1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/option.h" 26 #include "qemu/cutils.h" 27 #include "qemu/units.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/qmp/qerror.h" 31 #include "qapi/qapi-visit-common.h" 32 #include "qapi/visitor.h" 33 #include "sysemu/qtest.h" 34 #include "sysemu/numa.h" 35 #include "sysemu/replay.h" 36 #include "sysemu/sysemu.h" 37 #include "sysemu/cpu-timers.h" 38 #include "trace.h" 39 40 #include "hw/i386/x86.h" 41 #include "target/i386/cpu.h" 42 #include "hw/i386/topology.h" 43 #include "hw/i386/fw_cfg.h" 44 #include "hw/intc/i8259.h" 45 #include "hw/rtc/mc146818rtc.h" 46 47 #include "hw/acpi/cpu_hotplug.h" 48 #include "hw/irq.h" 49 #include "hw/nmi.h" 50 #include "hw/loader.h" 51 #include "multiboot.h" 52 #include "elf.h" 53 #include "standard-headers/asm-x86/bootparam.h" 54 #include CONFIG_DEVICES 55 #include "kvm_i386.h" 56 57 #define BIOS_FILENAME "bios.bin" 58 59 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 60 static size_t pvh_start_addr; 61 62 inline void init_topo_info(X86CPUTopoInfo *topo_info, 63 const X86MachineState *x86ms) 64 { 65 MachineState *ms = MACHINE(x86ms); 66 67 topo_info->dies_per_pkg = x86ms->smp_dies; 68 topo_info->cores_per_die = ms->smp.cores; 69 topo_info->threads_per_core = ms->smp.threads; 70 } 71 72 /* 73 * Calculates initial APIC ID for a specific CPU index 74 * 75 * Currently we need to be able to calculate the APIC ID from the CPU index 76 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 77 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 78 * all CPUs up to max_cpus. 79 */ 80 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, 81 unsigned int cpu_index) 82 { 83 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms); 84 X86CPUTopoInfo topo_info; 85 uint32_t correct_id; 86 static bool warned; 87 88 init_topo_info(&topo_info, x86ms); 89 90 correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index); 91 if (x86mc->compat_apic_id_mode) { 92 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 93 error_report("APIC IDs set in compatibility mode, " 94 "CPU topology won't match the configuration"); 95 warned = true; 96 } 97 return cpu_index; 98 } else { 99 return correct_id; 100 } 101 } 102 103 104 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 105 { 106 Object *cpu = object_new(MACHINE(x86ms)->cpu_type); 107 108 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { 109 goto out; 110 } 111 qdev_realize(DEVICE(cpu), NULL, errp); 112 113 out: 114 object_unref(cpu); 115 } 116 117 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 118 { 119 int i; 120 const CPUArchIdList *possible_cpus; 121 MachineState *ms = MACHINE(x86ms); 122 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 123 124 x86_cpu_set_default_version(default_cpu_version); 125 126 /* 127 * Calculates the limit to CPU APIC ID values 128 * 129 * Limit for the APIC ID value, so that all 130 * CPU APIC IDs are < x86ms->apic_id_limit. 131 * 132 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 133 */ 134 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 135 ms->smp.max_cpus - 1) + 1; 136 possible_cpus = mc->possible_cpu_arch_ids(ms); 137 for (i = 0; i < ms->smp.cpus; i++) { 138 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 139 } 140 } 141 142 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 143 { 144 if (cpus_count > 0xff) { 145 /* 146 * If the number of CPUs can't be represented in 8 bits, the 147 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 148 * to make old BIOSes fail more predictably. 149 */ 150 rtc_set_memory(rtc, 0x5f, 0); 151 } else { 152 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 153 } 154 } 155 156 static int x86_apic_cmp(const void *a, const void *b) 157 { 158 CPUArchId *apic_a = (CPUArchId *)a; 159 CPUArchId *apic_b = (CPUArchId *)b; 160 161 return apic_a->arch_id - apic_b->arch_id; 162 } 163 164 /* 165 * returns pointer to CPUArchId descriptor that matches CPU's apic_id 166 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 167 * entry corresponding to CPU's apic_id returns NULL. 168 */ 169 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 170 { 171 CPUArchId apic_id, *found_cpu; 172 173 apic_id.arch_id = id; 174 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 175 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 176 x86_apic_cmp); 177 if (found_cpu && idx) { 178 *idx = found_cpu - ms->possible_cpus->cpus; 179 } 180 return found_cpu; 181 } 182 183 void x86_cpu_plug(HotplugHandler *hotplug_dev, 184 DeviceState *dev, Error **errp) 185 { 186 CPUArchId *found_cpu; 187 Error *local_err = NULL; 188 X86CPU *cpu = X86_CPU(dev); 189 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 190 191 if (x86ms->acpi_dev) { 192 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); 193 if (local_err) { 194 goto out; 195 } 196 } 197 198 /* increment the number of CPUs */ 199 x86ms->boot_cpus++; 200 if (x86ms->rtc) { 201 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 202 } 203 if (x86ms->fw_cfg) { 204 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 205 } 206 207 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 208 found_cpu->cpu = OBJECT(dev); 209 out: 210 error_propagate(errp, local_err); 211 } 212 213 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 214 DeviceState *dev, Error **errp) 215 { 216 int idx = -1; 217 X86CPU *cpu = X86_CPU(dev); 218 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 219 220 if (!x86ms->acpi_dev) { 221 error_setg(errp, "CPU hot unplug not supported without ACPI"); 222 return; 223 } 224 225 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 226 assert(idx != -1); 227 if (idx == 0) { 228 error_setg(errp, "Boot CPU is unpluggable"); 229 return; 230 } 231 232 hotplug_handler_unplug_request(x86ms->acpi_dev, dev, 233 errp); 234 } 235 236 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, 237 DeviceState *dev, Error **errp) 238 { 239 CPUArchId *found_cpu; 240 Error *local_err = NULL; 241 X86CPU *cpu = X86_CPU(dev); 242 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 243 244 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); 245 if (local_err) { 246 goto out; 247 } 248 249 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 250 found_cpu->cpu = NULL; 251 qdev_unrealize(dev); 252 253 /* decrement the number of CPUs */ 254 x86ms->boot_cpus--; 255 /* Update the number of CPUs in CMOS */ 256 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 257 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 258 out: 259 error_propagate(errp, local_err); 260 } 261 262 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, 263 DeviceState *dev, Error **errp) 264 { 265 int idx; 266 CPUState *cs; 267 CPUArchId *cpu_slot; 268 X86CPUTopoIDs topo_ids; 269 X86CPU *cpu = X86_CPU(dev); 270 CPUX86State *env = &cpu->env; 271 MachineState *ms = MACHINE(hotplug_dev); 272 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 273 unsigned int smp_cores = ms->smp.cores; 274 unsigned int smp_threads = ms->smp.threads; 275 X86CPUTopoInfo topo_info; 276 277 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 278 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 279 ms->cpu_type); 280 return; 281 } 282 283 if (x86ms->acpi_dev) { 284 Error *local_err = NULL; 285 286 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, 287 &local_err); 288 if (local_err) { 289 error_propagate(errp, local_err); 290 return; 291 } 292 } 293 294 init_topo_info(&topo_info, x86ms); 295 296 env->nr_dies = x86ms->smp_dies; 297 298 /* 299 * If APIC ID is not set, 300 * set it based on socket/die/core/thread properties. 301 */ 302 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 303 int max_socket = (ms->smp.max_cpus - 1) / 304 smp_threads / smp_cores / x86ms->smp_dies; 305 306 /* 307 * die-id was optional in QEMU 4.0 and older, so keep it optional 308 * if there's only one die per socket. 309 */ 310 if (cpu->die_id < 0 && x86ms->smp_dies == 1) { 311 cpu->die_id = 0; 312 } 313 314 if (cpu->socket_id < 0) { 315 error_setg(errp, "CPU socket-id is not set"); 316 return; 317 } else if (cpu->socket_id > max_socket) { 318 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 319 cpu->socket_id, max_socket); 320 return; 321 } 322 if (cpu->die_id < 0) { 323 error_setg(errp, "CPU die-id is not set"); 324 return; 325 } else if (cpu->die_id > x86ms->smp_dies - 1) { 326 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", 327 cpu->die_id, x86ms->smp_dies - 1); 328 return; 329 } 330 if (cpu->core_id < 0) { 331 error_setg(errp, "CPU core-id is not set"); 332 return; 333 } else if (cpu->core_id > (smp_cores - 1)) { 334 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 335 cpu->core_id, smp_cores - 1); 336 return; 337 } 338 if (cpu->thread_id < 0) { 339 error_setg(errp, "CPU