2ac5416)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
37 #include "trace.h"
38 
39 #include "hw/i386/x86.h"
40 #include "target/i386/cpu.h"
41 #include "hw/i386/topology.h"
42 #include "hw/i386/fw_cfg.h"
43 #include "hw/intc/i8259.h"
44 
45 #include "hw/acpi/cpu_hotplug.h"
46 #include "hw/irq.h"
47 #include "hw/nmi.h"
48 #include "hw/loader.h"
49 #include "multiboot.h"
50 #include "elf.h"
51 #include "standard-headers/asm-x86/bootparam.h"
52 #include "config-devices.h"
53 #include "kvm_i386.h"
54 
55 #define BIOS_FILENAME "bios.bin"
56 
57 /* Physical Address of PVH entry point read from kernel ELF NOTE */
58 static size_t pvh_start_addr;
59 
60 inline void init_topo_info(X86CPUTopoInfo *topo_info,
61                            const X86MachineState *x86ms)
62 {
63     MachineState *ms = MACHINE(x86ms);
64 
65     topo_info->dies_per_pkg = x86ms->smp_dies;
66     topo_info->cores_per_die = ms->smp.cores;
67     topo_info->threads_per_core = ms->smp.threads;
68 }
69 
70 /*
71  * Calculates initial APIC ID for a specific CPU index
72  *
73  * Currently we need to be able to calculate the APIC ID from the CPU index
74  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
75  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
76  * all CPUs up to max_cpus.
77  */
78 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
79                                     unsigned int cpu_index)
80 {
81     X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
82     X86CPUTopoInfo topo_info;
83     uint32_t correct_id;
84     static bool warned;
85 
86     init_topo_info(&topo_info, x86ms);
87 
88     correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index);
89     if (x86mc->compat_apic_id_mode) {
90         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
91             error_report("APIC IDs set in compatibility mode, "
92                          "CPU topology won't match the configuration");
93             warned = true;
94         }
95         return cpu_index;
96     } else {
97         return correct_id;
98     }
99 }
100 
101 
102 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
103 {
104     Object *cpu = NULL;
105     Error *local_err = NULL;
106     CPUX86State *env = NULL;
107 
108     cpu = object_new(MACHINE(x86ms)->cpu_type);
109 
110     env = &X86_CPU(cpu)->env;
111     env->nr_dies = x86ms->smp_dies;
112 
113     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
114     object_property_set_bool(cpu, true, "realized", &local_err);
115 
116     object_unref(cpu);
117     error_propagate(errp, local_err);
118 }
119 
120 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
121 {
122     int i;
123     const CPUArchIdList *possible_cpus;
124     MachineState *ms = MACHINE(x86ms);
125     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
126 
127     x86_cpu_set_default_version(default_cpu_version);
128 
129     /*
130      * Calculates the limit to CPU APIC ID values
131      *
132      * Limit for the APIC ID value, so that all
133      * CPU APIC IDs are < x86ms->apic_id_limit.
134      *
135      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
136      */
137     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
138                                                       ms->smp.max_cpus - 1) + 1;
139     possible_cpus = mc->possible_cpu_arch_ids(ms);
140     for (i = 0; i < ms->smp.cpus; i++) {
141         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
142     }
143 }
144 
145 CpuInstanceProperties
146 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
147 {
148     MachineClass *mc = MACHINE_GET_CLASS(ms);
149     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
150 
151     assert(cpu_index < possible_cpus->len);
152     return possible_cpus->cpus[cpu_index].props;
153 }
154 
155 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
156 {
157    X86CPUTopoIDs topo_ids;
158    X86MachineState *x86ms = X86_MACHINE(ms);
159    X86CPUTopoInfo topo_info;
160 
161    init_topo_info(&topo_info, x86ms);
162 
163    assert(idx < ms->possible_cpus->len);
164    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
165                             &topo_info, &topo_ids);
166    return topo_ids.pkg_id % ms->numa_state->num_nodes;
167 }
168 
169 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
170 {
171     X86MachineState *x86ms = X86_MACHINE(ms);
172     unsigned int max_cpus = ms->smp.max_cpus;
173     X86CPUTopoInfo topo_info;
174     int i;
175 
176     if (ms->possible_cpus) {
177         /*
178          * make sure that max_cpus hasn't changed since the first use, i.e.
