xref: /openbmc/qemu/hw/i386/x86.c (revision 778a2dc59213d789f5bf8409547b529af4eb9ead)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
37 #include "trace.h"
38 
39 #include "hw/i386/x86.h"
40 #include "target/i386/cpu.h"
41 #include "hw/i386/topology.h"
42 #include "hw/i386/fw_cfg.h"
43 #include "hw/intc/i8259.h"
44 
45 #include "hw/acpi/cpu_hotplug.h"
46 #include "hw/irq.h"
47 #include "hw/nmi.h"
48 #include "hw/loader.h"
49 #include "multiboot.h"
50 #include "elf.h"
51 #include "standard-headers/asm-x86/bootparam.h"
52 #include "config-devices.h"
53 #include "kvm_i386.h"
54 
55 #define BIOS_FILENAME "bios.bin"
56 
57 /* Physical Address of PVH entry point read from kernel ELF NOTE */
58 static size_t pvh_start_addr;
59 
60 inline void init_topo_info(X86CPUTopoInfo *topo_info,
61                            const X86MachineState *x86ms)
62 {
63     MachineState *ms = MACHINE(x86ms);
64 
65     topo_info->nodes_per_pkg = ms->numa_state->num_nodes / ms->smp.sockets;
66     topo_info->dies_per_pkg = x86ms->smp_dies;
67     topo_info->cores_per_die = ms->smp.cores;
68     topo_info->threads_per_core = ms->smp.threads;
69 }
70 
71 /*
72  * Set up with the new EPYC topology handlers
73  *
74  * AMD uses different apic id encoding for EPYC based cpus. Override
75  * the default topo handlers with EPYC encoding handlers.
76  */
77 static void x86_set_epyc_topo_handlers(MachineState *machine)
78 {
79     X86MachineState *x86ms = X86_MACHINE(machine);
80 
81     x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx_epyc;
82     x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid_epyc;
83     x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids_epyc;
84     x86ms->apicid_pkg_offset = apicid_pkg_offset_epyc;
85 }
86 
87 /*
88  * Calculates initial APIC ID for a specific CPU index
89  *
90  * Currently we need to be able to calculate the APIC ID from the CPU index
91  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
92  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
93  * all CPUs up to max_cpus.
94  */
95 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
96                                     unsigned int cpu_index)
97 {
98     X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
99     X86CPUTopoInfo topo_info;
100     uint32_t correct_id;
101     static bool warned;
102 
103     init_topo_info(&topo_info, x86ms);
104 
105     correct_id = x86ms->apicid_from_cpu_idx(&topo_info, cpu_index);
106     if (x86mc->compat_apic_id_mode) {
107         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
108             error_report("APIC IDs set in compatibility mode, "
109                          "CPU topology won't match the configuration");
110             warned = true;
111         }
112         return cpu_index;
113     } else {
114         return correct_id;
115     }
116 }
117 
118 
119 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
120 {
121     Error *local_err = NULL;
122     Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
123 
124     if (!object_property_set_uint(cpu, "apic-id", apic_id, &local_err)) {
125         goto out;
126     }
127     qdev_realize(DEVICE(cpu), NULL, &local_err);
128 
129 out:
130     object_unref(cpu);
131     error_propagate(errp, local_err);
132 }
133 
134 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
135 {
136     int i;
137     const CPUArchIdList *possible_cpus;
138     MachineState *ms = MACHINE(x86ms);
139     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
140 
141     /* Check for apicid encoding */
142     if (cpu_x86_use_epyc_apic_id_encoding(ms->cpu_type)) {
143         x86_set_epyc_topo_handlers(ms);
144     }
145 
146     x86_cpu_set_default_version(default_cpu_version);
147 
148     /*
149      * Calculates the limit to CPU APIC ID values
150      *
151      * Limit for the APIC ID value, so that all
152      * CPU APIC IDs are < x86ms->apic_id_limit.
