1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/option.h" 26 #include "qemu/cutils.h" 27 #include "qemu/units.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/qmp/qerror.h" 31 #include "qapi/qapi-visit-common.h" 32 #include "qapi/visitor.h" 33 #include "sysemu/qtest.h" 34 #include "sysemu/numa.h" 35 #include "sysemu/replay.h" 36 #include "sysemu/sysemu.h" 37 #include "trace.h" 38 39 #include "hw/i386/x86.h" 40 #include "target/i386/cpu.h" 41 #include "hw/i386/topology.h" 42 #include "hw/i386/fw_cfg.h" 43 #include "hw/intc/i8259.h" 44 45 #include "hw/acpi/cpu_hotplug.h" 46 #include "hw/irq.h" 47 #include "hw/nmi.h" 48 #include "hw/loader.h" 49 #include "multiboot.h" 50 #include "elf.h" 51 #include "standard-headers/asm-x86/bootparam.h" 52 #include "config-devices.h" 53 #include "kvm_i386.h" 54 55 #define BIOS_FILENAME "bios.bin" 56 57 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 58 static size_t pvh_start_addr; 59 60 inline void init_topo_info(X86CPUTopoInfo *topo_info, 61 const X86MachineState *x86ms) 62 { 63 MachineState *ms = MACHINE(x86ms); 64 65 topo_info->nodes_per_pkg = ms->numa_state->num_nodes / ms->smp.sockets; 66 topo_info->dies_per_pkg = x86ms->smp_dies; 67 topo_info->cores_per_die = ms->smp.cores; 68 topo_info->threads_per_core = ms->smp.threads; 69 } 70 71 /* 72 * Set up with the new EPYC topology handlers 73 * 74 * AMD uses different apic id encoding for EPYC based cpus. Override 75 * the default topo handlers with EPYC encoding handlers. 76 */ 77 static void x86_set_epyc_topo_handlers(MachineState *machine) 78 { 79 X86MachineState *x86ms = X86_MACHINE(machine); 80 81 x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx_epyc; 82 x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid_epyc; 83 x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids_epyc; 84 x86ms->apicid_pkg_offset = apicid_pkg_offset_epyc; 85 } 86 87 /* 88 * Calculates initial APIC ID for a specific CPU index 89 * 90 * Currently we need to be able to calculate the APIC ID from the CPU index 91 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 92 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 93 * all CPUs up to max_cpus. 94 */ 95 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, 96 unsigned int cpu_index) 97 { 98 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms); 99 X86CPUTopoInfo topo_info; 100 uint32_t correct_id; 101 static bool warned; 102 103 init_topo_info(&topo_info, x86ms); 104 105 correct_id = x86ms->apicid_from_cpu_idx(&topo_info, cpu_index); 106 if (x86mc->compat_apic_id_mode) { 107 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 108 error_report("APIC IDs set in compatibility mode, " 109 "CPU topology won't match the configuration"); 110 warned = true; 111 } 112 return cpu_index; 113 } else { 114 return correct_id; 115 } 116 } 117 118 119 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 120 { 121 Error *local_err = NULL; 122 Object *cpu = object_new(MACHINE(x86ms)->cpu_type); 123 124 if (!object_property_set_uint(cpu, "apic-id", apic_id, &local_err)) { 125 goto out; 126 } 127 qdev_realize(DEVICE(cpu), NULL, &local_err); 128 129 out: 130 object_unref(cpu); 131 error_propagate(errp, local_err); 132 } 133 134 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 135 { 136 int i; 137 const CPUArchIdList *possible_cpus; 138 MachineState *ms = MACHINE(x86ms); 139 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 140 141 /* Check for apicid encoding */ 142 if (cpu_x86_use_epyc_apic_id_encoding(ms->cpu_type)) { 143 x86_set_epyc_topo_handlers(ms); 144 } 145 146 x86_cpu_set_default_version(default_cpu_version); 147 148 /* 149 * Calculates the limit to CPU APIC ID values 150 * 151 * Limit for the APIC ID value, so that all 152 * CPU APIC IDs are < x86ms->apic_id_limit. 