thread-id is not set"); 340 return; 341 } else if (cpu->thread_id > (smp_threads - 1)) { 342 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 343 cpu->thread_id, smp_threads - 1); 344 return; 345 } 346 347 topo_ids.pkg_id = cpu->socket_id; 348 topo_ids.die_id = cpu->die_id; 349 topo_ids.core_id = cpu->core_id; 350 topo_ids.smt_id = cpu->thread_id; 351 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids); 352 } 353 354 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 355 if (!cpu_slot) { 356 MachineState *ms = MACHINE(x86ms); 357 358 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 359 error_setg(errp, 360 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with" 361 " APIC ID %" PRIu32 ", valid index range 0:%d", 362 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id, 363 cpu->apic_id, ms->possible_cpus->len - 1); 364 return; 365 } 366 367 if (cpu_slot->cpu) { 368 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 369 idx, cpu->apic_id); 370 return; 371 } 372 373 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 374 * so that machine_query_hotpluggable_cpus would show correct values 375 */ 376 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 377 * once -smp refactoring is complete and there will be CPU private 378 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 379 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 380 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { 381 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 382 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, 383 topo_ids.pkg_id); 384 return; 385 } 386 cpu->socket_id = topo_ids.pkg_id; 387 388 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { 389 error_setg(errp, "property die-id: %u doesn't match set apic-id:" 390 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); 391 return; 392 } 393 cpu->die_id = topo_ids.die_id; 394 395 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { 396 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 397 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, 398 topo_ids.core_id); 399 return; 400 } 401 cpu->core_id = topo_ids.core_id; 402 403 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { 404 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 405 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, 406 topo_ids.smt_id); 407 return; 408 } 409 cpu->thread_id = topo_ids.smt_id; 410 411 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && 412 !kvm_hv_vpindex_settable()) { 413 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 414 return; 415 } 416 417 cs = CPU(cpu); 418 cs->cpu_index = idx; 419 420 numa_cpu_pre_plug(cpu_slot, dev, errp); 421 } 422 423 CpuInstanceProperties 424 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 425 { 426 MachineClass *mc = MACHINE_GET_CLASS(ms); 427 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 428 429 assert(cpu_index < possible_cpus->len); 430 return possible_cpus->cpus[cpu_index].props; 431 } 432 433 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) 434 { 435 X86CPUTopoIDs topo_ids; 436 X86MachineState *x86ms = X86_MACHINE(ms); 437 X86CPUTopoInfo topo_info; 438 439 init_topo_info(&topo_info, x86ms); 440 441 assert(idx < ms->possible_cpus->len); 442 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 443 &topo_info, &topo_ids); 444 return topo_ids.pkg_id % ms->numa_state->num_nodes; 445 } 446 447 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) 448 { 449 X86MachineState *x86ms = X86_MACHINE(ms); 450 unsigned int max_cpus = ms->smp.max_cpus; 451 X86CPUTopoInfo topo_info; 452 int i; 453 454 if (ms->possible_cpus) { 455 /* 456 * make sure that max_cpus hasn't changed since the first use, i.e. 457 * -smp hasn't been parsed after it 458 */ 459 assert(ms->possible_cpus->len == max_cpus); 460 return ms->possible_cpus; 461 } 462 463 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 464 sizeof(CPUArchId) * max_cpus); 465 ms->possible_cpus->len = max_cpus; 466 467 init_topo_info(&topo_info, x86ms); 468 469 for (i = 0; i < ms->possible_cpus->len; i++) { 470 X86CPUTopoIDs topo_ids; 471 472 ms->possible_cpus->cpus[i].type = ms->cpu_type; 473 ms->possible_cpus->cpus[i].vcpus_count = 1; 474 ms->possible_cpus->cpus[i].arch_id = 475 x86_cpu_apic_id_from_index(x86ms, i); 476 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 477 &topo_info, &topo_ids); 478 