153      *
154      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
155      */
156     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
157                                                       ms->smp.max_cpus - 1) + 1;
158     possible_cpus = mc->possible_cpu_arch_ids(ms);
159 
160     for (i = 0; i < ms->possible_cpus->len; i++) {
161         ms->possible_cpus->cpus[i].arch_id =
162             x86_cpu_apic_id_from_index(x86ms, i);
163     }
164 
165     for (i = 0; i < ms->smp.cpus; i++) {
166         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
167     }
168 }
169 
170 CpuInstanceProperties
171 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
172 {
173     MachineClass *mc = MACHINE_GET_CLASS(ms);
174     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
175 
176     assert(cpu_index < possible_cpus->len);
177     return possible_cpus->cpus[cpu_index].props;
178 }
179 
180 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
181 {
182    X86CPUTopoIDs topo_ids;
183    X86MachineState *x86ms = X86_MACHINE(ms);
184    X86CPUTopoInfo topo_info;
185 
186    init_topo_info(&topo_info, x86ms);
187 
188    assert(idx < ms->possible_cpus->len);
189    x86_topo_ids_from_idx(&topo_info, idx, &topo_ids);
190    return topo_ids.pkg_id % ms->numa_state->num_nodes;
191 }
192 
193 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
194 {
195     X86MachineState *x86ms = X86_MACHINE(ms);
196     unsigned int max_cpus = ms->smp.max_cpus;
197     X86CPUTopoInfo topo_info;
198     int i;
199 
200     if (ms->possible_cpus) {
201         /*
202          * make sure that max_cpus hasn't changed since the first use, i.e.
203          * -smp hasn't been parsed after it
204          */
205         assert(ms->possible_cpus->len == max_cpus);
206         return ms->possible_cpus;
207     }
208 
209     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
210                                   sizeof(CPUArchId) * max_cpus);
211     ms->possible_cpus->len = max_cpus;
212 
213     init_topo_info(&topo_info, x86ms);
214 
215     for (i = 0; i < ms->possible_cpus->len; i++) {
216         X86CPUTopoIDs topo_ids;
217 
218         ms->possible_cpus->cpus[i].type = ms->cpu_type;
219         ms->possible_cpus->cpus[i].vcpus_count = 1;
220         x86_topo_ids_from_idx(&topo_info, i, &topo_ids);
221         ms->possible_cpus->cpus[i].props.has_socket_id = true;
222         ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
223         if (x86ms->smp_dies > 1) {
224             ms->possible_cpus->cpus[i].props.has_die_id = true;
225             ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
226         }
227         ms->possible_cpus->cpus[i].props.has_core_id = true;
228         ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
229         ms->possible_cpus->cpus[i].props.has_thread_id = true;
230         ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
231     }
232     return ms->possible_cpus;
233 }
234 
235 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
236 {
237     /* cpu index isn't used */
238     CPUState *cs;
239 
240     CPU_FOREACH(cs) {
241         X86CPU *cpu = X86_CPU(cs);
242 
243         if (!cpu->apic_state) {
244             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
245         } else {
246             apic_deliver_nmi(cpu->apic_state);
247         }
248     }
249 }
250 
251 static long get_file_size(FILE *f)
252 {
253     long where, size;
254 
255     /* XXX: on Unix systems, using fstat() probably makes more sense */
256 
257     where = ftell(f);
258     fseek(f, 0, SEEK_END);
259     size = ftell(f);
260     fseek(f, where, SEEK_SET);
261 
262     return size;
263 }
264 
265 /* TSC handling */
266 uint64_t cpu_get_tsc(CPUX86State *env)
267 {
268     return cpu_get_ticks();
269 }
270 
271 /* IRQ handling */
272 static void pic_irq_request(void *opaque, int irq, int level)
273 {
274     CPUState *cs = first_cpu;
275     X86CPU *cpu = X86_CPU(cs);
276 
277     trace_x86_pic_interrupt(irq, level);
278     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
279         CPU_FOREACH(cs) {
280             cpu = X86_CPU(cs);
281             if (apic_accept_pic_intr(cpu->apic_state)) {
282                 apic_deliver_pic_intr(cpu->apic_state, level);
283             }
284         }
285     } else {
286         if (level) {
287             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
288         } else {
289             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
290         }
291     }
292 }
293 
294 qemu_irq x86_allocate_cpu_irq(void)
295 {
296     return qemu_allocate_irq(pic_irq_request, NULL, 0);
297 }
298 