179          * -smp hasn't been parsed after it
180          */
181         assert(ms->possible_cpus->len == max_cpus);
182         return ms->possible_cpus;
183     }
184 
185     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
186                                   sizeof(CPUArchId) * max_cpus);
187     ms->possible_cpus->len = max_cpus;
188 
189     init_topo_info(&topo_info, x86ms);
190 
191     for (i = 0; i < ms->possible_cpus->len; i++) {
192         X86CPUTopoIDs topo_ids;
193 
194         ms->possible_cpus->cpus[i].type = ms->cpu_type;
195         ms->possible_cpus->cpus[i].vcpus_count = 1;
196         ms->possible_cpus->cpus[i].arch_id =
197             x86_cpu_apic_id_from_index(x86ms, i);
198         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
199                                  &topo_info, &topo_ids);
200         ms->possible_cpus->cpus[i].props.has_socket_id = true;
201         ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
202         if (x86ms->smp_dies > 1) {
203             ms->possible_cpus->cpus[i].props.has_die_id = true;
204             ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
205         }
206         ms->possible_cpus->cpus[i].props.has_core_id = true;
207         ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
208         ms->possible_cpus->cpus[i].props.has_thread_id = true;
209         ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
210     }
211     return ms->possible_cpus;
212 }
213 
214 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
215 {
216     /* cpu index isn't used */
217     CPUState *cs;
218 
219     CPU_FOREACH(cs) {
220         X86CPU *cpu = X86_CPU(cs);
221 
222         if (!cpu->apic_state) {
223             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
224         } else {
225             apic_deliver_nmi(cpu->apic_state);
226         }
227     }
228 }
229 
230 static long get_file_size(FILE *f)
231 {
232     long where, size;
233 
234     /* XXX: on Unix systems, using fstat() probably makes more sense */
235 
236     where = ftell(f);
237     fseek(f, 0, SEEK_END);
238     size = ftell(f);
239     fseek(f, where, SEEK_SET);
240 
241     return size;
242 }
243 
244 /* TSC handling */
245 uint64_t cpu_get_tsc(CPUX86State *env)
246 {
247     return cpu_get_ticks();
248 }
249 
250 /* IRQ handling */
251 static void pic_irq_request(void *opaque, int irq, int level)
252 {
253     CPUState *cs = first_cpu;
254     X86CPU *cpu = X86_CPU(cs);
255 
256     trace_x86_pic_interrupt(irq, level);
257     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
258         CPU_FOREACH(cs) {
259             cpu = X86_CPU(cs);
260             if (apic_accept_pic_intr(cpu->apic_state)) {
261                 apic_deliver_pic_intr(cpu->apic_state, level);
262             }
263         }
264     } else {
265         if (level) {
266             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
267         } else {
268             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
269         }
270     }
271 }
272 
273 qemu_irq x86_allocate_cpu_irq(void)
274 {
275     return qemu_allocate_irq(pic_irq_request, NULL, 0);
276 }
277 
278 int cpu_get_pic_interrupt(CPUX86State *env)
279 {
280     X86CPU *cpu = env_archcpu(env);
281     int intno;
282 
283     if (!kvm_irqchip_in_kernel()) {
284         intno = apic_get_interrupt(cpu->apic_state);
285         if (intno >= 0) {
286             return intno;
287         }
288         /* read the irq from the PIC */
289         if (!apic_accept_pic_intr(cpu->apic_state)) {
290             return -1;
291         }
292     }
293 
294     intno = pic_read_irq(isa_pic);
295     return intno;
296 }
297 
298 DeviceState *cpu_get_current_apic(void)
299 {
300     if (current_cpu) {
301         X86CPU *cpu = X86_CPU(current_cpu);
302         return cpu->apic_state;
303     } else {
304         return NULL;
305     }
306 }
307 
308 void gsi_handler(void *opaque, int n, int level)