ms->possible_cpus->cpus[i].props.has_socket_id = true; 479 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id; 480 if (x86ms->smp_dies > 1) { 481 ms->possible_cpus->cpus[i].props.has_die_id = true; 482 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id; 483 } 484 ms->possible_cpus->cpus[i].props.has_core_id = true; 485 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id; 486 ms->possible_cpus->cpus[i].props.has_thread_id = true; 487 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id; 488 } 489 return ms->possible_cpus; 490 } 491 492 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 493 { 494 /* cpu index isn't used */ 495 CPUState *cs; 496 497 CPU_FOREACH(cs) { 498 X86CPU *cpu = X86_CPU(cs); 499 500 if (!cpu->apic_state) { 501 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 502 } else { 503 apic_deliver_nmi(cpu->apic_state); 504 } 505 } 506 } 507 508 static long get_file_size(FILE *f) 509 { 510 long where, size; 511 512 /* XXX: on Unix systems, using fstat() probably makes more sense */ 513 514 where = ftell(f); 515 fseek(f, 0, SEEK_END); 516 size = ftell(f); 517 fseek(f, where, SEEK_SET); 518 519 return size; 520 } 521 522 /* TSC handling */ 523 uint64_t cpu_get_tsc(CPUX86State *env) 524 { 525 return cpu_get_ticks(); 526 } 527 528 /* IRQ handling */ 529 static void pic_irq_request(void *opaque, int irq, int level) 530 { 531 CPUState *cs = first_cpu; 532 X86CPU *cpu = X86_CPU(cs); 533 534 trace_x86_pic_interrupt(irq, level); 535 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 536 CPU_FOREACH(cs) { 537 cpu = X86_CPU(cs); 538 if (apic_accept_pic_intr(cpu->apic_state)) { 539 apic_deliver_pic_intr(cpu->apic_state, level); 540 } 541 } 542 } else { 543 if (level) { 544 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 545 } else { 546 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 547 } 548 } 549 } 550 551 qemu_irq x86_allocate_cpu_irq(void) 552 { 553 return qemu_allocate_irq(pic_irq_request, NULL, 0); 554 } 555 556 int cpu_get_pic_interrupt(CPUX86State *env) 557 { 558 X86CPU *cpu = env_archcpu(env); 559 int intno; 560 561 if (!kvm_irqchip_in_kernel()) { 562 intno = apic_get_interrupt(cpu->apic_state); 563 if (intno >= 0) { 564 return intno; 565 } 566 /* read the irq from the PIC */ 567 if (!apic_accept_pic_intr(cpu->apic_state)) { 568 return -1; 569 } 570 } 571 572 intno = pic_read_irq(isa_pic); 573 return intno; 574 } 575 576 DeviceState *cpu_get_current_apic(void) 577 { 578 if (current_cpu) { 579 X86CPU *cpu = X86_CPU(current_cpu); 580 return cpu->apic_state; 581 } else { 582 return NULL; 583 } 584 } 585 586 void gsi_handler(void *opaque, int n, int level) 587 { 588 GSIState *s = opaque; 589 590 trace_x86_gsi_interrupt(n, level); 591 if (n < ISA_NUM_IRQS) { 592 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 593 qemu_set_irq(s->i8259_irq[n], level); 594 } 595 qemu_set_irq(s->ioapic_irq[n], level); 596 } 597 598 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 599 { 600 DeviceState *dev; 601 SysBusDevice *d; 602 unsigned int i; 603 604 assert(parent_name); 605 if (kvm_ioapic_in_kernel()) { 606 dev = qdev_new(TYPE_KVM_IOAPIC); 607 } else { 608 dev = qdev_new(TYPE_IOAPIC); 609 } 610 object_property_add_child(object_resolve_path(parent_name, NULL), 611 "ioapic", OBJECT(dev)); 612 d = SYS_BUS_DEVICE(dev); 613 sysbus_realize_and_unref(d, &error_fatal); 614 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 615 616 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 617 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 618 } 619 } 620 621 struct setup_data { 622 uint64_t next; 623 uint32_t type; 624 uint32_t len; 625 uint8_t data[]; 626 } __attribute__((packed)); 627 628 629 /* 630 * The entry point into the kernel for PVH boot is different from 631 * the native entry point. The PVH entry is defined by the x86/HVM 632 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 633 * 634 * This function is passed to load_elf() when it is called from 635 * load_elfboot() which then additionally checks for an ELF Note of 636 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 637 * parse the PVH entry address from the ELF Note. 638 * 639 * Due to trickery in elf_opts.h, load_elf() is actually available as 640 * load_elf32() or load_elf64() and this routine needs to be able 641 * to deal with being called as 32 or 64 bit. 642 * 643 * The address of the PVH entry point is saved to the 'pvh_start_addr' 644 * global variable. (although the entry point is 32-bit, the kernel 645 * binary can be either 32-bit or 64-bit). 