299 int cpu_get_pic_interrupt(CPUX86State *env)
300 {
301     X86CPU *cpu = env_archcpu(env);
302     int intno;
303 
304     if (!kvm_irqchip_in_kernel()) {
305         intno = apic_get_interrupt(cpu->apic_state);
306         if (intno >= 0) {
307             return intno;
308         }
309         /* read the irq from the PIC */
310         if (!apic_accept_pic_intr(cpu->apic_state)) {
311             return -1;
312         }
313     }
314 
315     intno = pic_read_irq(isa_pic);
316     return intno;
317 }
318 
319 DeviceState *cpu_get_current_apic(void)
320 {
321     if (current_cpu) {
322         X86CPU *cpu = X86_CPU(current_cpu);
323         return cpu->apic_state;
324     } else {
325         return NULL;
326     }
327 }
328 
329 void gsi_handler(void *opaque, int n, int level)
330 {
331     GSIState *s = opaque;
332 
333     trace_x86_gsi_interrupt(n, level);
334     if (n < ISA_NUM_IRQS) {
335         /* Under KVM, Kernel will forward to both PIC and IOAPIC */
336         qemu_set_irq(s->i8259_irq[n], level);
337     }
338     qemu_set_irq(s->ioapic_irq[n], level);
339 }
340 
341 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
342 {
343     DeviceState *dev;
344     SysBusDevice *d;
345     unsigned int i;
346 
347     assert(parent_name);
348     if (kvm_ioapic_in_kernel()) {
349         dev = qdev_new(TYPE_KVM_IOAPIC);
350     } else {
351         dev = qdev_new(TYPE_IOAPIC);
352     }
353     object_property_add_child(object_resolve_path(parent_name, NULL),
354                               "ioapic", OBJECT(dev));
355     d = SYS_BUS_DEVICE(dev);
356     sysbus_realize_and_unref(d, &error_fatal);
357     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
358 
359     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
360         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
361     }
362 }
363 
364 struct setup_data {
365     uint64_t next;
366     uint32_t type;
367     uint32_t len;
368     uint8_t data[];
369 } __attribute__((packed));
370 
371 
372 /*
373  * The entry point into the kernel for PVH boot is different from
374  * the native entry point.  The PVH entry is defined by the x86/HVM
375  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
376  *
377  * This function is passed to load_elf() when it is called from
378  * load_elfboot() which then additionally checks for an ELF Note of
379  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
380  * parse the PVH entry address from the ELF Note.
381  *
382  * Due to trickery in elf_opts.h, load_elf() is actually available as
383  * load_elf32() or load_elf64() and this routine needs to be able
384  * to deal with being called as 32 or 64 bit.
385  *
386  * The address of the PVH entry point is saved to the 'pvh_start_addr'
387  * global variable.  (although the entry point is 32-bit, the kernel
388  * binary can be either 32-bit or 64-bit).
389  */
390 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
391 {
392     size_t *elf_note_data_addr;
393 
394     /* Check if ELF Note header passed in is valid */
395     if (arg1 == NULL) {
396         return 0;
397     }
398 
399     if (is64) {
400         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
401         uint64_t nhdr_size64 = sizeof(struct elf64_note);
402         uint64_t phdr_align = *(uint64_t *)arg2;
403         uint64_t nhdr_namesz = nhdr64->n_namesz;
404 
405         elf_note_data_addr =
406             ((void *)nhdr64) + nhdr_size64 +
407             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
408     } else {
409         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
410         uint32_t nhdr_size32 = sizeof(struct elf32_note);
411         uint32_t phdr_align = *(uint32_t *)arg2;
412         uint32_t nhdr_namesz = nhdr32->n_namesz;
413 
414         elf_note_data_addr =
415             ((void *)nhdr32) + nhdr_size32 +
416             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
417     }
418 
419     pvh_start_addr = *elf_note_data_addr;
420 
421     return pvh_start_addr;
422 }
423 
424 static bool load_elfboot(const char *kernel_filename,
425                          int kernel_file_size,
426                          uint8_t *header,
427                          size_t pvh_xen_start_addr,
428                          FWCfgState *fw_cfg)
429 {
430     uint32_t flags = 0;
431     uint32_t mh_load_addr = 0;
432     uint32_t elf_kernel_size = 0;
433     uint64_t elf_entry;
434     uint64_t elf_low, elf_high;
435     int kernel_size;
436 
437     if (ldl_p(header) != 0x464c457f) {
438         return false; /* no elfboot */
439     }
440 
441     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
442     flags = elf_is64 ?