309 {
310     GSIState *s = opaque;
311 
312     trace_x86_gsi_interrupt(n, level);
313     if (n < ISA_NUM_IRQS) {
314         /* Under KVM, Kernel will forward to both PIC and IOAPIC */
315         qemu_set_irq(s->i8259_irq[n], level);
316     }
317     qemu_set_irq(s->ioapic_irq[n], level);
318 }
319 
320 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
321 {
322     DeviceState *dev;
323     SysBusDevice *d;
324     unsigned int i;
325 
326     assert(parent_name);
327     if (kvm_ioapic_in_kernel()) {
328         dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
329     } else {
330         dev = qdev_create(NULL, TYPE_IOAPIC);
331     }
332     object_property_add_child(object_resolve_path(parent_name, NULL),
333                               "ioapic", OBJECT(dev), NULL);
334     qdev_init_nofail(dev);
335     d = SYS_BUS_DEVICE(dev);
336     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
337 
338     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
339         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
340     }
341 }
342 
343 struct setup_data {
344     uint64_t next;
345     uint32_t type;
346     uint32_t len;
347     uint8_t data[];
348 } __attribute__((packed));
349 
350 
351 /*
352  * The entry point into the kernel for PVH boot is different from
353  * the native entry point.  The PVH entry is defined by the x86/HVM
354  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
355  *
356  * This function is passed to load_elf() when it is called from
357  * load_elfboot() which then additionally checks for an ELF Note of
358  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
359  * parse the PVH entry address from the ELF Note.
360  *
361  * Due to trickery in elf_opts.h, load_elf() is actually available as
362  * load_elf32() or load_elf64() and this routine needs to be able
363  * to deal with being called as 32 or 64 bit.
364  *
365  * The address of the PVH entry point is saved to the 'pvh_start_addr'
366  * global variable.  (although the entry point is 32-bit, the kernel
367  * binary can be either 32-bit or 64-bit).
368  */
369 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
370 {
371     size_t *elf_note_data_addr;
372 
373     /* Check if ELF Note header passed in is valid */
374     if (arg1 == NULL) {
375         return 0;
376     }
377 
378     if (is64) {
379         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
380         uint64_t nhdr_size64 = sizeof(struct elf64_note);
381         uint64_t phdr_align = *(uint64_t *)arg2;
382         uint64_t nhdr_namesz = nhdr64->n_namesz;
383 
384         elf_note_data_addr =
385             ((void *)nhdr64) + nhdr_size64 +
386             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
387     } else {
388         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
389         uint32_t nhdr_size32 = sizeof(struct elf32_note);
390         uint32_t phdr_align = *(uint32_t *)arg2;
391         uint32_t nhdr_namesz = nhdr32->n_namesz;
392 
393         elf_note_data_addr =
394             ((void *)nhdr32) + nhdr_size32 +
395             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
396     }
397 
398     pvh_start_addr = *elf_note_data_addr;
399 
400     return pvh_start_addr;
401 }
402 
403 static bool load_elfboot(const char *kernel_filename,
404                          int kernel_file_size,
405                          uint8_t *header,
406                          size_t pvh_xen_start_addr,
407                          FWCfgState *fw_cfg)
408 {
409     uint32_t flags = 0;
410     uint32_t mh_load_addr = 0;
411     uint32_t elf_kernel_size = 0;
412     uint64_t elf_entry;
413     uint64_t elf_low, elf_high;
414     int kernel_size;
415 
416     if (ldl_p(header) != 0x464c457f) {
417         return false; /* no elfboot */
418     }
419 
420     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
421     flags = elf_is64 ?