646 */ 647 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 648 { 649 size_t *elf_note_data_addr; 650 651 /* Check if ELF Note header passed in is valid */ 652 if (arg1 == NULL) { 653 return 0; 654 } 655 656 if (is64) { 657 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 658 uint64_t nhdr_size64 = sizeof(struct elf64_note); 659 uint64_t phdr_align = *(uint64_t *)arg2; 660 uint64_t nhdr_namesz = nhdr64->n_namesz; 661 662 elf_note_data_addr = 663 ((void *)nhdr64) + nhdr_size64 + 664 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 665 } else { 666 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 667 uint32_t nhdr_size32 = sizeof(struct elf32_note); 668 uint32_t phdr_align = *(uint32_t *)arg2; 669 uint32_t nhdr_namesz = nhdr32->n_namesz; 670 671 elf_note_data_addr = 672 ((void *)nhdr32) + nhdr_size32 + 673 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 674 } 675 676 pvh_start_addr = *elf_note_data_addr; 677 678 return pvh_start_addr; 679 } 680 681 static bool load_elfboot(const char *kernel_filename, 682 int kernel_file_size, 683 uint8_t *header, 684 size_t pvh_xen_start_addr, 685 FWCfgState *fw_cfg) 686 { 687 uint32_t flags = 0; 688 uint32_t mh_load_addr = 0; 689 uint32_t elf_kernel_size = 0; 690 uint64_t elf_entry; 691 uint64_t elf_low, elf_high; 692 int kernel_size; 693 694 if (ldl_p(header) != 0x464c457f) { 695 return false; /* no elfboot */ 696 } 697 698 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 699 flags = elf_is64 ? 700 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 701 702 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 703 error_report("elfboot unsupported flags = %x", flags); 704 exit(1); 705 } 706 707 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 708 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 709 NULL, &elf_note_type, &elf_entry, 710 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 711 0, 0); 712 713 if (kernel_size < 0) { 714 error_report("Error while loading elf kernel"); 715 exit(1); 716 } 717 mh_load_addr = elf_low; 718 elf_kernel_size = elf_high - elf_low; 719 720 if (pvh_start_addr == 0) { 721 error_report("Error loading uncompressed kernel without PVH ELF Note"); 722 exit(1); 723 } 724 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 725 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 726 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 727 728 return true; 729 } 730 731 void x86_load_linux(X86MachineState *x86ms, 732 FWCfgState *fw_cfg, 733 int acpi_data_size, 734 bool pvh_enabled, 735 bool linuxboot_dma_enabled) 736 { 737 uint16_t protocol; 738 int setup_size, kernel_size, cmdline_size; 739 int dtb_size, setup_data_offset; 740 uint32_t initrd_max; 741 uint8_t header[8192], *setup, *kernel; 742 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 743 FILE *f; 744 char *vmode; 745 MachineState *machine = MACHINE(x86ms); 746 struct setup_data *setup_data; 747 const char *kernel_filename = machine->kernel_filename; 748 const char *initrd_filename = machine->initrd_filename; 749 const char *dtb_filename = machine->dtb; 750 const char *kernel_cmdline = machine->kernel_cmdline; 751 752 /* Align to 16 bytes as a paranoia measure */ 753 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 754 755 /* load the kernel header */ 756 f = fopen(kernel_filename, "rb"); 757 if (!f) { 758 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 759 kernel_filename, strerror(errno)); 760 exit(1); 761 } 762 763 kernel_size = get_file_size(f); 764 if (!kernel_size || 765 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 766 MIN(ARRAY_SIZE(header), kernel_size)) { 767 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 768 kernel_filename, strerror(errno)); 769 exit(1); 770 } 771 772 /* kernel protocol version */ 773 if (ldl_p(header + 0x202) == 0x53726448) { 774 protocol = lduw_p(header + 0x206); 775 } else { 776 /* 777 * This could be a multiboot kernel. If it is, let's stop treating it 778 * like a Linux kernel. 