1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/option.h" 26 #include "qemu/cutils.h" 27 #include "qemu/units.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/qmp/qerror.h" 31 #include "qapi/qapi-visit-common.h" 32 #include "qapi/visitor.h" 33 #include "sysemu/qtest.h" 34 #include "sysemu/numa.h" 35 #include "sysemu/replay.h" 36 #include "sysemu/sysemu.h" 37 38 #include "hw/i386/x86.h" 39 #include "target/i386/cpu.h" 40 #include "hw/i386/topology.h" 41 #include "hw/i386/fw_cfg.h" 42 #include "hw/intc/i8259.h" 43 44 #include "hw/acpi/cpu_hotplug.h" 45 #include "hw/nmi.h" 46 #include "hw/loader.h" 47 #include "multiboot.h" 48 #include "elf.h" 49 #include "standard-headers/asm-x86/bootparam.h" 50 51 #define BIOS_FILENAME "bios.bin" 52 53 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 54 static size_t pvh_start_addr; 55 56 /* 57 * Calculates initial APIC ID for a specific CPU index 58 * 59 * Currently we need to be able to calculate the APIC ID from the CPU index 60 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 61 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 62 * all CPUs up to max_cpus. 63 */ 64 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, 65 unsigned int cpu_index) 66 { 67 MachineState *ms = MACHINE(x86ms); 68 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms); 69 uint32_t correct_id; 70 static bool warned; 71 72 correct_id = x86_apicid_from_cpu_idx(x86ms->smp_dies, ms->smp.cores, 73 ms->smp.threads, cpu_index); 74 if (x86mc->compat_apic_id_mode) { 75 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 76 error_report("APIC IDs set in compatibility mode, " 77 "CPU topology won't match the configuration"); 78 warned = true; 79 } 80 return cpu_index; 81 } else { 82 return correct_id; 83 } 84 } 85 86 87 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 88 { 89 Object *cpu = NULL; 90 Error *local_err = NULL; 91 CPUX86State *env = NULL; 92 93 cpu = object_new(MACHINE(x86ms)->cpu_type); 94 95 env = &X86_CPU(cpu)->env; 96 env->nr_dies = x86ms->smp_dies; 97 98 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 99 object_property_set_bool(cpu, true, "realized", &local_err); 100 101 object_unref(cpu); 102 error_propagate(errp, local_err); 103 } 104 105 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 106 { 107 int i; 108 const CPUArchIdList *possible_cpus; 109 MachineState *ms = MACHINE(x86ms); 110 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 111 112 x86_cpu_set_default_version(default_cpu_version); 113 114 /* 115 * Calculates the limit to CPU APIC ID values 116 * 117 * Limit for the APIC ID value, so that all 118 * CPU APIC IDs are < x86ms->apic_id_limit. 119 * 120 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 121 */ 122 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 123 ms->smp.max_cpus - 1) + 1; 124 possible_cpus = mc->possible_cpu_arch_ids(ms); 125 for (i = 0; i < ms->smp.cpus; i++) { 126 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 127 } 128 } 129 130 CpuInstanceProperties 131 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 132 { 133 MachineClass *mc = MACHINE_GET_CLASS(ms); 134 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 135 136 assert(cpu_index < possible_cpus->len); 137 return possible_cpus->cpus[cpu_index].props; 138 } 139 140 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) 141 { 142 X86CPUTopoInfo topo; 143 X86MachineState *x86ms = X86_MACHINE(ms); 144 145 assert(idx < ms->possible_cpus->len); 146 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 147 x86ms->smp_dies, ms->smp.cores, 148 ms->smp.threads, &topo); 149 return topo.pkg_id % ms->numa_state->num_nodes; 150 } 151 152 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) 153 { 154 X86MachineState *x86ms = X86_MACHINE(ms); 155 int i; 156 unsigned int max_cpus = ms->smp.max_cpus; 157 158 if (ms->possible_cpus) { 159 /* 160 * make sure that max_cpus hasn't changed since the first use, i.e. 161 * -smp hasn't been parsed after it 162 */ 163 assert(ms->possible_cpus->len == max_cpus); 164 return ms->possible_cpus; 165 } 166 167 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 168 sizeof(CPUArchId) * max_cpus); 169 ms->possible_cpus->len = max_cpus; 170 for (i = 0; i < ms->possible_cpus->len; i++) { 171 X86CPUTopoInfo topo; 172 173 ms->possible_cpus->cpus[i].type = ms->cpu_type; 174 ms->possible_cpus->cpus[i].vcpus_count = 1; 175 ms->possible_cpus->cpus[i].arch_id = 176 x86_cpu_apic_id_from_index(x86ms, i); 177 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 178 x86ms->smp_dies, ms->smp.cores, 179 ms->smp.threads, &topo); 180 ms->possible_cpus->cpus[i].props.has_socket_id = true; 181 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 182 if (x86ms->smp_dies > 1) { 183 ms->possible_cpus->cpus[i].props.has_die_id = true; 184 ms->possible_cpus->cpus[i].props.die_id = topo.die_id; 185 } 186 ms->possible_cpus->cpus[i].props.has_core_id = true; 187 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 188 ms->possible_cpus->cpus[i].props.has_thread_id = true; 189 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 190 } 191 return ms->possible_cpus; 192 } 193 194 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 195 { 196 /* cpu index isn't used */ 197 CPUState *cs; 198 199 CPU_FOREACH(cs) { 200 X86CPU *cpu = X86_CPU(cs); 201 202 if (!cpu->apic_state) { 203 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 204 } else { 205 apic_deliver_nmi(cpu->apic_state); 206 } 207 } 208 } 209 210 static long get_file_size(FILE *f) 211 { 212 long where, size; 213 214 /* XXX: on Unix systems, using fstat() probably makes more sense */ 215 216 where = ftell(f); 217 fseek(f, 0, SEEK_END); 218 size = ftell(f); 219 fseek(f, where, SEEK_SET); 220 221 return size; 222 } 223 224 struct setup_data { 225 uint64_t next; 226 uint32_t type; 227 uint32_t len; 228 uint8_t data[0]; 229 } __attribute__((packed)); 230 231 232 /* 233 * The entry point into the kernel for PVH boot is different from 234 * the native entry point. The PVH entry is defined by the x86/HVM 235 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 236 * 237 * This function is passed to load_elf() when it is called from 238 * load_elfboot() which then additionally checks for an ELF Note of 239 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 240 * parse the PVH entry address from the ELF Note. 241 * 242 * Due to trickery in elf_opts.h, load_elf() is actually available as 243 * load_elf32() or load_elf64() and this routine needs to be able 244 * to deal with being called as 32 or 64 bit. 245 * 246 * The address of the PVH entry point is saved to the 'pvh_start_addr' 247 * global variable. (although the entry point is 32-bit, the kernel 248 * binary can be either 32-bit or 64-bit). 249 */ 250 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 251 { 252 size_t *elf_note_data_addr; 253 254 /* Check if ELF Note header passed in is valid */ 255 if (arg1 == NULL) { 256 return 0; 257 } 258 259 if (is64) { 260 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 261 uint64_t nhdr_size64 = sizeof(struct elf64_note); 262 uint64_t phdr_align = *(uint64_t *)arg2; 263 uint64_t nhdr_namesz = nhdr64->n_namesz; 264 265 elf_note_data_addr = 266 ((void *)nhdr64) + nhdr_size64 + 267 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 268 } else { 269 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 270 uint32_t nhdr_size32 = sizeof(struct elf32_note); 271 uint32_t phdr_align = *(uint32_t *)arg2; 272 uint32_t nhdr_namesz = nhdr32->n_namesz; 273 274 elf_note_data_addr = 275 ((void *)nhdr32) + nhdr_size32 + 276 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 277 } 278 279 pvh_start_addr = *elf_note_data_addr; 280 281 return pvh_start_addr; 282 } 283 284 static bool load_elfboot(const char *kernel_filename, 285 int kernel_file_size, 286 uint8_t *header, 287 size_t pvh_xen_start_addr, 288 FWCfgState *fw_cfg) 289 { 290 uint32_t flags = 0; 291 uint32_t mh_load_addr = 0; 292 uint32_t elf_kernel_size = 0; 293 uint64_t elf_entry; 294 uint64_t elf_low, elf_high; 295 int kernel_size; 296 297 if (ldl_p(header) != 0x464c457f) { 298 return false; /* no elfboot */ 299 } 300 301 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 302 flags = elf_is64 ? 303 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 304 305 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 306 error_report("elfboot unsupported flags = %x", flags); 307 exit(1); 308 } 309 310 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 311 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 312 NULL, &elf_note_type, &elf_entry, 313 &elf_low, &elf_high, 0, I386_ELF_MACHINE, 314 0, 0); 315 316 if (kernel_size < 0) { 317 error_report("Error while loading elf kernel"); 318 exit(1); 319 } 320 mh_load_addr = elf_low; 321 elf_kernel_size = elf_high - elf_low; 322 323 if (pvh_start_addr == 0) { 324 error_report("Error loading uncompressed kernel without PVH ELF Note"); 325 exit(1); 326 } 327 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 328 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 329 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 330 331 return true; 332 } 333 334 void x86_load_linux(X86MachineState *x86ms, 335 FWCfgState *fw_cfg, 336 int acpi_data_size, 337 bool