422         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
423 
424     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
425         error_report("elfboot unsupported flags = %x", flags);
426         exit(1);
427     }
428 
429     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
430     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
431                            NULL, &elf_note_type, &elf_entry,
432                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
433                            0, 0);
434 
435     if (kernel_size < 0) {
436         error_report("Error while loading elf kernel");
437         exit(1);
438     }
439     mh_load_addr = elf_low;
440     elf_kernel_size = elf_high - elf_low;
441 
442     if (pvh_start_addr == 0) {
443         error_report("Error loading uncompressed kernel without PVH ELF Note");
444         exit(1);
445     }
446     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
447     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
448     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
449 
450     return true;
451 }
452 
453 void x86_load_linux(X86MachineState *x86ms,
454                     FWCfgState *fw_cfg,
455                     int acpi_data_size,
456                     bool pvh_enabled,
457                     bool linuxboot_dma_enabled)
458 {
459     uint16_t protocol;
460     int setup_size, kernel_size, cmdline_size;
461     int dtb_size, setup_data_offset;
462     uint32_t initrd_max;
463     uint8_t header[8192], *setup, *kernel;
464     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
465     FILE *f;
466     char *vmode;
467     MachineState *machine = MACHINE(x86ms);
468     struct setup_data *setup_data;
469     const char *kernel_filename = machine->kernel_filename;
470     const char *initrd_filename = machine->initrd_filename;
471     const char *dtb_filename = machine->dtb;
472     const char *kernel_cmdline = machine->kernel_cmdline;
473 
474     /* Align to 16 bytes as a paranoia measure */
475     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
476 
477     /* load the kernel header */
478     f = fopen(kernel_filename, "rb");
479     if (!f) {
480         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
481                 kernel_filename, strerror(errno));
482         exit(1);
483     }
484 
485     kernel_size = get_file_size(f);
486     if (!kernel_size ||
487         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
488         MIN(ARRAY_SIZE(header), kernel_size)) {
489         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
490                 kernel_filename, strerror(errno));
491         exit(1);
492     }
493 
494     /* kernel protocol version */
495     if (ldl_p(header + 0x202) == 0x53726448) {
496         protocol = lduw_p(header + 0x206);
497     } else {
498         /*
499          * This could be a multiboot kernel. If it is, let's stop treating it
500          * like a Linux kernel.
501          * Note: some multiboot images could be in the ELF format (the same of
502          * PVH), so we try multiboot first since we check the multiboot magic
503          * header before to load it.
504          */
505         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
506                            kernel_cmdline, kernel_size, header)) {
507             return;
508         }
509         /*
510          * Check if the file is an uncompressed kernel file (ELF) and load it,
511          * saving the PVH entry point used by the x86/HVM direct boot ABI.
512          * If load_elfboot() is successful, populate the fw_cfg info.
513          */
514         if (pvh_enabled &&
515             load_elfboot(kernel_filename, kernel_size,
516                          header, pvh_start_addr, fw_cfg)) {
517             fclose(f);
518 
519             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
520                 strlen(kernel_cmdline) + 1);
521             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
522 
523             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
524             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
525                              header, sizeof(header));
526 
527             /* load initrd */
528             if (initrd_filename) {
529                 GMappedFile *mapped_file;
530                 gsize initrd_size;
531                 gchar *initrd_data;
532                 GError *gerr = NULL;
533 
534                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
535                 if (!mapped_file) {
536                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
537                             initrd_filename, gerr->message);
538                     exit(1);
539                 }
540                 x86ms->initrd_mapped_file = mapped_file;
541 
542                 initrd_data = g_mapped_file_get_contents(mapped_file);
543                 initrd_size = g_mapped_file_get_length(mapped_file);
544                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
545                 if (initrd_size >= initrd_max) {
546                     fprintf(stderr, "qemu: initrd is too large, cannot support."
