1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/option.h" 26 #include "qemu/cutils.h" 27 #include "qemu/units.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/qmp/qerror.h" 31 #include "qapi/qapi-visit-common.h" 32 #include "qapi/visitor.h" 33 #include "sysemu/qtest.h" 34 #include "sysemu/numa.h" 35 #include "sysemu/replay.h" 36 #include "sysemu/sysemu.h" 37 #include "trace.h" 38 39 #include "hw/i386/x86.h" 40 #include "target/i386/cpu.h" 41 #include "hw/i386/topology.h" 42 #include "hw/i386/fw_cfg.h" 43 #include "hw/intc/i8259.h" 44 45 #include "hw/acpi/cpu_hotplug.h" 46 #include "hw/irq.h" 47 #include "hw/nmi.h" 48 #include "hw/loader.h" 49 #include "multiboot.h" 50 #include "elf.h" 51 #include "standard-headers/asm-x86/bootparam.h" 52 #include "config-devices.h" 53 #include "kvm_i386.h" 54 55 #define BIOS_FILENAME "bios.bin" 56 57 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 58 static size_t pvh_start_addr; 59 60 inline void init_topo_info(X86CPUTopoInfo *topo_info, 61 const X86MachineState *x86ms) 62 { 63 MachineState *ms = MACHINE(x86ms); 64 65 topo_info->nodes_per_pkg = ms->numa_state->num_nodes / ms->smp.sockets; 66 topo_info->dies_per_pkg = x86ms->smp_dies; 67 topo_info->cores_per_die = ms->smp.cores; 68 topo_info->threads_per_core = ms->smp.threads; 69 } 70 71 /* 72 * Calculates initial APIC ID for a specific CPU index 73 * 74 * Currently we need to be able to calculate the APIC ID from the CPU index 75 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 76 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 77 * all CPUs up to max_cpus. 78 */ 79 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, 80 unsigned int cpu_index) 81 { 82 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms); 83 X86CPUTopoInfo topo_info; 84 uint32_t correct_id; 85 static bool warned; 86 87 init_topo_info(&topo_info, x86ms); 88 89 correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index); 90 if (x86mc->compat_apic_id_mode) { 91 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 92 error_report("APIC IDs set in compatibility mode, " 93 "CPU topology won't match the configuration"); 94 warned = true; 95 } 96 return cpu_index; 97 } else { 98 return correct_id; 99 } 100 } 101 102 103 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 104 { 105 Object *cpu = NULL; 106 Error *local_err = NULL; 107 108 cpu = object_new(MACHINE(x86ms)->cpu_type); 109 110 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 111 object_property_set_bool(cpu, true, "realized", &local_err); 112 113 object_unref(cpu); 114 error_propagate(errp, local_err); 115 } 116 117 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 118 { 119 int i; 120 const CPUArchIdList *possible_cpus; 121 MachineState *ms = MACHINE(x86ms); 122 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 123 124 x86_cpu_set_default_version(default_cpu_version); 125 126 /* 127 * Calculates the limit to CPU APIC ID values 128 * 129 * Limit for the APIC ID value, so that all 130 * CPU APIC IDs are < x86ms->apic_id_limit. 131 * 132 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 133 */ 134 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 135 ms->smp.max_cpus - 1) + 1; 136 possible_cpus = mc->possible_cpu_arch_ids(ms); 137 for (i = 0; i < ms->smp.cpus; i++) { 138 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 139 } 140 } 141 142 CpuInstanceProperties 143 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 144 { 145 MachineClass *mc = MACHINE_GET_CLASS(ms); 146 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 147 148 assert(cpu_index < possible_cpus->len); 149 return possible_cpus->cpus[cpu_index].props; 150 } 151 152 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) 153 { 154 X86CPUTopoIDs topo_ids; 155 X86MachineState *x86ms = X86_MACHINE(ms); 156 X86CPUTopoInfo topo_info; 157 158 init_topo_info(&topo_info, x86ms); 159 160 assert(idx < ms->possible_cpus->len); 161 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 162 &topo_info, &topo_ids); 163 return topo_ids.pkg_id % ms->numa_state->num_nodes; 164 } 165 166 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) 167 { 168 X86MachineState *x86ms = X86_MACHINE(ms); 169 unsigned int max_cpus = ms->smp.max_cpus; 170 X86CPUTopoInfo topo_info; 171 int i; 172 173 if (ms->possible_cpus) { 174 /* 175 * make sure that max_cpus hasn't changed since the first use, i.e. 176 * -smp hasn't been parsed after it 177 */ 178 assert(ms->possible_cpus->len == max_cpus); 179 return ms->possible_cpus; 180 } 181 182 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 183 sizeof(CPUArchId) * max_cpus); 184 ms->possible_cpus->len = max_cpus; 185 186 init_topo_info(&topo_info, x86ms); 187 188 for (i = 0; i < ms->possible_cpus->len; i++) { 189 X86CPUTopoIDs topo_ids; 190 191 ms->possible_cpus->cpus[i].type = ms->cpu_type; 192 ms->possible_cpus->cpus[i].vcpus_count = 1; 193 ms->possible_cpus->cpus[i].arch_id = 194 x86_cpu_apic_id_from_index(x86ms, i); 195 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 196 &topo_info, &topo_ids); 197 ms->possible_cpus->cpus[i].props.has_socket_id = true; 198 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id; 199 if (x86ms->smp_dies > 1) { 200 ms->possible_cpus->cpus[i].props.has_die_id = true; 201 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id; 202 } 203 ms->possible_cpus->cpus[i].props.has_core_id = true; 204 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id; 205 ms->possible_cpus->cpus[i].props.has_thread_id = true; 206 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id; 207 } 208 return ms->possible_cpus; 209 } 210 211 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 212 { 213 /* cpu index isn't used */ 214 CPUState *cs; 215 216 CPU_FOREACH(cs) { 217 X86CPU *cpu = X86_CPU(cs); 218 219 if (!cpu->apic_state) { 220 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 221 } else { 222 apic_deliver_nmi(cpu->apic_state); 223 } 224 } 225 } 226 227 static long get_file_size(FILE *f) 228 { 229 long where, size; 230 231 /* XXX: on Unix systems, using fstat() probably makes more sense */ 232 233 where = ftell(f); 234 fseek(f, 0, SEEK_END); 235 size = ftell(f); 236 fseek(f, where, SEEK_SET); 237 238 return size; 239 } 240 241 /* TSC handling */ 242 uint64_t cpu_get_tsc(CPUX86State *env) 243 { 244 return cpu_get_ticks(); 245 } 246 247 /* IRQ handling */ 248 static void pic_irq_request(void *opaque, int irq, int level) 249 { 250 CPUState *cs = first_cpu; 251 X86CPU *cpu = X86_CPU(cs); 252 253 trace_x86_pic_interrupt(irq, level); 254 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 255 CPU_FOREACH(cs) { 256 cpu = X86_CPU(cs); 257 if (apic_accept_pic_intr(cpu->apic_state)) { 258 apic_deliver_pic_intr(cpu->apic_state, level); 259 } 260 } 261 } else { 262 if (level) { 263 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 264 } else { 265 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 266 } 267 } 268 } 269 270 qemu_irq x86_allocate_cpu_irq(void) 271 { 272 return qemu_allocate_irq(pic_irq_request, NULL, 0); 273 } 274 275 int cpu_get_pic_interrupt(CPUX86State *env) 276 { 277 X86CPU *cpu = env_archcpu(env); 278 int intno; 279 280 if (!kvm_irqchip_in_kernel()) { 281 intno = apic_get_interrupt(cpu->apic_state); 282 if (intno >= 0) { 283 return intno; 284 } 285 /* read the irq from the PIC */ 286 if (!apic_accept_pic_intr(cpu->apic_state)) { 287 return -1; 288 } 289 } 290 291 intno = pic_read_irq(isa_pic); 292 return intno; 293 } 294 295 DeviceState *cpu_get_current_apic(void) 296 { 297 if (current_cpu) { 298 X86CPU *cpu = X86_CPU(current_cpu); 299 return cpu->apic_state; 300 } else { 301 return NULL; 302 } 303 } 304 305 void gsi_handler(void *opaque, int n, int level) 306 { 307 GSIState *s = opaque; 308 309 trace_x86_gsi_interrupt(n, level); 310 if (n < ISA_NUM_IRQS) { 