153 * 154 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 155 */ 156 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 157 ms->smp.max_cpus - 1) + 1; 158 possible_cpus = mc->possible_cpu_arch_ids(ms); 159 160 for (i = 0; i < ms->possible_cpus->len; i++) { 161 ms->possible_cpus->cpus[i].arch_id = 162 x86_cpu_apic_id_from_index(x86ms, i); 163 } 164 165 for (i = 0; i < ms->smp.cpus; i++) { 166 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 167 } 168 } 169 170 CpuInstanceProperties 171 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 172 { 173 MachineClass *mc = MACHINE_GET_CLASS(ms); 174 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 175 176 assert(cpu_index < possible_cpus->len); 177 return possible_cpus->cpus[cpu_index].props; 178 } 179 180 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) 181 { 182 X86CPUTopoIDs topo_ids; 183 X86MachineState *x86ms = X86_MACHINE(ms); 184 X86CPUTopoInfo topo_info; 185 186 init_topo_info(&topo_info, x86ms); 187 188 assert(idx < ms->possible_cpus->len); 189 x86_topo_ids_from_idx(&topo_info, idx, &topo_ids); 190 return topo_ids.pkg_id % ms->numa_state->num_nodes; 191 } 192 193 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) 194 { 195 X86MachineState *x86ms = X86_MACHINE(ms); 196 unsigned int max_cpus = ms->smp.max_cpus; 197 X86CPUTopoInfo topo_info; 198 int i; 199 200 if (ms->possible_cpus) { 201 /* 202 * make sure that max_cpus hasn't changed since the first use, i.e. 203 * -smp hasn't been parsed after it 204 */ 205 assert(ms->possible_cpus->len == max_cpus); 206 return ms->possible_cpus; 207 } 208 209 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 210 sizeof(CPUArchId) * max_cpus); 211 ms->possible_cpus->len = max_cpus; 212 213 init_topo_info(&topo_info, x86ms); 214 215 for (i = 0; i < ms->possible_cpus->len; i++) { 216 X86CPUTopoIDs topo_ids; 217 218 ms->possible_cpus->cpus[i].type = ms->cpu_type; 219 ms->possible_cpus->cpus[i].vcpus_count = 1; 220 x86_topo_ids_from_idx(&topo_info, i, &topo_ids); 221 ms->possible_cpus->cpus[i].props.has_socket_id = true; 222 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id; 223 if (x86ms->smp_dies > 1) { 224 ms->possible_cpus->cpus[i].props.has_die_id = true; 225 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id; 226 } 227 ms->possible_cpus->cpus[i].props.has_core_id = true; 228 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id; 229 ms->possible_cpus->cpus[i].props.has_thread_id = true; 230 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id; 231 } 232 return ms->possible_cpus; 233 } 234 235 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 236 { 237 /* cpu index isn't used */ 238 CPUState *cs; 239 240 CPU_FOREACH(cs) { 241 X86CPU *cpu = X86_CPU(cs); 242 243 if (!cpu->apic_state) { 244 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 245 } else { 246 apic_deliver_nmi(cpu->apic_state); 247 } 248 } 249 } 250 251 static long get_file_size(FILE *f) 252 { 253 long where, size; 254 255 /* XXX: on Unix systems, using fstat() probably makes more sense */ 256 257 where = ftell(f); 258 fseek(f, 0, SEEK_END); 259 size = ftell(f); 260 fseek(f, where, SEEK_SET); 261 262 return size; 263 } 264 265 /* TSC handling */ 266 uint64_t cpu_get_tsc(CPUX86State *env) 267 { 268 return cpu_get_ticks(); 269 } 270 271 /* IRQ handling */ 272 static void pic_irq_request(void *opaque, int irq, int level) 273 { 274 CPUState *cs = first_cpu; 275 X86CPU *cpu = X86_CPU(cs); 276 277 trace_x86_pic_interrupt(irq, level); 278 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 279 CPU_FOREACH(cs) { 280 cpu = X86_CPU(cs); 281 if (apic_accept_pic_intr(cpu->apic_state)) { 282 apic_deliver_pic_intr(cpu->apic_state, level); 283 } 284 } 285 } else { 286 if (level) { 287 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 288 } else { 289 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 290 } 291 } 292 } 293 294 qemu_irq x86_allocate_cpu_irq(void) 295 { 296 return qemu_allocate_irq(pic_irq_request, NULL, 0); 297 } 298 299 int cpu_get_pic_interrupt(CPUX86State *env) 300 { 301 X86CPU *cpu = env_archcpu(env); 302 int intno; 303 304 if (!kvm_irqchip_in_kernel()) { 305 