443         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
444 
445     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
446         error_report("elfboot unsupported flags = %x", flags);
447         exit(1);
448     }
449 
450     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
451     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
452                            NULL, &elf_note_type, &elf_entry,
453                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
454                            0, 0);
455 
456     if (kernel_size < 0) {
457         error_report("Error while loading elf kernel");
458         exit(1);
459     }
460     mh_load_addr = elf_low;
461     elf_kernel_size = elf_high - elf_low;
462 
463     if (pvh_start_addr == 0) {
464         error_report("Error loading uncompressed kernel without PVH ELF Note");
465         exit(1);
466     }
467     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
468     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
469     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
470 
471     return true;
472 }
473 
474 void x86_load_linux(X86MachineState *x86ms,
475                     FWCfgState *fw_cfg,
476                     int acpi_data_size,
477                     bool pvh_enabled,
478                     bool linuxboot_dma_enabled)
479 {
480     uint16_t protocol;
481     int setup_size, kernel_size, cmdline_size;
482     int dtb_size, setup_data_offset;
483     uint32_t initrd_max;
484     uint8_t header[8192], *setup, *kernel;
485     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
486     FILE *f;
487     char *vmode;
488     MachineState *machine = MACHINE(x86ms);
489     struct setup_data *setup_data;
490     const char *kernel_filename = machine->kernel_filename;
491     const char *initrd_filename = machine->initrd_filename;
492     const char *dtb_filename = machine->dtb;
493     const char *kernel_cmdline = machine->kernel_cmdline;
494 
495     /* Align to 16 bytes as a paranoia measure */
496     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
497 
498     /* load the kernel header */
499     f = fopen(kernel_filename, "rb");
500     if (!f) {
501         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
502                 kernel_filename, strerror(errno));
503         exit(1);
504     }
505 
506     kernel_size = get_file_size(f);
507     if (!kernel_size ||
508         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
509         MIN(ARRAY_SIZE(header), kernel_size)) {
510         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
511                 kernel_filename, strerror(errno));
512         exit(1);
513     }
514 
515     /* kernel protocol version */
516     if (ldl_p(header + 0x202) == 0x53726448) {
517         protocol = lduw_p(header + 0x206);
518     } else {
519         /*
520          * This could be a multiboot kernel. If it is, let's stop treating it
521          * like a Linux kernel.
522          * Note: some multiboot images could be in the ELF format (the same of
523          * PVH), so we try multiboot first since we check the multiboot magic
524          * header before to load it.
525          */
526         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
527                            kernel_cmdline, kernel_size, header)) {
528             return;
529         }
530         /*
531          * Check if the file is an uncompressed kernel file (ELF) and load it,
532          * saving the PVH entry point used by the x86/HVM direct boot ABI.
533          * If load_elfboot() is successful, populate the fw_cfg info.
534          */
535         if (pvh_enabled &&
536             load_elfboot(kernel_filename, kernel_size,
537                          header, pvh_start_addr, fw_cfg)) {
538             fclose(f);
539 
540             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
541                 strlen(kernel_cmdline) + 1);
542             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
543 
544             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
545             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
546                              header, sizeof(header));
547 
548             /* load initrd */
549             if (initrd_filename) {
550                 GMappedFile *mapped_file;
551                 gsize initrd_size;
552                 gchar *initrd_data;
553                 GError *gerr = NULL;
554 
555                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
556                 if (!mapped_file) {
557                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
558                             initrd_filename, gerr->message);
559                     exit(1);
560                 }
561                 x86ms->initrd_mapped_file = mapped_file;
562 
563                 initrd_data = g_mapped_file_get_contents(mapped_file);
564                 initrd_size = g_mapped_file_get_length(mapped_file);
565                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
566                 if (initrd_size >= initrd_max) {
567                     fprintf(stderr, "qemu: initrd is too large, cannot support."