311 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 312 qemu_set_irq(s->i8259_irq[n], level); 313 } 314 qemu_set_irq(s->ioapic_irq[n], level); 315 } 316 317 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 318 { 319 DeviceState *dev; 320 SysBusDevice *d; 321 unsigned int i; 322 323 assert(parent_name); 324 if (kvm_ioapic_in_kernel()) { 325 dev = qdev_create(NULL, TYPE_KVM_IOAPIC); 326 } else { 327 dev = qdev_create(NULL, TYPE_IOAPIC); 328 } 329 object_property_add_child(object_resolve_path(parent_name, NULL), 330 "ioapic", OBJECT(dev), NULL); 331 qdev_init_nofail(dev); 332 d = SYS_BUS_DEVICE(dev); 333 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 334 335 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 336 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 337 } 338 } 339 340 struct setup_data { 341 uint64_t next; 342 uint32_t type; 343 uint32_t len; 344 uint8_t data[]; 345 } __attribute__((packed)); 346 347 348 /* 349 * The entry point into the kernel for PVH boot is different from 350 * the native entry point. The PVH entry is defined by the x86/HVM 351 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 352 * 353 * This function is passed to load_elf() when it is called from 354 * load_elfboot() which then additionally checks for an ELF Note of 355 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 356 * parse the PVH entry address from the ELF Note. 357 * 358 * Due to trickery in elf_opts.h, load_elf() is actually available as 359 * load_elf32() or load_elf64() and this routine needs to be able 360 * to deal with being called as 32 or 64 bit. 361 * 362 * The address of the PVH entry point is saved to the 'pvh_start_addr' 363 * global variable. (although the entry point is 32-bit, the kernel 364 * binary can be either 32-bit or 64-bit). 365 */ 366 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 367 { 368 size_t *elf_note_data_addr; 369 370 /* Check if ELF Note header passed in is valid */ 371 if (arg1 == NULL) { 372 return 0; 373 } 374 375 if (is64) { 376 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 377 uint64_t nhdr_size64 = sizeof(struct elf64_note); 378 uint64_t phdr_align = *(uint64_t *)arg2; 379 uint64_t nhdr_namesz = nhdr64->n_namesz; 380 381 elf_note_data_addr = 382 ((void *)nhdr64) + nhdr_size64 + 383 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 384 } else { 385 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 386 uint32_t nhdr_size32 = sizeof(struct elf32_note); 387 uint32_t phdr_align = *(uint32_t *)arg2; 388 uint32_t nhdr_namesz = nhdr32->n_namesz; 389 390 elf_note_data_addr = 391 ((void *)nhdr32) + nhdr_size32 + 392 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 393 } 394 395 pvh_start_addr = *elf_note_data_addr; 396 397 return pvh_start_addr; 398 } 399 400 static bool load_elfboot(const char *kernel_filename, 401 int kernel_file_size, 402 uint8_t *header, 403 size_t pvh_xen_start_addr, 404 FWCfgState *fw_cfg) 405 { 406 uint32_t flags = 0; 407 uint32_t mh_load_addr = 0; 408 uint32_t elf_kernel_size = 0; 409 uint64_t elf_entry; 410 uint64_t elf_low, elf_high; 411 int kernel_size; 412 413 if (ldl_p(header) != 0x464c457f) { 414 return false; /* no elfboot */ 415 } 416 417 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 418 flags = elf_is64 ? 419 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 420 421 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 422 error_report("elfboot unsupported flags = %x", flags); 423 exit(1); 424 } 425 426 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 427 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 428 NULL, &elf_note_type, &elf_entry, 429 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 430 0, 0); 431 432 if (kernel_size < 0) { 433 error_report("Error while loading elf kernel"); 434 exit(1); 435 } 436 mh_load_addr = elf_low; 437 elf_kernel_size = elf_high - elf_low; 438 439 if (pvh_start_addr == 0) { 440 error_report("Error loading uncompressed kernel without PVH ELF Note"); 441 exit(1); 442 } 443 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 444 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 445 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 446 447 return true; 448 } 449 450 void x86_load_linux(X86MachineState *x86ms, 451 FWCfgState *fw_cfg, 452 int acpi_data_size, 453 bool pvh_enabled, 454 bool linuxboot_dma_enabled) 455 { 456 uint16_t protocol; 457 int setup_size, kernel_size, cmdline_size; 458 int dtb_size, setup_data_offset; 459 uint32_t initrd_max; 460 uint8_t header[8192], *setup, *kernel; 461 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 462 FILE *f; 463 char *vmode; 464 MachineState *machine = MACHINE(x86ms); 465 struct setup_data *setup_data; 466 const char *kernel_filename = machine->kernel_filename; 467 const char *initrd_filename = machine->initrd_filename; 468 const char *dtb_filename = machine->dtb; 469 const char *kernel_cmdline = machine->kernel_cmdline; 470 471 /* Align to 16 bytes as a paranoia measure */ 472 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 473 474 /* load the kernel header */ 475 f = fopen(kernel_filename, "rb"); 476 if (!f) { 477 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 478 kernel_filename, strerror(errno)); 479 exit(1); 480 } 481 482 kernel_size = get_file_size(f); 483 if (!kernel_size || 484 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 485 MIN(ARRAY_SIZE(header), kernel_size)) { 486 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 487 kernel_filename, strerror(errno)); 488 exit(1); 489 } 490 491 /* kernel protocol version */ 492 if (ldl_p(header + 0x202) == 0x53726448) { 493 protocol = lduw_p(header + 0x206); 494 } else { 495 /* 496 * This could be a multiboot kernel. If it is, let's stop treating it 497 * like a Linux kernel. 498 * Note: some multiboot images could be in the ELF format (the same of 499 * PVH), so we try multiboot first since we check the multiboot magic 500 * header before to load it. 501 */ 502 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 503 kernel_cmdline, kernel_size, header)) { 504 return; 505 } 506 /* 507 * Check if the file is an uncompressed kernel file (ELF) and load it, 508 * saving the PVH entry point used by the x86/HVM direct boot ABI. 509 * If load_elfboot() is successful, populate the fw_cfg info. 510 */ 511 if (pvh_enabled && 512 load_elfboot(kernel_filename, kernel_size, 513 header, pvh_start_addr, fw_cfg)) { 514 fclose(f); 515 516 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 517 strlen(kernel_cmdline) + 1); 518 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 519 520 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 521 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 522 header, sizeof(header)); 523 524 /* load initrd */ 525 if (initrd_filename) { 526 GMappedFile *mapped_file; 527 gsize initrd_size; 528 gchar *initrd_data; 529 GError *gerr = NULL; 530 531 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 532 if (!mapped_file) { 533 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 534 initrd_filename, gerr->message); 535 exit(1); 536 } 537 x86ms->initrd_mapped_file = mapped_file; 538 539 initrd_data = g_mapped_file_get_contents(mapped_file); 540 initrd_size = g_mapped_file_get_length(mapped_file); 541 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 542 if (initrd_size >= initrd_max) { 543 fprintf(stderr, "qemu: initrd is too large, cannot support." 