547                             "(max: %"PRIu32", need %"PRId64")\n",
548                             initrd_max, (uint64_t)initrd_size);
549                     exit(1);
550                 }
551 
552                 initrd_addr = (initrd_max - initrd_size) & ~4095;
553 
554                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
555                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
556                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
557                                  initrd_size);
558             }
559 
560             option_rom[nb_option_roms].bootindex = 0;
561             option_rom[nb_option_roms].name = "pvh.bin";
562             nb_option_roms++;
563 
564             return;
565         }
566         protocol = 0;
567     }
568 
569     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
570         /* Low kernel */
571         real_addr    = 0x90000;
572         cmdline_addr = 0x9a000 - cmdline_size;
573         prot_addr    = 0x10000;
574     } else if (protocol < 0x202) {
575         /* High but ancient kernel */
576         real_addr    = 0x90000;
577         cmdline_addr = 0x9a000 - cmdline_size;
578         prot_addr    = 0x100000;
579     } else {
580         /* High and recent kernel */
581         real_addr    = 0x10000;
582         cmdline_addr = 0x20000;
583         prot_addr    = 0x100000;
584     }
585 
586     /* highest address for loading the initrd */
587     if (protocol >= 0x20c &&
588         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
589         /*
590          * Linux has supported initrd up to 4 GB for a very long time (2007,
591          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
592          * though it only sets initrd_max to 2 GB to "work around bootloader
593          * bugs". Luckily, QEMU firmware(which does something like bootloader)
594          * has supported this.
595          *
596          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
597          * be loaded into any address.
598          *
599          * In addition, initrd_max is uint32_t simply because QEMU doesn't
600          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
601          * field).
602          *
603          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
604          */
605         initrd_max = UINT32_MAX;
606     } else if (protocol >= 0x203) {
607         initrd_max = ldl_p(header + 0x22c);
608     } else {
609         initrd_max = 0x37ffffff;
610     }
611 
612     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
613         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
614     }
615 
616     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
617     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
618     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
619 
620     if (protocol >= 0x202) {
621         stl_p(header + 0x228, cmdline_addr);
622     } else {
623         stw_p(header + 0x20, 0xA33F);
624         stw_p(header + 0x22, cmdline_addr - real_addr);
625     }
626 
627     /* handle vga= parameter */
628     vmode = strstr(kernel_cmdline, "vga=");
629     if (vmode) {
630         unsigned int video_mode;
631         const char *end;
632         int ret;
633         /* skip "vga=" */
634         vmode += 4;
635         if (!strncmp(vmode, "normal", 6)) {
636             video_mode = 0xffff;
637         } else if (!strncmp(vmode, "ext", 3)) {
638             video_mode = 0xfffe;
639         } else if (!strncmp(vmode, "ask", 3)) {
640             video_mode = 0xfffd;
641         } else {
642             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
643             if (ret != 0 || (*end && *end != ' ')) {
644                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
645                 exit(1);
646             }
647         }
648         stw_p(header + 0x1fa, video_mode);
649     }
650 
651     /* loader type */
652     /*
653      * High nybble = B reserved for QEMU; low nybble is revision number.
654      * If this code is substantially changed, you may want to consider
655      * incrementing the revision.
656      */
657     if (protocol >= 0x200) {
658         header[0x210] = 0xB0;
659     }
660     /* heap */
661     if (protocol >= 0x201) {
662         header[0x211] |= 0x80; /* CAN_USE_HEAP */
663         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
664     }
665 
666     /* load initrd */
667     if (initrd_filename) {
668         GMappedFile *mapped_file;
669         gsize initrd_size;
670         gchar *initrd_data;
671         GError *gerr = NULL;
672 
673         if (protocol < 0x200) {
674             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
675             exit(1);
676         }
677 
678         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
679         if (!mapped_file) {
680             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
681                     initrd_filename, gerr->message);
682             exit(1);
683         }
684         x86ms->initrd_mapped_file = mapped_file;
685 
686         initrd_data = g_mapped_file_get_contents(mapped_file);
687         initrd_size = g_mapped_file_get_length(mapped_file);
688         if (initrd_size >= initrd_max) {
689             fprintf(stderr, "qemu: initrd is too large, cannot support."