779 * Note: some multiboot images could be in the ELF format (the same of 780 * PVH), so we try multiboot first since we check the multiboot magic 781 * header before to load it. 782 */ 783 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 784 kernel_cmdline, kernel_size, header)) { 785 return; 786 } 787 /* 788 * Check if the file is an uncompressed kernel file (ELF) and load it, 789 * saving the PVH entry point used by the x86/HVM direct boot ABI. 790 * If load_elfboot() is successful, populate the fw_cfg info. 791 */ 792 if (pvh_enabled && 793 load_elfboot(kernel_filename, kernel_size, 794 header, pvh_start_addr, fw_cfg)) { 795 fclose(f); 796 797 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 798 strlen(kernel_cmdline) + 1); 799 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 800 801 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 802 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 803 header, sizeof(header)); 804 805 /* load initrd */ 806 if (initrd_filename) { 807 GMappedFile *mapped_file; 808 gsize initrd_size; 809 gchar *initrd_data; 810 GError *gerr = NULL; 811 812 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 813 if (!mapped_file) { 814 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 815 initrd_filename, gerr->message); 816 exit(1); 817 } 818 x86ms->initrd_mapped_file = mapped_file; 819 820 initrd_data = g_mapped_file_get_contents(mapped_file); 821 initrd_size = g_mapped_file_get_length(mapped_file); 822 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 823 if (initrd_size >= initrd_max) { 824 fprintf(stderr, "qemu: initrd is too large, cannot support." 825 "(max: %"PRIu32", need %"PRId64")\n", 826 initrd_max, (uint64_t)initrd_size); 827 exit(1); 828 } 829 830 initrd_addr = (initrd_max - initrd_size) & ~4095; 831 832 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 833 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 834 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 835 initrd_size); 836 } 837 838 option_rom[nb_option_roms].bootindex = 0; 839 option_rom[nb_option_roms].name = "pvh.bin"; 840 nb_option_roms++; 841 842 return; 843 } 844 protocol = 0; 845 } 846 847 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 848 /* Low kernel */ 849 real_addr = 0x90000; 850 cmdline_addr = 0x9a000 - cmdline_size; 851 prot_addr = 0x10000; 852 } else if (protocol < 0x202) { 853 /* High but ancient kernel */ 854 real_addr = 0x90000; 855 cmdline_addr = 0x9a000 - cmdline_size; 856 prot_addr = 0x100000; 857 } else { 858 /* High and recent kernel */ 859 real_addr = 0x10000; 860 cmdline_addr = 0x20000; 861 prot_addr = 0x100000; 862 } 863 864 /* highest address for loading the initrd */ 865 if (protocol >= 0x20c && 866 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 867 /* 868 * Linux has supported initrd up to 4 GB for a very long time (2007, 869 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 870 * though it only sets initrd_max to 2 GB to "work around bootloader 871 * bugs". Luckily, QEMU firmware(which does something like bootloader) 872 * has supported this. 873 * 874 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 875 * be loaded into any address. 876 * 877 * In addition, initrd_max is uint32_t simply because QEMU doesn't 878 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 879 * field). 880 * 881 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 882 */ 883 initrd_max = UINT32_MAX; 884 } else if (protocol >= 0x203) { 885 initrd_max = ldl_p(header + 0x22c); 886 } else { 887 initrd_max = 0x37ffffff; 888 } 889 890 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 891 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 892 } 893 894 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 895 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 896 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 897 898 if (protocol >= 0x202) { 899 stl_p(header + 0x228, cmdline_addr); 900 } else { 901 stw_p(header + 0x20, 0xA33F); 902 stw_p(header + 0x22, cmdline_addr - real_addr); 903 } 904 905 /* handle vga= parameter */ 906 vmode = strstr(kernel_cmdline, "vga="); 907 if (vmode) { 908 unsigned int video_mode; 909 const char *end; 910 int ret; 911 /* skip "vga=" */ 912 vmode += 4; 913 if (!strncmp(vmode, "normal", 6)) { 914 video_mode = 0xffff; 915 } else if (!strncmp(vmode, "ext", 3)) { 916 video_mode = 0xfffe; 917 } else if (!strncmp(vmode, "ask", 3)) { 918 video_mode = 0xfffd; 919 } else { 920 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 921 if (ret != 0 || (*end && *end != ' ')) { 922 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 923 exit(1); 924 } 925 } 926 stw_p(header + 0x1fa, video_mode); 927 } 928 929 /* loader type */ 930 /* 931 * High nybble = B reserved for QEMU; low nybble is revision number. 