544 "(max: %"PRIu32", need %"PRId64")\n", 545 initrd_max, (uint64_t)initrd_size); 546 exit(1); 547 } 548 549 initrd_addr = (initrd_max - initrd_size) & ~4095; 550 551 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 552 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 553 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 554 initrd_size); 555 } 556 557 option_rom[nb_option_roms].bootindex = 0; 558 option_rom[nb_option_roms].name = "pvh.bin"; 559 nb_option_roms++; 560 561 return; 562 } 563 protocol = 0; 564 } 565 566 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 567 /* Low kernel */ 568 real_addr = 0x90000; 569 cmdline_addr = 0x9a000 - cmdline_size; 570 prot_addr = 0x10000; 571 } else if (protocol < 0x202) { 572 /* High but ancient kernel */ 573 real_addr = 0x90000; 574 cmdline_addr = 0x9a000 - cmdline_size; 575 prot_addr = 0x100000; 576 } else { 577 /* High and recent kernel */ 578 real_addr = 0x10000; 579 cmdline_addr = 0x20000; 580 prot_addr = 0x100000; 581 } 582 583 /* highest address for loading the initrd */ 584 if (protocol >= 0x20c && 585 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 586 /* 587 * Linux has supported initrd up to 4 GB for a very long time (2007, 588 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 589 * though it only sets initrd_max to 2 GB to "work around bootloader 590 * bugs". Luckily, QEMU firmware(which does something like bootloader) 591 * has supported this. 592 * 593 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 594 * be loaded into any address. 595 * 596 * In addition, initrd_max is uint32_t simply because QEMU doesn't 597 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 598 * field). 599 * 600 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 601 */ 602 initrd_max = UINT32_MAX; 603 } else if (protocol >= 0x203) { 604 initrd_max = ldl_p(header + 0x22c); 605 } else { 606 initrd_max = 0x37ffffff; 607 } 608 609 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 610 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 611 } 612 613 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 614 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 615 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 616 617 if (protocol >= 0x202) { 618 stl_p(header + 0x228, cmdline_addr); 619 } else { 620 stw_p(header + 0x20, 0xA33F); 621 stw_p(header + 0x22, cmdline_addr - real_addr); 622 } 623 624 /* handle vga= parameter */ 625 vmode = strstr(kernel_cmdline, "vga="); 626 if (vmode) { 627 unsigned int video_mode; 628 const char *end; 629 int ret; 630 /* skip "vga=" */ 631 vmode += 4; 632 if (!strncmp(vmode, "normal", 6)) { 633 video_mode = 0xffff; 634 } else if (!strncmp(vmode, "ext", 3)) { 635 video_mode = 0xfffe; 636 } else if (!strncmp(vmode, "ask", 3)) { 637 video_mode = 0xfffd; 638 } else { 639 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 640 if (ret != 0 || (*end && *end != ' ')) { 641 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 642 exit(1); 643 } 644 } 645 stw_p(header + 0x1fa, video_mode); 646 } 647 648 /* loader type */ 649 /* 650 * High nybble = B reserved for QEMU; low nybble is revision number. 651 * If this code is substantially changed, you may want to consider 652 * incrementing the revision. 653 */ 654 if (protocol >= 0x200) { 655 header[0x210] = 0xB0; 656 } 657 /* heap */ 658 if (protocol >= 0x201) { 659 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 660 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 661 } 662 663 /* load initrd */ 664 if (initrd_filename) { 665 GMappedFile *mapped_file; 666 gsize initrd_size; 667 gchar *initrd_data; 668 GError *gerr = NULL; 669 670 if (protocol < 0x200) { 671 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 672 exit(1); 673 } 674 675 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 676 if (!mapped_file) { 677 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 678 initrd_filename, gerr->message); 679 exit(1); 680 } 681 x86ms->initrd_mapped_file = mapped_file; 682 683 initrd_data = g_mapped_file_get_contents(mapped_file); 684 initrd_size = g_mapped_file_get_length(mapped_file); 685 if (initrd_size >= initrd_max) { 686 fprintf(stderr, "qemu: initrd is too large, cannot support." 