690                     "(max: %"PRIu32", need %"PRId64")\n",
691                     initrd_max, (uint64_t)initrd_size);
692             exit(1);
693         }
694 
695         initrd_addr = (initrd_max - initrd_size) & ~4095;
696 
697         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
698         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
699         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
700 
701         stl_p(header + 0x218, initrd_addr);
702         stl_p(header + 0x21c, initrd_size);
703     }
704 
705     /* load kernel and setup */
706     setup_size = header[0x1f1];
707     if (setup_size == 0) {
708         setup_size = 4;
709     }
710     setup_size = (setup_size + 1) * 512;
711     if (setup_size > kernel_size) {
712         fprintf(stderr, "qemu: invalid kernel header\n");
713         exit(1);
714     }
715     kernel_size -= setup_size;
716 
717     setup  = g_malloc(setup_size);
718     kernel = g_malloc(kernel_size);
719     fseek(f, 0, SEEK_SET);
720     if (fread(setup, 1, setup_size, f) != setup_size) {
721         fprintf(stderr, "fread() failed\n");
722         exit(1);
723     }
724     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
725         fprintf(stderr, "fread() failed\n");
726         exit(1);
727     }
728     fclose(f);
729 
730     /* append dtb to kernel */
731     if (dtb_filename) {
732         if (protocol < 0x209) {
733             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
734             exit(1);
735         }
736 
737         dtb_size = get_image_size(dtb_filename);
738         if (dtb_size <= 0) {
739             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
740                     dtb_filename, strerror(errno));
741             exit(1);
742         }
743 
744         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
745         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
746         kernel = g_realloc(kernel, kernel_size);
747 
748         stq_p(header + 0x250, prot_addr + setup_data_offset);
749 
750         setup_data = (struct setup_data *)(kernel + setup_data_offset);
751         setup_data->next = 0;
752         setup_data->type = cpu_to_le32(SETUP_DTB);
753         setup_data->len = cpu_to_le32(dtb_size);
754 
755         load_image_size(dtb_filename, setup_data->data, dtb_size);
756     }
757 
758     memcpy(setup, header, MIN(sizeof(header), setup_size));
759 
760     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
761     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
762     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
763 
764     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
765     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
766     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
767 
768     option_rom[nb_option_roms].bootindex = 0;
769     option_rom[nb_option_roms].name = "linuxboot.bin";
770     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
771         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
772     }
773     nb_option_roms++;
774 }
775 
776 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
777 {
778     char *filename;
779     MemoryRegion *bios, *isa_bios;
780     int bios_size, isa_bios_size;
781     int ret;
782 
783     /* BIOS load */
784     if (bios_name == NULL) {
785         bios_name = BIOS_FILENAME;
786     }
787     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
788     if (filename) {
789         bios_size = get_image_size(filename);
790     } else {
791         bios_size = -1;
792     }
793     if (bios_size <= 0 ||
794         (bios_size % 65536) != 0) {
795         goto bios_error;
796     }
797     bios = g_malloc(sizeof(*bios));
798     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
799     if (!isapc_ram_fw) {
800         memory_region_set_readonly(bios, true);
801     }
802     ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
803     if (ret != 0) {
804     bios_error:
805         fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
806         exit(1);
807     }
808     g_free(filename);
809 
810     /* map the last 128KB of the BIOS in ISA space */
811     isa_bios_size = MIN(bios_size, 128 * KiB);
812     isa_bios = g_malloc(sizeof(*isa_bios));
813     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
814                              bios_size - isa_bios_size, isa_bios_size);
815     memory_region_add_subregion_overlap(rom_memory,
816                                         0x100000 - isa_bios_size,
817                                         isa_bios,
818                                         1);
819     if (!isapc_ram_fw) {
820         memory_region_set_readonly(isa_bios, true);
821     }
