xref: /openbmc/qemu/hw/i386/x86.c (revision 4f8f199fa569492bb07efee02489f521629d275d)
1  /*
2   * Copyright (c) 2003-2004 Fabrice Bellard
3   * Copyright (c) 2019 Red Hat, Inc.
4   *
5   * Permission is hereby granted, free of charge, to any person obtaining a copy
6   * of this software and associated documentation files (the "Software"), to deal
7   * in the Software without restriction, including without limitation the rights
8   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9   * copies of the Software, and to permit persons to whom the Software is
10   * furnished to do so, subject to the following conditions:
11   *
12   * The above copyright notice and this permission notice shall be included in
13   * all copies or substantial portions of the Software.
14   *
15   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21   * THE SOFTWARE.
22   */
23  #include "qemu/osdep.h"
24  #include "qemu/error-report.h"
25  #include "qemu/option.h"
26  #include "qemu/cutils.h"
27  #include "qemu/units.h"
28  #include "qemu/datadir.h"
29  #include "qapi/error.h"
30  #include "qapi/qapi-visit-common.h"
31  #include "qapi/clone-visitor.h"
32  #include "qapi/qapi-visit-machine.h"
33  #include "qapi/visitor.h"
34  #include "sysemu/qtest.h"
35  #include "sysemu/whpx.h"
36  #include "sysemu/numa.h"
37  #include "sysemu/replay.h"
38  #include "sysemu/sysemu.h"
39  #include "sysemu/cpu-timers.h"
40  #include "sysemu/xen.h"
41  #include "trace.h"
42  
43  #include "hw/i386/x86.h"
44  #include "target/i386/cpu.h"
45  #include "hw/i386/topology.h"
46  #include "hw/i386/fw_cfg.h"
47  #include "hw/intc/i8259.h"
48  #include "hw/rtc/mc146818rtc.h"
49  #include "target/i386/sev.h"
50  
51  #include "hw/acpi/cpu_hotplug.h"
52  #include "hw/irq.h"
53  #include "hw/nmi.h"
54  #include "hw/loader.h"
55  #include "multiboot.h"
56  #include "elf.h"
57  #include "standard-headers/asm-x86/bootparam.h"
58  #include CONFIG_DEVICES
59  #include "kvm/kvm_i386.h"
60  
61  #ifdef CONFIG_XEN_EMU
62  #include "hw/xen/xen.h"
63  #include "hw/i386/kvm/xen_evtchn.h"
64  #endif
65  
66  /* Physical Address of PVH entry point read from kernel ELF NOTE */
67  static size_t pvh_start_addr;
68  
69  static void init_topo_info(X86CPUTopoInfo *topo_info,
70                             const X86MachineState *x86ms)
71  {
72      MachineState *ms = MACHINE(x86ms);
73  
74      topo_info->dies_per_pkg = ms->smp.dies;
75      topo_info->cores_per_die = ms->smp.cores;
76      topo_info->threads_per_core = ms->smp.threads;
77  }
78  
79  /*
80   * Calculates initial APIC ID for a specific CPU index
81   *
82   * Currently we need to be able to calculate the APIC ID from the CPU index
83   * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
84   * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
85   * all CPUs up to max_cpus.
86   */
87  uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
88                                      unsigned int cpu_index)
89  {
90      X86CPUTopoInfo topo_info;
91  
92      init_topo_info(&topo_info, x86ms);
93  
94      return x86_apicid_from_cpu_idx(&topo_info, cpu_index);
95  }
96  
97  
98  void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
99  {
100      Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
101  
102      if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
103          goto out;
104      }
105      qdev_realize(DEVICE(cpu), NULL, errp);
106  
107  out:
108      object_unref(cpu);
109  }
110  
111  void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
112  {
113      int i;
114      const CPUArchIdList *possible_cpus;
115      MachineState *ms = MACHINE(x86ms);
116      MachineClass *mc = MACHINE_GET_CLASS(x86ms);
117  
118      x86_cpu_set_default_version(default_cpu_version);
119  
120      /*
121       * Calculates the limit to CPU APIC ID values
122       *
123       * Limit for the APIC ID value, so that all
124       * CPU APIC IDs are < x86ms->apic_id_limit.
125       *
126       * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
127       */
128      x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
129                                                        ms->smp.max_cpus - 1) + 1;
130  
131      /*
132       * Can we support APIC ID 255 or higher?  With KVM, that requires
133       * both in-kernel lapic and X2APIC userspace API.