intno = apic_get_interrupt(cpu->apic_state); 306 if (intno >= 0) { 307 return intno; 308 } 309 /* read the irq from the PIC */ 310 if (!apic_accept_pic_intr(cpu->apic_state)) { 311 return -1; 312 } 313 } 314 315 intno = pic_read_irq(isa_pic); 316 return intno; 317 } 318 319 DeviceState *cpu_get_current_apic(void) 320 { 321 if (current_cpu) { 322 X86CPU *cpu = X86_CPU(current_cpu); 323 return cpu->apic_state; 324 } else { 325 return NULL; 326 } 327 } 328 329 void gsi_handler(void *opaque, int n, int level) 330 { 331 GSIState *s = opaque; 332 333 trace_x86_gsi_interrupt(n, level); 334 if (n < ISA_NUM_IRQS) { 335 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 336 qemu_set_irq(s->i8259_irq[n], level); 337 } 338 qemu_set_irq(s->ioapic_irq[n], level); 339 } 340 341 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 342 { 343 DeviceState *dev; 344 SysBusDevice *d; 345 unsigned int i; 346 347 assert(parent_name); 348 if (kvm_ioapic_in_kernel()) { 349 dev = qdev_new(TYPE_KVM_IOAPIC); 350 } else { 351 dev = qdev_new(TYPE_IOAPIC); 352 } 353 object_property_add_child(object_resolve_path(parent_name, NULL), 354 "ioapic", OBJECT(dev)); 355 d = SYS_BUS_DEVICE(dev); 356 sysbus_realize_and_unref(d, &error_fatal); 357 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 358 359 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 360 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 361 } 362 } 363 364 struct setup_data { 365 uint64_t next; 366 uint32_t type; 367 uint32_t len; 368 uint8_t data[]; 369 } __attribute__((packed)); 370 371 372 /* 373 * The entry point into the kernel for PVH boot is different from 374 * the native entry point. The PVH entry is defined by the x86/HVM 375 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 376 * 377 * This function is passed to load_elf() when it is called from 378 * load_elfboot() which then additionally checks for an ELF Note of 379 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 380 * parse the PVH entry address from the ELF Note. 381 * 382 * Due to trickery in elf_opts.h, load_elf() is actually available as 383 * load_elf32() or load_elf64() and this routine needs to be able 384 * to deal with being called as 32 or 64 bit. 385 * 386 * The address of the PVH entry point is saved to the 'pvh_start_addr' 387 * global variable. (although the entry point is 32-bit, the kernel 388 * binary can be either 32-bit or 64-bit). 389 */ 390 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 391 { 392 size_t *elf_note_data_addr; 393 394 /* Check if ELF Note header passed in is valid */ 395 if (arg1 == NULL) { 396 return 0; 397 } 398 399 if (is64) { 400 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 401 uint64_t nhdr_size64 = sizeof(struct elf64_note); 402 uint64_t phdr_align = *(uint64_t *)arg2; 403 uint64_t nhdr_namesz = nhdr64->n_namesz; 404 405 elf_note_data_addr = 406 ((void *)nhdr64) + nhdr_size64 + 407 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 408 } else { 409 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 410 uint32_t nhdr_size32 = sizeof(struct elf32_note); 411 uint32_t phdr_align = *(uint32_t *)arg2; 412 uint32_t nhdr_namesz = nhdr32->n_namesz; 413 414 elf_note_data_addr = 415 ((void *)nhdr32) + nhdr_size32 + 416 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 417 } 418 419 pvh_start_addr = *elf_note_data_addr; 420 421 return pvh_start_addr; 422 } 423 424 static bool load_elfboot(const char *kernel_filename, 425 int kernel_file_size, 426 uint8_t *header, 427 size_t pvh_xen_start_addr, 428 FWCfgState *fw_cfg) 429 { 430 uint32_t flags = 0; 431 uint32_t mh_load_addr = 0; 432 uint32_t elf_kernel_size = 0; 433 uint64_t elf_entry; 434 uint64_t elf_low, elf_high; 435 int kernel_size; 436 437 if (ldl_p(header) != 0x464c457f) { 438 return false; /* no elfboot */ 439 } 440 441 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 442 flags = elf_is64 ? 