568                             "(max: %"PRIu32", need %"PRId64")\n",
569                             initrd_max, (uint64_t)initrd_size);
570                     exit(1);
571                 }
572 
573                 initrd_addr = (initrd_max - initrd_size) & ~4095;
574 
575                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
576                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
577                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
578                                  initrd_size);
579             }
580 
581             option_rom[nb_option_roms].bootindex = 0;
582             option_rom[nb_option_roms].name = "pvh.bin";
583             nb_option_roms++;
584 
585             return;
586         }
587         protocol = 0;
588     }
589 
590     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
591         /* Low kernel */
592         real_addr    = 0x90000;
593         cmdline_addr = 0x9a000 - cmdline_size;
594         prot_addr    = 0x10000;
595     } else if (protocol < 0x202) {
596         /* High but ancient kernel */
597         real_addr    = 0x90000;
598         cmdline_addr = 0x9a000 - cmdline_size;
599         prot_addr    = 0x100000;
600     } else {
601         /* High and recent kernel */
602         real_addr    = 0x10000;
603         cmdline_addr = 0x20000;
604         prot_addr    = 0x100000;
605     }
606 
607     /* highest address for loading the initrd */
608     if (protocol >= 0x20c &&
609         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
610         /*
611          * Linux has supported initrd up to 4 GB for a very long time (2007,
612          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
613          * though it only sets initrd_max to 2 GB to "work around bootloader
614          * bugs". Luckily, QEMU firmware(which does something like bootloader)
615          * has supported this.
616          *
617          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
618          * be loaded into any address.
619          *
620          * In addition, initrd_max is uint32_t simply because QEMU doesn't
621          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
622          * field).
623          *
624          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
625          */
626         initrd_max = UINT32_MAX;
627     } else if (protocol >= 0x203) {
628         initrd_max = ldl_p(header + 0x22c);
629     } else {
630         initrd_max = 0x37ffffff;
631     }
632 
633     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
634         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
635     }
636 
637     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
638     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
639     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
640 
641     if (protocol >= 0x202) {
642         stl_p(header + 0x228, cmdline_addr);
643     } else {
644         stw_p(header + 0x20, 0xA33F);
645         stw_p(header + 0x22, cmdline_addr - real_addr);
646     }
647 
648     /* handle vga= parameter */
649     vmode = strstr(kernel_cmdline, "vga=");
650     if (vmode) {
651         unsigned int video_mode;
652         const char *end;
653         int ret;
654         /* skip "vga=" */
655         vmode += 4;
656         if (!strncmp(vmode, "normal", 6)) {
657             video_mode = 0xffff;
658         } else if (!strncmp(vmode, "ext", 3)) {
659             video_mode = 0xfffe;
660         } else if (!strncmp(vmode, "ask", 3)) {
661             video_mode = 0xfffd;
662         } else {
663             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
664             if (ret != 0 || (*end && *end != ' ')) {
665                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
666                 exit(1);
667             }
668         }
669         stw_p(header + 0x1fa, video_mode);
670     }
671 
672     /* loader type */
673     /*
674      * High nybble = B reserved for QEMU; low nybble is revision number.
675      * If this code is substantially changed, you may want to consider
676      * incrementing the revision.
677      */
678     if (protocol >= 0x200) {
679         header[0x210] = 0xB0;
680     }
681     /* heap */
682     if (protocol >= 0x201) {
683         header[0x211] |= 0x80; /* CAN_USE_HEAP */
684         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
685     }
686 
687     /* load initrd */
688     if (initrd_filename) {
689         GMappedFile *mapped_file;
690         gsize initrd_size;
691         gchar *initrd_data;
692         GError *gerr = NULL;
693 
694         if (protocol < 0x200) {
695             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
696             exit(1);
697         }
698 
699         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
700         if (!mapped_file) {
701             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
702                     initrd_filename, gerr->message);
703             exit(1);
704         }
705         x86ms->initrd_mapped_file = mapped_file;
706 
707         initrd_data = g_mapped_file_get_contents(mapped_file);
708         initrd_size = g_mapped_file_get_length(mapped_file);
709         if (initrd_size >= initrd_max) {
710             fprintf(stderr, "qemu: initrd is too large, cannot support."