687 "(max: %"PRIu32", need %"PRId64")\n", 688 initrd_max, (uint64_t)initrd_size); 689 exit(1); 690 } 691 692 initrd_addr = (initrd_max - initrd_size) & ~4095; 693 694 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 695 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 696 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 697 698 stl_p(header + 0x218, initrd_addr); 699 stl_p(header + 0x21c, initrd_size); 700 } 701 702 /* load kernel and setup */ 703 setup_size = header[0x1f1]; 704 if (setup_size == 0) { 705 setup_size = 4; 706 } 707 setup_size = (setup_size + 1) * 512; 708 if (setup_size > kernel_size) { 709 fprintf(stderr, "qemu: invalid kernel header\n"); 710 exit(1); 711 } 712 kernel_size -= setup_size; 713 714 setup = g_malloc(setup_size); 715 kernel = g_malloc(kernel_size); 716 fseek(f, 0, SEEK_SET); 717 if (fread(setup, 1, setup_size, f) != setup_size) { 718 fprintf(stderr, "fread() failed\n"); 719 exit(1); 720 } 721 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 722 fprintf(stderr, "fread() failed\n"); 723 exit(1); 724 } 725 fclose(f); 726 727 /* append dtb to kernel */ 728 if (dtb_filename) { 729 if (protocol < 0x209) { 730 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 731 exit(1); 732 } 733 734 dtb_size = get_image_size(dtb_filename); 735 if (dtb_size <= 0) { 736 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 737 dtb_filename, strerror(errno)); 738 exit(1); 739 } 740 741 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 742 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 743 kernel = g_realloc(kernel, kernel_size); 744 745 stq_p(header + 0x250, prot_addr + setup_data_offset); 746 747 setup_data = (struct setup_data *)(kernel + setup_data_offset); 748 setup_data->next = 0; 749 setup_data->type = cpu_to_le32(SETUP_DTB); 750 setup_data->len = cpu_to_le32(dtb_size); 751 752 load_image_size(dtb_filename, setup_data->data, dtb_size); 753 } 754 755 memcpy(setup, header, MIN(sizeof(header), setup_size)); 756 757 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 758 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 759 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 760 761 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 762 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 763 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 764 765 option_rom[nb_option_roms].bootindex = 0; 766 option_rom[nb_option_roms].name = "linuxboot.bin"; 767 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 768 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 769 } 770 nb_option_roms++; 771 } 772 773 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw) 774 { 775 char *filename; 776 MemoryRegion *bios, *isa_bios; 777 int bios_size, isa_bios_size; 778 int ret; 779 780 /* BIOS load */ 781 if (bios_name == NULL) { 782 bios_name = BIOS_FILENAME; 783 } 784 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 785 if (filename) { 786 bios_size = get_image_size(filename); 787 } else { 788 bios_size = -1; 789 } 790 if (bios_size <= 0 || 791 (bios_size % 65536) != 0) { 792 goto bios_error; 793 } 794 bios = g_malloc(sizeof(*bios)); 795 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); 796 if (!isapc_ram_fw) { 797 memory_region_set_readonly(bios, true); 798 } 799 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 800 if (ret != 0) { 801 bios_error: 802 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 803 exit(1); 804 } 805 g_free(filename); 806 807 /* map the last 128KB of the BIOS in ISA space */ 808 isa_bios_size = MIN(bios_size, 128 * KiB); 809 isa_bios = g_malloc(sizeof(*isa_bios)); 810 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 811 bios_size - isa_bios_size, isa_bios_size); 812 memory_region_add_subregion_overlap(rom_memory, 813 0x100000 - isa_bios_size, 814 isa_bios, 815 1); 816 if (!isapc_ram_fw) { 817 memory_region_set_readonly(isa_bios, true); 818 } 819 820 /* map all the bios at the top of memory */ 821 