443 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 444 445 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 446 error_report("elfboot unsupported flags = %x", flags); 447 exit(1); 448 } 449 450 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 451 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 452 NULL, &elf_note_type, &elf_entry, 453 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 454 0, 0); 455 456 if (kernel_size < 0) { 457 error_report("Error while loading elf kernel"); 458 exit(1); 459 } 460 mh_load_addr = elf_low; 461 elf_kernel_size = elf_high - elf_low; 462 463 if (pvh_start_addr == 0) { 464 error_report("Error loading uncompressed kernel without PVH ELF Note"); 465 exit(1); 466 } 467 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 468 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 469 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 470 471 return true; 472 } 473 474 void x86_load_linux(X86MachineState *x86ms, 475 FWCfgState *fw_cfg, 476 int acpi_data_size, 477 bool pvh_enabled, 478 bool linuxboot_dma_enabled) 479 { 480 uint16_t protocol; 481 int setup_size, kernel_size, cmdline_size; 482 int dtb_size, setup_data_offset; 483 uint32_t initrd_max; 484 uint8_t header[8192], *setup, *kernel; 485 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 486 FILE *f; 487 char *vmode; 488 MachineState *machine = MACHINE(x86ms); 489 struct setup_data *setup_data; 490 const char *kernel_filename = machine->kernel_filename; 491 const char *initrd_filename = machine->initrd_filename; 492 const char *dtb_filename = machine->dtb; 493 const char *kernel_cmdline = machine->kernel_cmdline; 494 495 /* Align to 16 bytes as a paranoia measure */ 496 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 497 498 /* load the kernel header */ 499 f = fopen(kernel_filename, "rb"); 500 if (!f) { 501 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 502 kernel_filename, strerror(errno)); 503 exit(1); 504 } 505 506 kernel_size = get_file_size(f); 507 if (!kernel_size || 508 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 509 MIN(ARRAY_SIZE(header), kernel_size)) { 510 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 511 kernel_filename, strerror(errno)); 512 exit(1); 513 } 514 515 /* kernel protocol version */ 516 if (ldl_p(header + 0x202) == 0x53726448) { 517 protocol = lduw_p(header + 0x206); 518 } else { 519 /* 520 * This could be a multiboot kernel. If it is, let's stop treating it 521 * like a Linux kernel. 522 * Note: some multiboot images could be in the ELF format (the same of 523 * PVH), so we try multiboot first since we check the multiboot magic 524 * header before to load it. 525 */ 526 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 527 kernel_cmdline, kernel_size, header)) { 528 return; 529 } 530 /* 531 * Check if the file is an uncompressed kernel file (ELF) and load it, 532 * saving the PVH entry point used by the x86/HVM direct boot ABI. 533 * If load_elfboot() is successful, populate the fw_cfg info. 534 */ 535 if (pvh_enabled && 536 load_elfboot(kernel_filename, kernel_size, 537 header, pvh_start_addr, fw_cfg)) { 538 fclose(f); 539 540 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 541 strlen(kernel_cmdline) + 1); 542 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 543 544 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 545 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 546 header, sizeof(header)); 547 548 /* load initrd */ 549 if (initrd_filename) { 550 GMappedFile *mapped_file; 551 gsize initrd_size; 552 gchar *initrd_data; 553 GError *gerr = NULL; 554 555 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 556 if (!mapped_file) { 557 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 558 initrd_filename, gerr->message); 559 exit(1); 560 } 561 x86ms->initrd_mapped_file = mapped_file; 562 563 initrd_data = g_mapped_file_get_contents(mapped_file); 564 initrd_size = g_mapped_file_get_length(mapped_file); 565 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 566 if (initrd_size >= initrd_max) { 567 fprintf(stderr, "qemu: initrd is too large, cannot support." 