134       *
135       * kvm_enabled() must go first to ensure that kvm_* references are
136       * not emitted for the linker to consume (kvm_enabled() is
137       * a literal `0` in configurations where kvm_* aren't defined)
138       */
139      if (kvm_enabled() && x86ms->apic_id_limit > 255 &&
140          kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) {
141          error_report("current -smp configuration requires kernel "
142                       "irqchip and X2APIC API support.");
143          exit(EXIT_FAILURE);
144      }
145  
146      if (kvm_enabled()) {
147          kvm_set_max_apic_id(x86ms->apic_id_limit);
148      }
149  
150      if (!kvm_irqchip_in_kernel()) {
151          apic_set_max_apic_id(x86ms->apic_id_limit);
152      }
153  
154      possible_cpus = mc->possible_cpu_arch_ids(ms);
155      for (i = 0; i < ms->smp.cpus; i++) {
156          x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
157      }
158  }
159  
160  void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count)
161  {
162      MC146818RtcState *rtc = MC146818_RTC(s);
163  
164      if (cpus_count > 0xff) {
165          /*
166           * If the number of CPUs can't be represented in 8 bits, the
167           * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
168           * to make old BIOSes fail more predictably.
169           */
170          mc146818rtc_set_cmos_data(rtc, 0x5f, 0);
171      } else {
172          mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1);
173      }
174  }
175  
176  static int x86_apic_cmp(const void *a, const void *b)
177  {
178     CPUArchId *apic_a = (CPUArchId *)a;
179     CPUArchId *apic_b = (CPUArchId *)b;
180  
181     return apic_a->arch_id - apic_b->arch_id;
182  }
183  
184  /*
185   * returns pointer to CPUArchId descriptor that matches CPU's apic_id
186   * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
187   * entry corresponding to CPU's apic_id returns NULL.
188   */
189  CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
190  {
191      CPUArchId apic_id, *found_cpu;
192  
193      apic_id.arch_id = id;
194      found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
195          ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
196          x86_apic_cmp);
197      if (found_cpu && idx) {
198          *idx = found_cpu - ms->possible_cpus->cpus;
199      }
200      return found_cpu;
201  }
202  
203  void x86_cpu_plug(HotplugHandler *hotplug_dev,
204                    DeviceState *dev, Error **errp)
205  {
206      CPUArchId *found_cpu;
207      Error *local_err = NULL;
208      X86CPU *cpu = X86_CPU(dev);
209      X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
210  
211      if (x86ms->acpi_dev) {
212          hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
213          if (local_err) {
214              goto out;
215          }
216      }
217  
218      /* increment the number of CPUs */
219      x86ms->boot_cpus++;
220      if (x86ms->rtc) {
221          x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
222      }
223      if (x86ms->fw_cfg) {
224          fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
225      }
226  
227      found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
228      found_cpu->cpu = CPU(dev);
229  out:
230      error_propagate(errp, local_err);
231  }
232  
233  void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
234                                 DeviceState *dev, Error **errp)
235  {
236      int idx = -1;
237      X86CPU *cpu = X86_CPU(dev);
238      X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
239  
240      if (!x86ms->acpi_dev) {
241          error_setg(errp, "CPU hot unplug not supported without ACPI");
242          return;
243      }
244  
245      x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
246      assert(idx != -1);
247      if (idx == 0) {
248          error_setg(errp, "Boot CPU is unpluggable");
249          return;
250      }
251  
252      hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
253                                     errp);
254  }
255  
256  void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
257                         DeviceState *dev, Error **errp)
258  {
259      CPUArchId *found_cpu;
260      Error *local_err = NULL;
261      X86CPU *cpu = X86_CPU(dev);
262      X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
263  
264      hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
265      if (local_err) {
266          goto out;
267      }
268  
269      found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
270      found_cpu->cpu = NULL;
271      qdev_unrealize(dev);
272  
273      /* decrement the number of CPUs */
274      x86ms->boot_cpus--;
275      /* Update the number of CPUs in CMOS */
276      x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
277      fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
278   out:
279      error_propagate(errp, local_err);
280  }
281  
282  void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
283                        DeviceState *dev, Error **errp)
284  {
285      int idx;
286      CPUState *cs;
287      CPUArchId *cpu_slot;
288      X86CPUTopoIDs topo_ids;
289      X86CPU *cpu = X86_CPU(dev);
290      CPUX86State *env = &cpu->env;
291      MachineState *ms = MACHINE(hotplug_dev);
292      X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
293      unsigned int smp_cores = ms->smp.cores;
294      unsigned int smp_threads = ms->smp.threads;
295      X86CPUTopoInfo topo_info;
296  
297      if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
298          error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
299                     ms->cpu_type);
300          return;
301      }
302  
303      if (x86ms->acpi_dev) {
304          Error *local_err = NULL;
305  
306          hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
307                                   &local_err);
308          if (local_err) {
309              error_propagate(errp, local_err);
310              return;
311          }
312      }
313  
314      init_topo_info(&topo_info, x86ms);
315  
316      env->nr_dies = ms->smp.dies;
317  
318      /*
319       * If APIC ID is not set,
320       * set it based on socket/die/core/thread properties.