pvh_enabled, 338 bool linuxboot_dma_enabled) 339 { 340 uint16_t protocol; 341 int setup_size, kernel_size, cmdline_size; 342 int dtb_size, setup_data_offset; 343 uint32_t initrd_max; 344 uint8_t header[8192], *setup, *kernel; 345 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 346 FILE *f; 347 char *vmode; 348 MachineState *machine = MACHINE(x86ms); 349 struct setup_data *setup_data; 350 const char *kernel_filename = machine->kernel_filename; 351 const char *initrd_filename = machine->initrd_filename; 352 const char *dtb_filename = machine->dtb; 353 const char *kernel_cmdline = machine->kernel_cmdline; 354 355 /* Align to 16 bytes as a paranoia measure */ 356 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 357 358 /* load the kernel header */ 359 f = fopen(kernel_filename, "rb"); 360 if (!f) { 361 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 362 kernel_filename, strerror(errno)); 363 exit(1); 364 } 365 366 kernel_size = get_file_size(f); 367 if (!kernel_size || 368 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 369 MIN(ARRAY_SIZE(header), kernel_size)) { 370 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 371 kernel_filename, strerror(errno)); 372 exit(1); 373 } 374 375 /* kernel protocol version */ 376 if (ldl_p(header + 0x202) == 0x53726448) { 377 protocol = lduw_p(header + 0x206); 378 } else { 379 /* 380 * This could be a multiboot kernel. If it is, let's stop treating it 381 * like a Linux kernel. 382 * Note: some multiboot images could be in the ELF format (the same of 383 * PVH), so we try multiboot first since we check the multiboot magic 384 * header before to load it. 385 */ 386 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 387 kernel_cmdline, kernel_size, header)) { 388 return; 389 } 390 /* 391 * Check if the file is an uncompressed kernel file (ELF) and load it, 392 * saving the PVH entry point used by the x86/HVM direct boot ABI. 393 * If load_elfboot() is successful, populate the fw_cfg info. 394 */ 395 if (pvh_enabled && 396 load_elfboot(kernel_filename, kernel_size, 397 header, pvh_start_addr, fw_cfg)) { 398 fclose(f); 399 400 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 401 strlen(kernel_cmdline) + 1); 402 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 403 404 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 405 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 406 header, sizeof(header)); 407 408 /* load initrd */ 409 if (initrd_filename) { 410 GMappedFile *mapped_file; 411 gsize initrd_size; 412 gchar *initrd_data; 413 GError *gerr = NULL; 414 415 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 416 if (!mapped_file) { 417 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 418 initrd_filename, gerr->message); 419 exit(1); 420 } 421 x86ms->initrd_mapped_file = mapped_file; 422 423 initrd_data = g_mapped_file_get_contents(mapped_file); 424 initrd_size = g_mapped_file_get_length(mapped_file); 425 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 426 if (initrd_size >= initrd_max) { 427 fprintf(stderr, "qemu: initrd is too large, cannot support." 428 "(max: %"PRIu32", need %"PRId64")\n", 429 initrd_max, (uint64_t)initrd_size); 430 exit(1); 431 } 432 433 initrd_addr = (initrd_max - initrd_size) & ~4095; 434 435 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 436 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 437 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 438 initrd_size); 439 } 440 441 option_rom[nb_option_roms].bootindex = 0; 442 option_rom[nb_option_roms].name = "pvh.bin"; 443 nb_option_roms++; 444 445 return; 446 } 447 protocol = 0; 448 } 449 450 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 451 /* Low kernel */ 452 real_addr = 0x90000; 453 cmdline_addr = 0x9a000 - cmdline_size; 454 prot_addr = 0x10000; 455 } else if (protocol < 0x202) { 456 /* High but ancient kernel */ 457 real_addr = 0x90000; 458 cmdline_addr = 0x9a000 - cmdline_size; 459 prot_addr = 0x100000; 460 } else { 461 /* High and recent kernel */ 462 real_addr = 0x10000; 463 cmdline_addr = 0x20000; 464 prot_addr = 0x100000; 465 } 466 467 /* highest address for loading the initrd */ 468 if (protocol >= 0x20c && 469 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 470 /* 471 * Linux has supported initrd up to 4 GB for a very long time (2007, 472 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 473 * though it only sets initrd_max to 2 GB to "work around bootloader 474 * bugs". Luckily, QEMU firmware(which does something like bootloader) 475 * has supported this. 476 * 477 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 478 * be loaded into any address. 