568 "(max: %"PRIu32", need %"PRId64")\n", 569 initrd_max, (uint64_t)initrd_size); 570 exit(1); 571 } 572 573 initrd_addr = (initrd_max - initrd_size) & ~4095; 574 575 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 576 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 577 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 578 initrd_size); 579 } 580 581 option_rom[nb_option_roms].bootindex = 0; 582 option_rom[nb_option_roms].name = "pvh.bin"; 583 nb_option_roms++; 584 585 return; 586 } 587 protocol = 0; 588 } 589 590 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 591 /* Low kernel */ 592 real_addr = 0x90000; 593 cmdline_addr = 0x9a000 - cmdline_size; 594 prot_addr = 0x10000; 595 } else if (protocol < 0x202) { 596 /* High but ancient kernel */ 597 real_addr = 0x90000; 598 cmdline_addr = 0x9a000 - cmdline_size; 599 prot_addr = 0x100000; 600 } else { 601 /* High and recent kernel */ 602 real_addr = 0x10000; 603 cmdline_addr = 0x20000; 604 prot_addr = 0x100000; 605 } 606 607 /* highest address for loading the initrd */ 608 if (protocol >= 0x20c && 609 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 610 /* 611 * Linux has supported initrd up to 4 GB for a very long time (2007, 612 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 613 * though it only sets initrd_max to 2 GB to "work around bootloader 614 * bugs". Luckily, QEMU firmware(which does something like bootloader) 615 * has supported this. 616 * 617 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 618 * be loaded into any address. 619 * 620 * In addition, initrd_max is uint32_t simply because QEMU doesn't 621 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 622 * field). 623 * 624 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 625 */ 626 initrd_max = UINT32_MAX; 627 } else if (protocol >= 0x203) { 628 initrd_max = ldl_p(header + 0x22c); 629 } else { 630 initrd_max = 0x37ffffff; 631 } 632 633 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 634 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 635 } 636 637 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 638 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 639 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 640 641 if (protocol >= 0x202) { 642 stl_p(header + 0x228, cmdline_addr); 643 } else { 644 stw_p(header + 0x20, 0xA33F); 645 stw_p(header + 0x22, cmdline_addr - real_addr); 646 } 647 648 /* handle vga= parameter */ 649 vmode = strstr(kernel_cmdline, "vga="); 650 if (vmode) { 651 unsigned int video_mode; 652 const char *end; 653 int ret; 654 /* skip "vga=" */ 655 vmode += 4; 656 if (!strncmp(vmode, "normal", 6)) { 657 video_mode = 0xffff; 658 } else if (!strncmp(vmode, "ext", 3)) { 659 video_mode = 0xfffe; 660 } else if (!strncmp(vmode, "ask", 3)) { 661 video_mode = 0xfffd; 662 } else { 663 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 664 if (ret != 0 || (*end && *end != ' ')) { 665 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 666 exit(1); 667 } 668 } 669 stw_p(header + 0x1fa, video_mode); 670 } 671 672 /* loader type */ 673 /* 674 * High nybble = B reserved for QEMU; low nybble is revision number. 675 * If this code is substantially changed, you may want to consider 676 * incrementing the revision. 677 */ 678 if (protocol >= 0x200) { 679 header[0x210] = 0xB0; 680 } 681 /* heap */ 682 if (protocol >= 0x201) { 683 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 684 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 685 } 686 687 /* load initrd */ 688 if (initrd_filename) { 689 GMappedFile *mapped_file; 690 gsize initrd_size; 691 gchar *initrd_data; 692 GError *gerr = NULL; 693 694 if (protocol < 0x200) { 695 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 696 exit(1); 697 } 698 699 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 700 if (!mapped_file) { 701 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 702 initrd_filename, gerr->message); 703 exit(1); 704 } 705 x86ms->initrd_mapped_file = mapped_file; 706 707 initrd_data = g_mapped_file_get_contents(mapped_file); 708 initrd_size = g_mapped_file_get_length(mapped_file); 709 if (initrd_size >= initrd_max) { 710 fprintf(stderr, "qemu: initrd is too large, cannot support." 