321       */
322      if (cpu->apic_id == UNASSIGNED_APIC_ID) {
323          int max_socket = (ms->smp.max_cpus - 1) /
324                                  smp_threads / smp_cores / ms->smp.dies;
325  
326          /*
327           * die-id was optional in QEMU 4.0 and older, so keep it optional
328           * if there's only one die per socket.
329           */
330          if (cpu->die_id < 0 && ms->smp.dies == 1) {
331              cpu->die_id = 0;
332          }
333  
334          if (cpu->socket_id < 0) {
335              error_setg(errp, "CPU socket-id is not set");
336              return;
337          } else if (cpu->socket_id > max_socket) {
338              error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
339                         cpu->socket_id, max_socket);
340              return;
341          }
342          if (cpu->die_id < 0) {
343              error_setg(errp, "CPU die-id is not set");
344              return;
345          } else if (cpu->die_id > ms->smp.dies - 1) {
346              error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
347                         cpu->die_id, ms->smp.dies - 1);
348              return;
349          }
350          if (cpu->core_id < 0) {
351              error_setg(errp, "CPU core-id is not set");
352              return;
353          } else if (cpu->core_id > (smp_cores - 1)) {
354              error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
355                         cpu->core_id, smp_cores - 1);
356              return;
357          }
358          if (cpu->thread_id < 0) {
359              error_setg(errp, "CPU thread-id is not set");
360              return;
361          } else if (cpu->thread_id > (smp_threads - 1)) {
362              error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
363                         cpu->thread_id, smp_threads - 1);
364              return;
365          }
366  
367          topo_ids.pkg_id = cpu->socket_id;
368          topo_ids.die_id = cpu->die_id;
369          topo_ids.core_id = cpu->core_id;
370          topo_ids.smt_id = cpu->thread_id;
371          cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
372      }
373  
374      cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
375      if (!cpu_slot) {
376          x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
377          error_setg(errp,
378              "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
379              " APIC ID %" PRIu32 ", valid index range 0:%d",
380              topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
381              cpu->apic_id, ms->possible_cpus->len - 1);
382          return;
383      }
384  
385      if (cpu_slot->cpu) {
386          error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
387                     idx, cpu->apic_id);
388          return;
389      }
390  
391      /* if 'address' properties socket-id/core-id/thread-id are not set, set them
392       * so that machine_query_hotpluggable_cpus would show correct values
393       */
394      /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
395       * once -smp refactoring is complete and there will be CPU private
396       * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
397      x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
398      if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
399          error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
400              " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
401              topo_ids.pkg_id);
402          return;
403      }
404      cpu->socket_id = topo_ids.pkg_id;
405  
406      if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
407          error_setg(errp, "property die-id: %u doesn't match set apic-id:"
408              " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
409          return;
410      }
411      cpu->die_id = topo_ids.die_id;
412  
413      if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
414          error_setg(errp, "property core-id: %u doesn't match set apic-id:"
415              " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
416              topo_ids.core_id);
417          return;
418      }
419      cpu->core_id = topo_ids.core_id;
420  
421      if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
422          error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
423              " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
424              topo_ids.smt_id);
425          return;
426      }
427      cpu->thread_id = topo_ids.smt_id;
428  
429      /*
430      * kvm_enabled() must go first to ensure that kvm_* references are
431      * not emitted for the linker to consume (kvm_enabled() is
432      * a literal `0` in configurations where kvm_* aren't defined)
433      */
434      if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
435          !kvm_hv_vpindex_settable()) {
436          error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
437          return;
438      }
439  
440      cs = CPU(cpu);
441      cs->cpu_index = idx;
442  
443      numa_cpu_pre_plug(cpu_slot, dev, errp);
444  }
445  
446  CpuInstanceProperties
447  x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
448  {
449      MachineClass *mc = MACHINE_GET_CLASS(ms);
450      const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
451  
452      assert(cpu_index < possible_cpus->len);
453      return possible_cpus->cpus[cpu_index].props;
454  }
455  
456  int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
457  {
458     X86CPUTopoIDs topo_ids;
459     X86MachineState *x86ms = X86_MACHINE(ms);
460     X86CPUTopoInfo topo_info;
461  
462     init_topo_info(&topo_info, x86ms);
463  
464     assert(idx < ms->possible_cpus->len);
465     x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
466                              &topo_info, &topo_ids);
467     return topo_ids.pkg_id % ms->numa_state->num_nodes;
468  }
469  
470  const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
471  {
472      X86MachineState *x86ms = X86_MACHINE(ms);
473      unsigned int max_cpus = ms->smp.max_cpus;
474      X86CPUTopoInfo topo_info;
475      int i;
476  
477      if (ms->possible_cpus) {
478          /*
479           * make sure that max_cpus hasn't changed since the first use, i.e.