932 * If this code is substantially changed, you may want to consider 933 * incrementing the revision. 934 */ 935 if (protocol >= 0x200) { 936 header[0x210] = 0xB0; 937 } 938 /* heap */ 939 if (protocol >= 0x201) { 940 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 941 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 942 } 943 944 /* load initrd */ 945 if (initrd_filename) { 946 GMappedFile *mapped_file; 947 gsize initrd_size; 948 gchar *initrd_data; 949 GError *gerr = NULL; 950 951 if (protocol < 0x200) { 952 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 953 exit(1); 954 } 955 956 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 957 if (!mapped_file) { 958 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 959 initrd_filename, gerr->message); 960 exit(1); 961 } 962 x86ms->initrd_mapped_file = mapped_file; 963 964 initrd_data = g_mapped_file_get_contents(mapped_file); 965 initrd_size = g_mapped_file_get_length(mapped_file); 966 if (initrd_size >= initrd_max) { 967 fprintf(stderr, "qemu: initrd is too large, cannot support." 968 "(max: %"PRIu32", need %"PRId64")\n", 969 initrd_max, (uint64_t)initrd_size); 970 exit(1); 971 } 972 973 initrd_addr = (initrd_max - initrd_size) & ~4095; 974 975 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 976 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 977 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 978 979 stl_p(header + 0x218, initrd_addr); 980 stl_p(header + 0x21c, initrd_size); 981 } 982 983 /* load kernel and setup */ 984 setup_size = header[0x1f1]; 985 if (setup_size == 0) { 986 setup_size = 4; 987 } 988 setup_size = (setup_size + 1) * 512; 989 if (setup_size > kernel_size) { 990 fprintf(stderr, "qemu: invalid kernel header\n"); 991 exit(1); 992 } 993 kernel_size -= setup_size; 994 995 setup = g_malloc(setup_size); 996 kernel = g_malloc(kernel_size); 997 fseek(f, 0, SEEK_SET); 998 if (fread(setup, 1, setup_size, f) != setup_size) { 999 fprintf(stderr, "fread() failed\n"); 1000 exit(1); 1001 } 1002 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1003 fprintf(stderr, "fread() failed\n"); 1004 exit(1); 1005 } 1006 fclose(f); 1007 1008 /* append dtb to kernel */ 1009 if (dtb_filename) { 1010 if (protocol < 0x209) { 1011 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1012 exit(1); 1013 } 1014 1015 dtb_size = get_image_size(dtb_filename); 1016 if (dtb_size <= 0) { 1017 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1018 dtb_filename, strerror(errno)); 1019 exit(1); 1020 } 1021 1022 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1023 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1024 kernel = g_realloc(kernel, kernel_size); 1025 1026 stq_p(header + 0x250, prot_addr + setup_data_offset); 1027 1028 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1029 setup_data->next = 0; 1030 setup_data->type = cpu_to_le32(SETUP_DTB); 1031 setup_data->len = cpu_to_le32(dtb_size); 1032 1033 load_image_size(dtb_filename, setup_data->data, dtb_size); 1034 } 1035 1036 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1037 1038 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1039 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1040 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1041 1042 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1043 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1044 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1045 1046 option_rom[nb_option_roms].bootindex = 0; 1047 option_rom[nb_option_roms].name = "linuxboot.bin"; 1048 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1049 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1050 } 1051 nb_option_roms++; 1052 } 1053 1054 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw) 1055 { 1056 char *filename; 1057 MemoryRegion *bios, *isa_bios; 1058 int bios_size, isa_bios_size; 1059 int ret; 1060 1061 /* BIOS load */ 1062 if (bios_name == NULL) { 1063 bios_name = BIOS_FILENAME; 1064 } 1065 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1066 if (filename) { 1067 bios_size = get_image_size(filename); 1068 } else { 1069 bios_size = -1; 1070 } 1071 if (bios_size <= 0 || 1072 (bios_size % 65536) != 0) { 1073 goto bios_error; 1074 } 1075 bios = g_malloc(sizeof(*bios)); 