822 
823     /* map all the bios at the top of memory */
824     memory_region_add_subregion(rom_memory,
825                                 (uint32_t)(-bios_size),
826                                 bios);
827 }
828 
829 static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
830                                              const char *name, void *opaque,
831                                              Error **errp)
832 {
833     X86MachineState *x86ms = X86_MACHINE(obj);
834     uint64_t value = x86ms->max_ram_below_4g;
835 
836     visit_type_size(v, name, &value, errp);
837 }
838 
839 static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
840                                              const char *name, void *opaque,
841                                              Error **errp)
842 {
843     X86MachineState *x86ms = X86_MACHINE(obj);
844     Error *error = NULL;
845     uint64_t value;
846 
847     visit_type_size(v, name, &value, &error);
848     if (error) {
849         error_propagate(errp, error);
850         return;
851     }
852     if (value > 4 * GiB) {
853         error_setg(&error,
854                    "Machine option 'max-ram-below-4g=%"PRIu64
855                    "' expects size less than or equal to 4G", value);
856         error_propagate(errp, error);
857         return;
858     }
859 
860     if (value < 1 * MiB) {
861         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
862                     "BIOS may not work with less than 1MiB", value);
863     }
864 
865     x86ms->max_ram_below_4g = value;
866 }
867 
868 bool x86_machine_is_smm_enabled(X86MachineState *x86ms)
869 {
870     bool smm_available = false;
871 
872     if (x86ms->smm == ON_OFF_AUTO_OFF) {
873         return false;
874     }
875 
876     if (tcg_enabled() || qtest_enabled()) {
877         smm_available = true;
878     } else if (kvm_enabled()) {
879         smm_available = kvm_has_smm();
880     }
881 
882     if (smm_available) {
883         return true;
884     }
885 
886     if (x86ms->smm == ON_OFF_AUTO_ON) {
887         error_report("System Management Mode not supported by this hypervisor.");
888         exit(1);
889     }
890     return false;
891 }
892 
893 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
894                                void *opaque, Error **errp)
895 {
896     X86MachineState *x86ms = X86_MACHINE(obj);
897     OnOffAuto smm = x86ms->smm;
898 
899     visit_type_OnOffAuto(v, name, &smm, errp);
900 }
901 
902 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
903                                void *opaque, Error **errp)
904 {
905     X86MachineState *x86ms = X86_MACHINE(obj);
906 
907     visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
908 }
909 
910 static void x86_machine_initfn(Object *obj)
911 {
912     X86MachineState *x86ms = X86_MACHINE(obj);
913 
914     x86ms->smm = ON_OFF_AUTO_AUTO;
915     x86ms->max_ram_below_4g = 0; /* use default */
916     x86ms->smp_dies = 1;
917 }
918 
919 static void x86_machine_class_init(ObjectClass *oc, void *data)
920 {
921     MachineClass *mc = MACHINE_CLASS(oc);
922     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
923     NMIClass *nc = NMI_CLASS(oc);
924 
925     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
926     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
927     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
928     x86mc->compat_apic_id_mode = false;
929     x86mc->save_tsc_khz = true;
930     nc->nmi_monitor_handler = x86_nmi;
931 
932     object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size",
933         x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g,
934         NULL, NULL, &error_abort);
935     object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G,
936         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
937 
938     object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
939         x86_machine_get_smm, x86_machine_set_smm,
940         NULL, NULL, &error_abort);
941     object_class_property_set_description(oc, X86_MACHINE_SMM,
942         "Enable SMM", &error_abort);
943 }
944 
945 static const TypeInfo x86_machine_info = {
946     .name = TYPE_X86_MACHINE,
947     .parent = TYPE_MACHINE,
948     .abstract = true,
949     .instance_size = sizeof(X86MachineState),
950     .instance_init = x86_machine_initfn,
951     .class_size = sizeof(X86MachineClass),
952     .class_init = x86_machine_class_init,
953     .interfaces = (InterfaceInfo[]) {
954          { TYPE_NMI },
955          { }
956     },
957 };
958 
959 static void x86_machine_register_types(void)
960 {
961     type_register_static(&x86_machine_info);
962 }
963 
964 type_init(x86_machine_register_types)
965