480           * -smp hasn't been parsed after it
481           */
482          assert(ms->possible_cpus->len == max_cpus);
483          return ms->possible_cpus;
484      }
485  
486      ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
487                                    sizeof(CPUArchId) * max_cpus);
488      ms->possible_cpus->len = max_cpus;
489  
490      init_topo_info(&topo_info, x86ms);
491  
492      for (i = 0; i < ms->possible_cpus->len; i++) {
493          X86CPUTopoIDs topo_ids;
494  
495          ms->possible_cpus->cpus[i].type = ms->cpu_type;
496          ms->possible_cpus->cpus[i].vcpus_count = 1;
497          ms->possible_cpus->cpus[i].arch_id =
498              x86_cpu_apic_id_from_index(x86ms, i);
499          x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
500                                   &topo_info, &topo_ids);
501          ms->possible_cpus->cpus[i].props.has_socket_id = true;
502          ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
503          if (ms->smp.dies > 1) {
504              ms->possible_cpus->cpus[i].props.has_die_id = true;
505              ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
506          }
507          ms->possible_cpus->cpus[i].props.has_core_id = true;
508          ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
509          ms->possible_cpus->cpus[i].props.has_thread_id = true;
510          ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
511      }
512      return ms->possible_cpus;
513  }
514  
515  static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
516  {
517      /* cpu index isn't used */
518      CPUState *cs;
519  
520      CPU_FOREACH(cs) {
521          X86CPU *cpu = X86_CPU(cs);
522  
523          if (cpu_is_apic_enabled(cpu->apic_state)) {
524              apic_deliver_nmi(cpu->apic_state);
525          } else {
526              cpu_interrupt(cs, CPU_INTERRUPT_NMI);
527          }
528      }
529  }
530  
531  static long get_file_size(FILE *f)
532  {
533      long where, size;
534  
535      /* XXX: on Unix systems, using fstat() probably makes more sense */
536  
537      where = ftell(f);
538      fseek(f, 0, SEEK_END);
539      size = ftell(f);
540      fseek(f, where, SEEK_SET);
541  
542      return size;
543  }
544  
545  /* TSC handling */
546  uint64_t cpu_get_tsc(CPUX86State *env)
547  {
548      return cpus_get_elapsed_ticks();
549  }
550  
551  /* IRQ handling */
552  static void pic_irq_request(void *opaque, int irq, int level)
553  {
554      CPUState *cs = first_cpu;
555      X86CPU *cpu = X86_CPU(cs);
556  
557      trace_x86_pic_interrupt(irq, level);
558      if (cpu_is_apic_enabled(cpu->apic_state) && !kvm_irqchip_in_kernel() &&
559          !whpx_apic_in_platform()) {
560          CPU_FOREACH(cs) {
561              cpu = X86_CPU(cs);
562              if (apic_accept_pic_intr(cpu->apic_state)) {
563                  apic_deliver_pic_intr(cpu->apic_state, level);
564              }
565          }
566      } else {
567          if (level) {
568              cpu_interrupt(cs, CPU_INTERRUPT_HARD);
569          } else {
570              cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
571          }
572      }
573  }
574  
575  qemu_irq x86_allocate_cpu_irq(void)
576  {
577      return qemu_allocate_irq(pic_irq_request, NULL, 0);
578  }
579  
580  int cpu_get_pic_interrupt(CPUX86State *env)
581  {
582      X86CPU *cpu = env_archcpu(env);
583      int intno;
584  
585      if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
586          intno = apic_get_interrupt(cpu->apic_state);
587          if (intno >= 0) {
588              return intno;
589          }
590          /* read the irq from the PIC */
591          if (!apic_accept_pic_intr(cpu->apic_state)) {
592              return -1;
593          }
594      }
595  
596      intno = pic_read_irq(isa_pic);
597      return intno;
598  }
599  
600  DeviceState *cpu_get_current_apic(void)
601  {
602      if (current_cpu) {
603          X86CPU *cpu = X86_CPU(current_cpu);
604          return cpu->apic_state;
605      } else {
606          return NULL;
607      }
608  }
609  
610  void gsi_handler(void *opaque, int n, int level)
611  {
612      GSIState *s = opaque;
613  
614      trace_x86_gsi_interrupt(n, level);
615      switch (n) {
616      case 0 ... ISA_NUM_IRQS - 1:
617          if (s->i8259_irq[n]) {
618              /* Under KVM, Kernel will forward to both PIC and IOAPIC */
619              qemu_set_irq(s->i8259_irq[n], level);
620          }
621          /* fall through */
622      case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
623  #ifdef CONFIG_XEN_EMU
624          /*
625           * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC
626           * routing actually works properly under Xen). And then to
627           * *either* the PIRQ handling or the I/OAPIC depending on
628           * whether the former wants it.