711                     "(max: %"PRIu32", need %"PRId64")\n",
712                     initrd_max, (uint64_t)initrd_size);
713             exit(1);
714         }
715 
716         initrd_addr = (initrd_max - initrd_size) & ~4095;
717 
718         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
719         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
720         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
721 
722         stl_p(header + 0x218, initrd_addr);
723         stl_p(header + 0x21c, initrd_size);
724     }
725 
726     /* load kernel and setup */
727     setup_size = header[0x1f1];
728     if (setup_size == 0) {
729         setup_size = 4;
730     }
731     setup_size = (setup_size + 1) * 512;
732     if (setup_size > kernel_size) {
733         fprintf(stderr, "qemu: invalid kernel header\n");
734         exit(1);
735     }
736     kernel_size -= setup_size;
737 
738     setup  = g_malloc(setup_size);
739     kernel = g_malloc(kernel_size);
740     fseek(f, 0, SEEK_SET);
741     if (fread(setup, 1, setup_size, f) != setup_size) {
742         fprintf(stderr, "fread() failed\n");
743         exit(1);
744     }
745     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
746         fprintf(stderr, "fread() failed\n");
747         exit(1);
748     }
749     fclose(f);
750 
751     /* append dtb to kernel */
752     if (dtb_filename) {
753         if (protocol < 0x209) {
754             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
755             exit(1);
756         }
757 
758         dtb_size = get_image_size(dtb_filename);
759         if (dtb_size <= 0) {
760             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
761                     dtb_filename, strerror(errno));
762             exit(1);
763         }
764 
765         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
766         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
767         kernel = g_realloc(kernel, kernel_size);
768 
769         stq_p(header + 0x250, prot_addr + setup_data_offset);
770 
771         setup_data = (struct setup_data *)(kernel + setup_data_offset);
772         setup_data->next = 0;
773         setup_data->type = cpu_to_le32(SETUP_DTB);
774         setup_data->len = cpu_to_le32(dtb_size);
775 
776         load_image_size(dtb_filename, setup_data->data, dtb_size);
777     }
778 
779     memcpy(setup, header, MIN(sizeof(header), setup_size));
780 
781     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
782     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
783     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
784 
785     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
786     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
787     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
788 
789     option_rom[nb_option_roms].bootindex = 0;
790     option_rom[nb_option_roms].name = "linuxboot.bin";
791     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
792         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
793     }
794     nb_option_roms++;
795 }
796 
797 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
798 {
799     char *filename;
800     MemoryRegion *bios, *isa_bios;
801     int bios_size, isa_bios_size;
802     int ret;
803 
804     /* BIOS load */
805     if (bios_name == NULL) {
806         bios_name = BIOS_FILENAME;
807     }
808     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
809     if (filename) {
810         bios_size = get_image_size(filename);
811     } else {
812         bios_size = -1;
813     }
814     if (bios_size <= 0 ||
815         (bios_size % 65536) != 0) {
816         goto bios_error;
817     }
818     bios = g_malloc(sizeof(*bios));
819     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
820     if (!isapc_ram_fw) {
821         memory_region_set_readonly(bios, true);
822     }
823     ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
824     if (ret != 0) {
825     bios_error:
826         fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
827         exit(1);
828     }
829     g_free(filename);
830 
831     /* map the last 128KB of the BIOS in ISA space */
832     isa_bios_size = MIN(bios_size, 128 * KiB);
833     isa_bios = g_malloc(sizeof(*isa_bios));
834     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
835                              bios_size - isa_bios_size, isa_bios_size);
836     memory_region_add_subregion_overlap(rom_memory,