memory_region_add_subregion(rom_memory, 822 (uint32_t)(-bios_size), 823 bios); 824 } 825 826 static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 827 const char *name, void *opaque, 828 Error **errp) 829 { 830 X86MachineState *x86ms = X86_MACHINE(obj); 831 uint64_t value = x86ms->max_ram_below_4g; 832 833 visit_type_size(v, name, &value, errp); 834 } 835 836 static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 837 const char *name, void *opaque, 838 Error **errp) 839 { 840 X86MachineState *x86ms = X86_MACHINE(obj); 841 Error *error = NULL; 842 uint64_t value; 843 844 visit_type_size(v, name, &value, &error); 845 if (error) { 846 error_propagate(errp, error); 847 return; 848 } 849 if (value > 4 * GiB) { 850 error_setg(&error, 851 "Machine option 'max-ram-below-4g=%"PRIu64 852 "' expects size less than or equal to 4G", value); 853 error_propagate(errp, error); 854 return; 855 } 856 857 if (value < 1 * MiB) { 858 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 859 "BIOS may not work with less than 1MiB", value); 860 } 861 862 x86ms->max_ram_below_4g = value; 863 } 864 865 bool x86_machine_is_smm_enabled(X86MachineState *x86ms) 866 { 867 bool smm_available = false; 868 869 if (x86ms->smm == ON_OFF_AUTO_OFF) { 870 return false; 871 } 872 873 if (tcg_enabled() || qtest_enabled()) { 874 smm_available = true; 875 } else if (kvm_enabled()) { 876 smm_available = kvm_has_smm(); 877 } 878 879 if (smm_available) { 880 return true; 881 } 882 883 if (x86ms->smm == ON_OFF_AUTO_ON) { 884 error_report("System Management Mode not supported by this hypervisor."); 885 exit(1); 886 } 887 return false; 888 } 889 890 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name, 891 void *opaque, Error **errp) 892 { 893 X86MachineState *x86ms = X86_MACHINE(obj); 894 OnOffAuto smm = x86ms->smm; 895 896 visit_type_OnOffAuto(v, name, &smm, errp); 897 } 898 899 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name, 900 void *opaque, Error **errp) 901 { 902 X86MachineState *x86ms = X86_MACHINE(obj); 903 904 visit_type_OnOffAuto(v, name, &x86ms->smm, errp); 905 } 906 907 static void x86_machine_initfn(Object *obj) 908 { 909 X86MachineState *x86ms = X86_MACHINE(obj); 910 911 x86ms->smm = ON_OFF_AUTO_AUTO; 912 x86ms->max_ram_below_4g = 0; /* use default */ 913 x86ms->smp_dies = 1; 914 } 915 916 static void x86_machine_class_init(ObjectClass *oc, void *data) 917 { 918 MachineClass *mc = MACHINE_CLASS(oc); 919 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); 920 NMIClass *nc = NMI_CLASS(oc); 921 922 mc->cpu_index_to_instance_props = x86_cpu_index_to_props; 923 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; 924 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; 925 x86mc->compat_apic_id_mode = false; 926 x86mc->save_tsc_khz = true; 927 nc->nmi_monitor_handler = x86_nmi; 928 929 object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size", 930 x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g, 931 NULL, NULL, &error_abort); 932 object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G, 933 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 934 935 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto", 936 x86_machine_get_smm, x86_machine_set_smm, 937 NULL, NULL, &error_abort); 938 object_class_property_set_description(oc, X86_MACHINE_SMM, 939 "Enable SMM", &error_abort); 940 } 941 942 static const TypeInfo x86_machine_info = { 943 .name = TYPE_X86_MACHINE, 944 .parent = TYPE_MACHINE, 945 .abstract = true, 946 .instance_size = sizeof(X86MachineState), 947 .instance_init = x86_machine_initfn, 948 .class_size = sizeof(X86MachineClass), 949 .class_init = x86_machine_class_init, 950 .interfaces = (InterfaceInfo[]) { 951 { TYPE_NMI }, 952 { } 953 }, 954 }; 955 956 static void x86_machine_register_types(void) 957 { 958 type_register_static(&x86_machine_info); 959 } 960 961 type_init(x86_machine_register_types) 962