629           */
630          if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) {
631              break;
632          }
633  #endif
634          qemu_set_irq(s->ioapic_irq[n], level);
635          break;
636      case IO_APIC_SECONDARY_IRQBASE
637          ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
638          qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
639          break;
640      }
641  }
642  
643  void ioapic_init_gsi(GSIState *gsi_state, Object *parent)
644  {
645      DeviceState *dev;
646      SysBusDevice *d;
647      unsigned int i;
648  
649      assert(parent);
650      if (kvm_ioapic_in_kernel()) {
651          dev = qdev_new(TYPE_KVM_IOAPIC);
652      } else {
653          dev = qdev_new(TYPE_IOAPIC);
654      }
655      object_property_add_child(parent, "ioapic", OBJECT(dev));
656      d = SYS_BUS_DEVICE(dev);
657      sysbus_realize_and_unref(d, &error_fatal);
658      sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
659  
660      for (i = 0; i < IOAPIC_NUM_PINS; i++) {
661          gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
662      }
663  }
664  
665  DeviceState *ioapic_init_secondary(GSIState *gsi_state)
666  {
667      DeviceState *dev;
668      SysBusDevice *d;
669      unsigned int i;
670  
671      dev = qdev_new(TYPE_IOAPIC);
672      d = SYS_BUS_DEVICE(dev);
673      sysbus_realize_and_unref(d, &error_fatal);
674      sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
675  
676      for (i = 0; i < IOAPIC_NUM_PINS; i++) {
677          gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
678      }
679      return dev;
680  }
681  
682  struct setup_data {
683      uint64_t next;
684      uint32_t type;
685      uint32_t len;
686      uint8_t data[];
687  } __attribute__((packed));
688  
689  
690  /*
691   * The entry point into the kernel for PVH boot is different from
692   * the native entry point.  The PVH entry is defined by the x86/HVM
693   * direct boot ABI and is available in an ELFNOTE in the kernel binary.
694   *
695   * This function is passed to load_elf() when it is called from
696   * load_elfboot() which then additionally checks for an ELF Note of
697   * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
698   * parse the PVH entry address from the ELF Note.
699   *
700   * Due to trickery in elf_opts.h, load_elf() is actually available as
701   * load_elf32() or load_elf64() and this routine needs to be able
702   * to deal with being called as 32 or 64 bit.
703   *
704   * The address of the PVH entry point is saved to the 'pvh_start_addr'
705   * global variable.  (although the entry point is 32-bit, the kernel
706   * binary can be either 32-bit or 64-bit).
707   */
708  static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
709  {
710      size_t *elf_note_data_addr;
711  
712      /* Check if ELF Note header passed in is valid */
713      if (arg1 == NULL) {
714          return 0;
715      }
716  
717      if (is64) {
718          struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
719          uint64_t nhdr_size64 = sizeof(struct elf64_note);
720          uint64_t phdr_align = *(uint64_t *)arg2;
721          uint64_t nhdr_namesz = nhdr64->n_namesz;
722  
723          elf_note_data_addr =
724              ((void *)nhdr64) + nhdr_size64 +
725              QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
726  
727          pvh_start_addr = *elf_note_data_addr;
728      } else {
729          struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
730          uint32_t nhdr_size32 = sizeof(struct elf32_note);
731          uint32_t phdr_align = *(uint32_t *)arg2;
732          uint32_t nhdr_namesz = nhdr32->n_namesz;
733  
734          elf_note_data_addr =
735              ((void *)nhdr32) + nhdr_size32 +
736              QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
737  
738          pvh_start_addr = *(uint32_t *)elf_note_data_addr;
739      }
740  
741      return pvh_start_addr;
742  }
743  
744  static bool load_elfboot(const char *kernel_filename,
745                           int kernel_file_size,
746                           uint8_t *header,
747                           size_t pvh_xen_start_addr,
748                           FWCfgState *fw_cfg)
749  {
750      uint32_t flags = 0;
751      uint32_t mh_load_addr = 0;
752      uint32_t elf_kernel_size = 0;
753      uint64_t elf_entry;
754      uint64_t elf_low, elf_high;
755      int kernel_size;
756  
757      if (ldl_p(header) != 0x464c457f) {
758          return false; /* no elfboot */
759      }
760  
761      bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
762      flags = elf_is64 ?