837                                         0x100000 - isa_bios_size,
838                                         isa_bios,
839                                         1);
840     if (!isapc_ram_fw) {
841         memory_region_set_readonly(isa_bios, true);
842     }
843 
844     /* map all the bios at the top of memory */
845     memory_region_add_subregion(rom_memory,
846                                 (uint32_t)(-bios_size),
847                                 bios);
848 }
849 
850 bool x86_machine_is_smm_enabled(X86MachineState *x86ms)
851 {
852     bool smm_available = false;
853 
854     if (x86ms->smm == ON_OFF_AUTO_OFF) {
855         return false;
856     }
857 
858     if (tcg_enabled() || qtest_enabled()) {
859         smm_available = true;
860     } else if (kvm_enabled()) {
861         smm_available = kvm_has_smm();
862     }
863 
864     if (smm_available) {
865         return true;
866     }
867 
868     if (x86ms->smm == ON_OFF_AUTO_ON) {
869         error_report("System Management Mode not supported by this hypervisor.");
870         exit(1);
871     }
872     return false;
873 }
874 
875 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
876                                void *opaque, Error **errp)
877 {
878     X86MachineState *x86ms = X86_MACHINE(obj);
879     OnOffAuto smm = x86ms->smm;
880 
881     visit_type_OnOffAuto(v, name, &smm, errp);
882 }
883 
884 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
885                                void *opaque, Error **errp)
886 {
887     X86MachineState *x86ms = X86_MACHINE(obj);
888 
889     visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
890 }
891 
892 bool x86_machine_is_acpi_enabled(X86MachineState *x86ms)
893 {
894     if (x86ms->acpi == ON_OFF_AUTO_OFF) {
895         return false;
896     }
897     return true;
898 }
899 
900 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
901                                  void *opaque, Error **errp)
902 {
903     X86MachineState *x86ms = X86_MACHINE(obj);
904     OnOffAuto acpi = x86ms->acpi;
905 
906     visit_type_OnOffAuto(v, name, &acpi, errp);
907 }
908 
909 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
910                                  void *opaque, Error **errp)
911 {
912     X86MachineState *x86ms = X86_MACHINE(obj);
913 
914     visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
915 }
916 
917 static void x86_machine_initfn(Object *obj)
918 {
919     X86MachineState *x86ms = X86_MACHINE(obj);
920 
921     x86ms->smm = ON_OFF_AUTO_AUTO;
922     x86ms->acpi = ON_OFF_AUTO_AUTO;
923     x86ms->smp_dies = 1;
924 
925     x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx;
926     x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid;
927     x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids;
928     x86ms->apicid_pkg_offset = apicid_pkg_offset;
929 }
930 
931 static void x86_machine_class_init(ObjectClass *oc, void *data)
932 {
933     MachineClass *mc = MACHINE_CLASS(oc);
934     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
935     NMIClass *nc = NMI_CLASS(oc);
936 
937     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
938     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
939     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
940     x86mc->compat_apic_id_mode = false;
941     x86mc->save_tsc_khz = true;
942     nc->nmi_monitor_handler = x86_nmi;
943 
944     object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
945         x86_machine_get_smm, x86_machine_set_smm,
946         NULL, NULL);
947     object_class_property_set_description(oc, X86_MACHINE_SMM,
948         "Enable SMM");
949 
950     object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
951         x86_machine_get_acpi, x86_machine_set_acpi,
952         NULL, NULL);
953     object_class_property_set_description(oc, X86_MACHINE_ACPI,
954         "Enable ACPI");
955 }
956 
957 static const TypeInfo x86_machine_info = {
958     .name = TYPE_X86_MACHINE,
959     .parent = TYPE_MACHINE,
960     .abstract = true,
961     .instance_size = sizeof(X86MachineState),
962     .instance_init = x86_machine_initfn,
963     .class_size = sizeof(X86MachineClass),
964     .class_init = x86_machine_class_init,
965     .interfaces = (InterfaceInfo[]) {
966          { TYPE_NMI },
967          { }
968     },
969 };
970 
971 static void x86_machine_register_types(void)
972 {
973     type_register_static(&x86_machine_info);
974 }
975 
976 type_init(x86_machine_register_types)
977