711 "(max: %"PRIu32", need %"PRId64")\n", 712 initrd_max, (uint64_t)initrd_size); 713 exit(1); 714 } 715 716 initrd_addr = (initrd_max - initrd_size) & ~4095; 717 718 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 719 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 720 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 721 722 stl_p(header + 0x218, initrd_addr); 723 stl_p(header + 0x21c, initrd_size); 724 } 725 726 /* load kernel and setup */ 727 setup_size = header[0x1f1]; 728 if (setup_size == 0) { 729 setup_size = 4; 730 } 731 setup_size = (setup_size + 1) * 512; 732 if (setup_size > kernel_size) { 733 fprintf(stderr, "qemu: invalid kernel header\n"); 734 exit(1); 735 } 736 kernel_size -= setup_size; 737 738 setup = g_malloc(setup_size); 739 kernel = g_malloc(kernel_size); 740 fseek(f, 0, SEEK_SET); 741 if (fread(setup, 1, setup_size, f) != setup_size) { 742 fprintf(stderr, "fread() failed\n"); 743 exit(1); 744 } 745 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 746 fprintf(stderr, "fread() failed\n"); 747 exit(1); 748 } 749 fclose(f); 750 751 /* append dtb to kernel */ 752 if (dtb_filename) { 753 if (protocol < 0x209) { 754 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 755 exit(1); 756 } 757 758 dtb_size = get_image_size(dtb_filename); 759 if (dtb_size <= 0) { 760 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 761 dtb_filename, strerror(errno)); 762 exit(1); 763 } 764 765 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 766 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 767 kernel = g_realloc(kernel, kernel_size); 768 769 stq_p(header + 0x250, prot_addr + setup_data_offset); 770 771 setup_data = (struct setup_data *)(kernel + setup_data_offset); 772 setup_data->next = 0; 773 setup_data->type = cpu_to_le32(SETUP_DTB); 774 setup_data->len = cpu_to_le32(dtb_size); 775 776 load_image_size(dtb_filename, setup_data->data, dtb_size); 777 } 778 779 memcpy(setup, header, MIN(sizeof(header), setup_size)); 780 781 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 782 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 783 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 784 785 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 786 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 787 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 788 789 option_rom[nb_option_roms].bootindex = 0; 790 option_rom[nb_option_roms].name = "linuxboot.bin"; 791 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 792 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 793 } 794 nb_option_roms++; 795 } 796 797 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw) 798 { 799 char *filename; 800 MemoryRegion *bios, *isa_bios; 801 int bios_size, isa_bios_size; 802 int ret; 803 804 /* BIOS load */ 805 if (bios_name == NULL) { 806 bios_name = BIOS_FILENAME; 807 } 808 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 809 if (filename) { 810 bios_size = get_image_size(filename); 811 } else { 812 bios_size = -1; 813 } 814 if (bios_size <= 0 || 815 (bios_size % 65536) != 0) { 816 goto bios_error; 817 } 818 bios = g_malloc(sizeof(*bios)); 819 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); 820 if (!isapc_ram_fw) { 821 memory_region_set_readonly(bios, true); 822 } 823 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 824 if (ret != 0) { 825 bios_error: 826 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 827 exit(1); 828 } 829 g_free(filename); 830 831 /* map the last 128KB of the BIOS in ISA space */ 832 isa_bios_size = MIN(bios_size, 128 * KiB); 833 isa_bios = g_malloc(sizeof(*isa_bios)); 834 