763          ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
764  
765      if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
766          error_report("elfboot unsupported flags = %x", flags);
767          exit(1);
768      }
769  
770      uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
771      kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
772                             NULL, &elf_note_type, &elf_entry,
773                             &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
774                             0, 0);
775  
776      if (kernel_size < 0) {
777          error_report("Error while loading elf kernel");
778          exit(1);
779      }
780      mh_load_addr = elf_low;
781      elf_kernel_size = elf_high - elf_low;
782  
783      if (pvh_start_addr == 0) {
784          error_report("Error loading uncompressed kernel without PVH ELF Note");
785          exit(1);
786      }
787      fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
788      fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
789      fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
790  
791      return true;
792  }
793  
794  void x86_load_linux(X86MachineState *x86ms,
795                      FWCfgState *fw_cfg,
796                      int acpi_data_size,
797                      bool pvh_enabled)
798  {
799      bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
800      uint16_t protocol;
801      int setup_size, kernel_size, cmdline_size;
802      int dtb_size, setup_data_offset;
803      uint32_t initrd_max;
804      uint8_t header[8192], *setup, *kernel;
805      hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
806      FILE *f;
807      char *vmode;
808      MachineState *machine = MACHINE(x86ms);
809      struct setup_data *setup_data;
810      const char *kernel_filename = machine->kernel_filename;
811      const char *initrd_filename = machine->initrd_filename;
812      const char *dtb_filename = machine->dtb;
813      const char *kernel_cmdline = machine->kernel_cmdline;
814      SevKernelLoaderContext sev_load_ctx = {};
815  
816      /* Align to 16 bytes as a paranoia measure */
817      cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
818  
819      /* load the kernel header */
820      f = fopen(kernel_filename, "rb");
821      if (!f) {
822          fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
823                  kernel_filename, strerror(errno));
824          exit(1);
825      }
826  
827      kernel_size = get_file_size(f);
828      if (!kernel_size ||
829          fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
830          MIN(ARRAY_SIZE(header), kernel_size)) {
831          fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
832                  kernel_filename, strerror(errno));
833          exit(1);
834      }
835  
836      /* kernel protocol version */
837      if (ldl_p(header + 0x202) == 0x53726448) {
838          protocol = lduw_p(header + 0x206);
839      } else {
840          /*
841           * This could be a multiboot kernel. If it is, let's stop treating it
842           * like a Linux kernel.
843           * Note: some multiboot images could be in the ELF format (the same of
844           * PVH), so we try multiboot first since we check the multiboot magic
845           * header before to load it.
846           */
847          if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
848                             kernel_cmdline, kernel_size, header)) {
849              return;
850          }
851          /*
852           * Check if the file is an uncompressed kernel file (ELF) and load it,
853           * saving the PVH entry point used by the x86/HVM direct boot ABI.
854           * If load_elfboot() is successful, populate the fw_cfg info.
855           */
856          if (pvh_enabled &&
857              load_elfboot(kernel_filename, kernel_size,
858                           header, pvh_start_addr, fw_cfg)) {
859              fclose(f);
860  
861              fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
862                  strlen(kernel_cmdline) + 1);
863              fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
864  
865              fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
866              fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
867                               header, sizeof(header));
868  
869              /* load initrd */
870              if (initrd_filename) {
871                  GMappedFile *mapped_file;
872                  gsize initrd_size;
873                  gchar *initrd_data;
874                  GError *gerr = NULL;
875  
876                  mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
877                  if (!mapped_file) {
878                      fprintf(stderr, "qemu: error reading initrd %s: %s\n",
879                              initrd_filename, gerr->message);
880                      exit(1);
881                  }
882                  x86ms->initrd_mapped_file = mapped_file;
883  
884                  initrd_data = g_mapped_file_get_contents(mapped_file);
885                  initrd_size = g_mapped_file_get_length(mapped_file);
886                  initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
887                  if (initrd_size >= initrd_max) {
888                      fprintf(stderr, "qemu: initrd is too large, cannot support."