1076 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); 1077 if (!isapc_ram_fw) { 1078 memory_region_set_readonly(bios, true); 1079 } 1080 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 1081 if (ret != 0) { 1082 bios_error: 1083 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 1084 exit(1); 1085 } 1086 g_free(filename); 1087 1088 /* map the last 128KB of the BIOS in ISA space */ 1089 isa_bios_size = MIN(bios_size, 128 * KiB); 1090 isa_bios = g_malloc(sizeof(*isa_bios)); 1091 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 1092 bios_size - isa_bios_size, isa_bios_size); 1093 memory_region_add_subregion_overlap(rom_memory, 1094 0x100000 - isa_bios_size, 1095 isa_bios, 1096 1); 1097 if (!isapc_ram_fw) { 1098 memory_region_set_readonly(isa_bios, true); 1099 } 1100 1101 /* map all the bios at the top of memory */ 1102 memory_region_add_subregion(rom_memory, 1103 (uint32_t)(-bios_size), 1104 bios); 1105 } 1106 1107 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms) 1108 { 1109 bool smm_available = false; 1110 1111 if (x86ms->smm == ON_OFF_AUTO_OFF) { 1112 return false; 1113 } 1114 1115 if (tcg_enabled() || qtest_enabled()) { 1116 smm_available = true; 1117 } else if (kvm_enabled()) { 1118 smm_available = kvm_has_smm(); 1119 } 1120 1121 if (smm_available) { 1122 return true; 1123 } 1124 1125 if (x86ms->smm == ON_OFF_AUTO_ON) { 1126 error_report("System Management Mode not supported by this hypervisor."); 1127 exit(1); 1128 } 1129 return false; 1130 } 1131 1132 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name, 1133 void *opaque, Error **errp) 1134 { 1135 X86MachineState *x86ms = X86_MACHINE(obj); 1136 OnOffAuto smm = x86ms->smm; 1137 1138 visit_type_OnOffAuto(v, name, &smm, errp); 1139 } 1140 1141 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name, 1142 void *opaque, Error **errp) 1143 { 1144 X86MachineState *x86ms = X86_MACHINE(obj); 1145 1146 visit_type_OnOffAuto(v, name, &x86ms->smm, errp); 1147 } 1148 1149 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms) 1150 { 1151 if (x86ms->acpi == ON_OFF_AUTO_OFF) { 1152 return false; 1153 } 1154 return true; 1155 } 1156 1157 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name, 1158 void *opaque, Error **errp) 1159 { 1160 X86MachineState *x86ms = X86_MACHINE(obj); 1161 OnOffAuto acpi = x86ms->acpi; 1162 1163 visit_type_OnOffAuto(v, name, &acpi, errp); 1164 } 1165 1166 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name, 1167 void *opaque, Error **errp) 1168 { 1169 X86MachineState *x86ms = X86_MACHINE(obj); 1170 1171 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp); 1172 } 1173 1174 static void x86_machine_initfn(Object *obj) 1175 { 1176 X86MachineState *x86ms = X86_MACHINE(obj); 1177 1178 x86ms->smm = ON_OFF_AUTO_AUTO; 1179 x86ms->acpi = ON_OFF_AUTO_AUTO; 1180 x86ms->smp_dies = 1; 1181 } 1182 1183 static void x86_machine_class_init(ObjectClass *oc, void *data) 1184 { 1185 MachineClass *mc = MACHINE_CLASS(oc); 1186 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); 1187 NMIClass *nc = NMI_CLASS(oc); 1188 1189 mc->cpu_index_to_instance_props = x86_cpu_index_to_props; 1190 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; 1191 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; 1192 x86mc->compat_apic_id_mode = false; 1193 x86mc->save_tsc_khz = true; 1194 nc->nmi_monitor_handler = x86_nmi; 1195 1196 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto", 1197 x86_machine_get_smm, x86_machine_set_smm, 1198 NULL, NULL); 1199 object_class_property_set_description(oc, X86_MACHINE_SMM, 1200 "Enable SMM"); 1201 1202 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto", 1203 x86_machine_get_acpi, x86_machine_set_acpi, 1204 NULL, NULL); 1205 object_class_property_set_description(oc, X86_MACHINE_ACPI, 1206 "Enable ACPI"); 1207 } 1208 1209 static const TypeInfo x86_machine_info = { 1210 .name = TYPE_X86_MACHINE, 1211 .parent = TYPE_MACHINE, 1212 .abstract = true, 1213 .instance_size = sizeof(X86MachineState), 1214 .instance_init = x86_machine_initfn, 1215 .class_size = sizeof(X86MachineClass), 1216 .class_init = x86_machine_class_init, 1217 .interfaces = (InterfaceInfo[]) { 1218 { TYPE_NMI }, 1219 { } 1220 }, 1221 }; 1222 1223 static void x86_machine_register_types(void) 1224 { 1225 type_register_static(&x86_machine_info); 1226 } 1227 1228 type_init(x86_machine_register_types) 1229