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 835 bios_size - isa_bios_size, isa_bios_size); 836 memory_region_add_subregion_overlap(rom_memory, 837 0x100000 - isa_bios_size, 838 isa_bios, 839 1); 840 if (!isapc_ram_fw) { 841 memory_region_set_readonly(isa_bios, true); 842 } 843 844 /* map all the bios at the top of memory */ 845 memory_region_add_subregion(rom_memory, 846 (uint32_t)(-bios_size), 847 bios); 848 } 849 850 bool x86_machine_is_smm_enabled(X86MachineState *x86ms) 851 { 852 bool smm_available = false; 853 854 if (x86ms->smm == ON_OFF_AUTO_OFF) { 855 return false; 856 } 857 858 if (tcg_enabled() || qtest_enabled()) { 859 smm_available = true; 860 } else if (kvm_enabled()) { 861 smm_available = kvm_has_smm(); 862 } 863 864 if (smm_available) { 865 return true; 866 } 867 868 if (x86ms->smm == ON_OFF_AUTO_ON) { 869 error_report("System Management Mode not supported by this hypervisor."); 870 exit(1); 871 } 872 return false; 873 } 874 875 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name, 876 void *opaque, Error **errp) 877 { 878 X86MachineState *x86ms = X86_MACHINE(obj); 879 OnOffAuto smm = x86ms->smm; 880 881 visit_type_OnOffAuto(v, name, &smm, errp); 882 } 883 884 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name, 885 void *opaque, Error **errp) 886 { 887 X86MachineState *x86ms = X86_MACHINE(obj); 888 889 visit_type_OnOffAuto(v, name, &x86ms->smm, errp); 890 } 891 892 bool x86_machine_is_acpi_enabled(X86MachineState *x86ms) 893 { 894 if (x86ms->acpi == ON_OFF_AUTO_OFF) { 895 return false; 896 } 897 return true; 898 } 899 900 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name, 901 void *opaque, Error **errp) 902 { 903 X86MachineState *x86ms = X86_MACHINE(obj); 904 OnOffAuto acpi = x86ms->acpi; 905 906 visit_type_OnOffAuto(v, name, &acpi, errp); 907 } 908 909 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name, 910 void *opaque, Error **errp) 911 { 912 X86MachineState *x86ms = X86_MACHINE(obj); 913 914 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp); 915 } 916 917 static void x86_machine_initfn(Object *obj) 918 { 919 X86MachineState *x86ms = X86_MACHINE(obj); 920 921 x86ms->smm = ON_OFF_AUTO_AUTO; 922 x86ms->acpi = ON_OFF_AUTO_AUTO; 923 x86ms->smp_dies = 1; 924 925 x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx; 926 x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid; 927 x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids; 928 x86ms->apicid_pkg_offset = apicid_pkg_offset; 929 } 930 931 static void x86_machine_class_init(ObjectClass *oc, void *data) 932 { 933 MachineClass *mc = MACHINE_CLASS(oc); 934 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); 935 NMIClass *nc = NMI_CLASS(oc); 936 937 mc->cpu_index_to_instance_props = x86_cpu_index_to_props; 938 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; 939 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; 940 x86mc->compat_apic_id_mode = false; 941 x86mc->save_tsc_khz = true; 942 nc->nmi_monitor_handler = x86_nmi; 943 944 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto", 945 x86_machine_get_smm, x86_machine_set_smm, 946 NULL, NULL); 947 object_class_property_set_description(oc, X86_MACHINE_SMM, 948 "Enable SMM"); 949 950 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto", 951 x86_machine_get_acpi, x86_machine_set_acpi, 952 NULL, NULL); 953 object_class_property_set_description(oc, X86_MACHINE_ACPI, 954 "Enable ACPI"); 955 } 956 957 static const TypeInfo x86_machine_info = { 958 .name = TYPE_X86_MACHINE, 959 .parent = TYPE_MACHINE, 960 .abstract = true, 961 .instance_size = sizeof(X86MachineState), 962 .instance_init = x86_machine_initfn, 963 .class_size = sizeof(X86MachineClass), 964 .class_init = x86_machine_class_init, 965 .interfaces = (InterfaceInfo[]) { 966 { TYPE_NMI }, 967 { } 968 }, 969 }; 970 971 static void x86_machine_register_types(void) 972 { 973 type_register_static(&x86_machine_info); 974 } 975 976 type_init(x86_machine_register_types) 977