889                              "(max: %"PRIu32", need %"PRId64")\n",
890                              initrd_max, (uint64_t)initrd_size);
891                      exit(1);
892                  }
893  
894                  initrd_addr = (initrd_max - initrd_size) & ~4095;
895  
896                  fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
897                  fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
898                  fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
899                                   initrd_size);
900              }
901  
902              option_rom[nb_option_roms].bootindex = 0;
903              option_rom[nb_option_roms].name = "pvh.bin";
904              nb_option_roms++;
905  
906              return;
907          }
908          protocol = 0;
909      }
910  
911      if (protocol < 0x200 || !(header[0x211] & 0x01)) {
912          /* Low kernel */
913          real_addr    = 0x90000;
914          cmdline_addr = 0x9a000 - cmdline_size;
915          prot_addr    = 0x10000;
916      } else if (protocol < 0x202) {
917          /* High but ancient kernel */
918          real_addr    = 0x90000;
919          cmdline_addr = 0x9a000 - cmdline_size;
920          prot_addr    = 0x100000;
921      } else {
922          /* High and recent kernel */
923          real_addr    = 0x10000;
924          cmdline_addr = 0x20000;
925          prot_addr    = 0x100000;
926      }
927  
928      /* highest address for loading the initrd */
929      if (protocol >= 0x20c &&
930          lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
931          /*
932           * Linux has supported initrd up to 4 GB for a very long time (2007,
933           * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
934           * though it only sets initrd_max to 2 GB to "work around bootloader
935           * bugs". Luckily, QEMU firmware(which does something like bootloader)
936           * has supported this.
937           *
938           * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
939           * be loaded into any address.
940           *
941           * In addition, initrd_max is uint32_t simply because QEMU doesn't
942           * support the 64-bit boot protocol (specifically the ext_ramdisk_image
943           * field).
944           *
945           * Therefore here just limit initrd_max to UINT32_MAX simply as well.
946           */
947          initrd_max = UINT32_MAX;
948      } else if (protocol >= 0x203) {
949          initrd_max = ldl_p(header + 0x22c);
950      } else {
951          initrd_max = 0x37ffffff;
952      }
953  
954      if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
955          initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
956      }
957  
958      fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
959      fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
960      fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
961      sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
962      sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
963  
964      if (protocol >= 0x202) {
965          stl_p(header + 0x228, cmdline_addr);
966      } else {
967          stw_p(header + 0x20, 0xA33F);
968          stw_p(header + 0x22, cmdline_addr - real_addr);
969      }
970  
971      /* handle vga= parameter */
972      vmode = strstr(kernel_cmdline, "vga=");
973      if (vmode) {
974          unsigned int video_mode;
975          const char *end;
976          int ret;
977          /* skip "vga=" */
978          vmode += 4;
979          if (!strncmp(vmode, "normal", 6)) {
980              video_mode = 0xffff;
981          } else if (!strncmp(vmode, "ext", 3)) {
982              video_mode = 0xfffe;
983          } else if (!strncmp(vmode, "ask", 3)) {
984              video_mode = 0xfffd;
985          } else {
986              ret = qemu_strtoui(vmode, &end, 0, &video_mode);
987              if (ret != 0 || (*end && *end != ' ')) {
988                  fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
989                  exit(1);
990              }
991          }
992          stw_p(header + 0x1fa, video_mode);
993      }
994  
995      /* loader type */
996      /*
997       * High nybble = B reserved for QEMU; low nybble is revision number.
998       * If this code is substantially changed, you may want to consider
999       * incrementing the revision.
1000       */
1001      if (protocol >= 0x200) {
1002          header[0x210] = 0xB0;
1003      }
1004      /* heap */
1005      if (protocol >= 0x201) {
1006          header[0x211] |= 0x80; /* CAN_USE_HEAP */
1007          stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
1008      }
1009  
1010      /* load initrd */
1011      if (initrd_filename) {
1012          GMappedFile *mapped_file;
1013          gsize initrd_size;
1014          gchar *initrd_data;
1015          GError *gerr = NULL;
1016  
1017          if (protocol < 0x200) {
1018              fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1019              exit(1);
1020          }
1021  
1022          mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
1023          if (!mapped_file) {
1024              fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1025                      initrd_filename, gerr->message);
1026              exit(1);
1027          }
1028          x86ms->initrd_mapped_file = mapped_file;
1029  
1030          initrd_data = g_mapped_file_get_contents(mapped_file);
1031          initrd_size = g_mapped_file_get_length(mapped_file);
1032          if (initrd_size >= initrd_max) {
1033              fprintf(stderr, "qemu: initrd is too large, cannot support."