479 * 480 * In addition, initrd_max is uint32_t simply because QEMU doesn't 481 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 482 * field). 483 * 484 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 485 */ 486 initrd_max = UINT32_MAX; 487 } else if (protocol >= 0x203) { 488 initrd_max = ldl_p(header + 0x22c); 489 } else { 490 initrd_max = 0x37ffffff; 491 } 492 493 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 494 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 495 } 496 497 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 498 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 499 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 500 501 if (protocol >= 0x202) { 502 stl_p(header + 0x228, cmdline_addr); 503 } else { 504 stw_p(header + 0x20, 0xA33F); 505 stw_p(header + 0x22, cmdline_addr - real_addr); 506 } 507 508 /* handle vga= parameter */ 509 vmode = strstr(kernel_cmdline, "vga="); 510 if (vmode) { 511 unsigned int video_mode; 512 int ret; 513 /* skip "vga=" */ 514 vmode += 4; 515 if (!strncmp(vmode, "normal", 6)) { 516 video_mode = 0xffff; 517 } else if (!strncmp(vmode, "ext", 3)) { 518 video_mode = 0xfffe; 519 } else if (!strncmp(vmode, "ask", 3)) { 520 video_mode = 0xfffd; 521 } else { 522 ret = qemu_strtoui(vmode, NULL, 0, &video_mode); 523 if (ret != 0) { 524 fprintf(stderr, "qemu: can't parse 'vga' parameter: %s\n", 525 strerror(-ret)); 526 exit(1); 527 } 528 } 529 stw_p(header + 0x1fa, video_mode); 530 } 531 532 /* loader type */ 533 /* 534 * High nybble = B reserved for QEMU; low nybble is revision number. 535 * If this code is substantially changed, you may want to consider 536 * incrementing the revision. 537 */ 538 if (protocol >= 0x200) { 539 header[0x210] = 0xB0; 540 } 541 /* heap */ 542 if (protocol >= 0x201) { 543 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 544 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 545 } 546 547 /* load initrd */ 548 if (initrd_filename) { 549 GMappedFile *mapped_file; 550 gsize initrd_size; 551 gchar *initrd_data; 552 GError *gerr = NULL; 553 554 if (protocol < 0x200) { 555 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 556 exit(1); 557 } 558 559 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 560 if (!mapped_file) { 561 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 562 initrd_filename, gerr->message); 563 exit(1); 564 } 565 x86ms->initrd_mapped_file = mapped_file; 566 567 initrd_data = g_mapped_file_get_contents(mapped_file); 568 initrd_size = g_mapped_file_get_length(mapped_file); 569 if (initrd_size >= initrd_max) { 570 fprintf(stderr, "qemu: initrd is too large, cannot support." 571 "(max: %"PRIu32", need %"PRId64")\n", 572 initrd_max, (uint64_t)initrd_size); 573 exit(1); 574 } 575 576 initrd_addr = (initrd_max - initrd_size) & ~4095; 577 578 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 579 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 580 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 581 582 stl_p(header + 0x218, initrd_addr); 583 stl_p(header + 0x21c, initrd_size); 584 } 585 586 /* load kernel and setup */ 587 setup_size = header[0x1f1]; 588 if (setup_size == 0) { 589 setup_size = 4; 590 } 591 setup_size = (setup_size + 1) * 512; 592 if (setup_size > kernel_size) { 593 fprintf(stderr, "qemu: invalid kernel header\n"); 594 exit(1); 595 } 596 kernel_size -= setup_size; 597 598 setup = g_malloc(setup_size); 599 kernel = g_malloc(kernel_size); 600 fseek(f, 0, SEEK_SET); 601 if (fread(setup, 1, setup_size, f) != setup_size) { 602 fprintf(stderr, "fread() failed\n"); 603 exit(1); 604 } 605 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 606 fprintf(stderr, "fread() failed\n"); 607 exit(1); 608 } 609 fclose(f); 610 611 /* append dtb to kernel */ 612 if (dtb_filename) { 613 if (protocol < 0x209) { 614 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 615 exit(1); 616 } 617 618 dtb_size = get_image_size(dtb_filename); 619 if (dtb_size <= 0) { 620 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 621 dtb_filename, strerror(errno)); 622 exit(1); 623 } 624 625 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 626 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 627 kernel = g_realloc(kernel, kernel_size); 628 629 stq_p(header + 0x250, prot_addr + setup_data_offset); 630 631 setup_data = (struct setup_data *)(kernel + setup_data_offset); 632 setup_data->next = 0; 633 setup_data->type = cpu_to_le32(SETUP_DTB); 634 setup_data->len = cpu_to_le32(dtb_size); 635 636 load_image_size(dtb_filename, setup_data->data, dtb_size); 637 } 638 639 memcpy(setup, header, MIN(sizeof(header), setup_size)); 640 641 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 642 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 643 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 644 645 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 646 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 647 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 648 649 option_rom[nb_option_roms].bootindex = 0; 650 option_rom[nb_option_roms].name = "linuxboot.bin"; 651 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 652 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 653 } 654 nb_option_roms++; 655 } 656 657 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw) 658 { 659 char *filename; 660 MemoryRegion *bios, *isa_bios; 661 int bios_size, isa_bios_size; 662 int ret; 663 664 /* BIOS load */ 665 if (bios_name == NULL) { 666 bios_name = BIOS_FILENAME; 667 } 668 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 669 if (filename) { 670 bios_size = get_image_size(filename); 671 } else { 672 bios_size = -1; 673 } 674 if (bios_size <= 0 || 675 (bios_size % 65536) != 0) { 676 goto bios_error; 677 } 678 bios = g_malloc(sizeof(*bios)); 679 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); 680 if (!isapc_ram_fw) { 681 memory_region_set_readonly(bios, true); 682 } 683 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 684 if (ret != 0) { 685 bios_error: 686 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 687 exit(1); 688 } 689 g_free(filename); 690 691 /* map the last 128KB of the BIOS in ISA space */ 692 isa_bios_size = MIN(bios_size, 128 * KiB); 693 isa_bios = g_malloc(sizeof(*isa_bios)); 694 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 695 bios_size - isa_bios_size, isa_bios_size); 696 memory_region_add_subregion_overlap(rom_memory, 697 0x100000 - isa_bios_size, 698 isa_bios, 699 1); 700 if (!isapc_ram_fw) { 701 memory_region_set_readonly(isa_bios, true); 702 } 703 704 /* map all the bios at the top of memory */ 705 memory_region_add_subregion(rom_memory, 706 (uint32_t)(-bios_size), 707 bios); 708 } 709 710 static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 711 const char *name, void *opaque, 712 Error **errp) 713 { 714 X86MachineState *x86ms = X86_MACHINE(obj); 715 uint64_t value = x86ms->max_ram_below_4g; 716 717 visit_type_size(v, name, &value, errp); 718 } 719 720 static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 721 const char *name, void *opaque, 722 Error **errp) 723 { 724 X86MachineState *x86ms = X86_MACHINE(obj); 725 Error *error = NULL; 726 uint64_t value; 727 728 visit_type_size(v, name, &value, &error); 729 if (error) { 730 error_propagate(errp, error); 731 return; 732 } 733 if (value > 4 * GiB) { 734 error_setg(&error, 735 "Machine option 'max-ram-below-4g=%"PRIu64 736 "' expects size less than or equal to 4G", value); 737 error_propagate(errp, error); 738 return; 739 } 740 741 if (value < 1 * MiB) { 742 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 743 "BIOS may not work with less than 1MiB", value); 744 } 745 746 x86ms->max_ram_below_4g = value; 747 } 748 749 static void x86_machine_initfn(Object *obj) 750 { 751 X86MachineState *x86ms = X86_MACHINE(obj); 752 753 x86ms->max_ram_below_4g = 0; /* use default */ 754 x86ms->smp_dies = 1; 755 } 756 757 static void x86_machine_class_init(ObjectClass *oc, void *data) 758 { 759 MachineClass *mc = MACHINE_CLASS(oc); 760 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); 761 NMIClass *nc = NMI_CLASS(oc); 762 763 mc->cpu_index_to_instance_props = x86_cpu_index_to_props; 764 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; 765 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; 766 x86mc->compat_apic_id_mode = false; 767 x86mc->save_tsc_khz = true; 768 nc->nmi_monitor_handler = x86_nmi; 769 770 object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size", 771 x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g, 772 NULL, NULL, &error_abort); 773 774 object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G, 775 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 776 } 777 778 static const TypeInfo x86_machine_info = { 779 .name = TYPE_X86_MACHINE, 780 .parent = TYPE_MACHINE, 781 .abstract = true, 782 .instance_size = sizeof(X86MachineState), 783 .instance_init = x86_machine_initfn, 784 .class_size = sizeof(X86MachineClass), 785 .class_init = x86_machine_class_init, 786 .interfaces = (InterfaceInfo[]) { 787 { TYPE_NMI }, 788 { } 789 }, 790 }; 791 792 static void x86_machine_register_types(void) 793 { 794 type_register_static(&x86_machine_info); 795 } 796 797 type_init(x86_machine_register_types) 798