1034                      "(max: %"PRIu32", need %"PRId64")\n",
1035                      initrd_max, (uint64_t)initrd_size);
1036              exit(1);
1037          }
1038  
1039          initrd_addr = (initrd_max - initrd_size) & ~4095;
1040  
1041          fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1042          fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1043          fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1044          sev_load_ctx.initrd_data = initrd_data;
1045          sev_load_ctx.initrd_size = initrd_size;
1046  
1047          stl_p(header + 0x218, initrd_addr);
1048          stl_p(header + 0x21c, initrd_size);
1049      }
1050  
1051      /* load kernel and setup */
1052      setup_size = header[0x1f1];
1053      if (setup_size == 0) {
1054          setup_size = 4;
1055      }
1056      setup_size = (setup_size + 1) * 512;
1057      if (setup_size > kernel_size) {
1058          fprintf(stderr, "qemu: invalid kernel header\n");
1059          exit(1);
1060      }
1061      kernel_size -= setup_size;
1062  
1063      setup  = g_malloc(setup_size);
1064      kernel = g_malloc(kernel_size);
1065      fseek(f, 0, SEEK_SET);
1066      if (fread(setup, 1, setup_size, f) != setup_size) {
1067          fprintf(stderr, "fread() failed\n");
1068          exit(1);
1069      }
1070      if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1071          fprintf(stderr, "fread() failed\n");
1072          exit(1);
1073      }
1074      fclose(f);
1075  
1076      /* append dtb to kernel */
1077      if (dtb_filename) {
1078          if (protocol < 0x209) {
1079              fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1080              exit(1);
1081          }
1082  
1083          dtb_size = get_image_size(dtb_filename);
1084          if (dtb_size <= 0) {
1085              fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1086                      dtb_filename, strerror(errno));
1087              exit(1);
1088          }
1089  
1090          setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1091          kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1092          kernel = g_realloc(kernel, kernel_size);
1093  
1094          stq_p(header + 0x250, prot_addr + setup_data_offset);
1095  
1096          setup_data = (struct setup_data *)(kernel + setup_data_offset);
1097          setup_data->next = 0;
1098          setup_data->type = cpu_to_le32(SETUP_DTB);
1099          setup_data->len = cpu_to_le32(dtb_size);
1100  
1101          load_image_size(dtb_filename, setup_data->data, dtb_size);
1102      }
1103  
1104      /*
1105       * If we're starting an encrypted VM, it will be OVMF based, which uses the
1106       * efi stub for booting and doesn't require any values to be placed in the
1107       * kernel header.  We therefore don't update the header so the hash of the
1108       * kernel on the other side of the fw_cfg interface matches the hash of the
1109       * file the user passed in.
1110       */
1111      if (!sev_enabled()) {
1112          memcpy(setup, header, MIN(sizeof(header), setup_size));
1113      }
1114  
1115      fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1116      fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1117      fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1118      sev_load_ctx.kernel_data = (char *)kernel;
1119      sev_load_ctx.kernel_size = kernel_size;
1120  
1121      fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1122      fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1123      fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1124      sev_load_ctx.setup_data = (char *)setup;
1125      sev_load_ctx.setup_size = setup_size;
1126  
1127      if (sev_enabled()) {
1128          sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
1129      }
1130  
1131      option_rom[nb_option_roms].bootindex = 0;
1132      option_rom[nb_option_roms].name = "linuxboot.bin";
1133      if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1134          option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1135      }
1136      nb_option_roms++;
1137  }
1138  
1139  void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
1140                         MemoryRegion *rom_memory, bool isapc_ram_fw)
1141  {
1142      const char *bios_name;
1143      char *filename;
1144      MemoryRegion *bios, *isa_bios;
1145      int bios_size, isa_bios_size;
1146      ssize_t ret;
1147  
1148      /* BIOS load */
1149      bios_name = ms->firmware ?: default_firmware;
1150      filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1151      if (filename) {
1152          bios_size = get_image_size(filename);
1153      } else {
1154          bios_size = -1;
1155      }
1156      if (bios_size <= 0 ||
1157          (bios_size % 65536) != 0) {
1158          goto bios_error;
1159      }
1160      bios = g_malloc(sizeof(*bios));
1161      memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1162      if (sev_enabled()) {
1163          /*
1164           * The concept of a "reset" simply doesn't exist for
1165           * confidential computing guests, we have to destroy and
1166           * re-launch them instead.  So there is no need to register
1167           * the firmware as rom to properly re-initialize on reset.
1168           * Just go for a straight file load instead.
1169           */
1170          void *ptr = memory_region_get_ram_ptr(bios);
1171          load_image_size(filename, ptr, bios_size);
1172          x86_firmware_configure(ptr, bios_size);
1173      } else {
1174          if (!isapc_ram_fw) {
1175              memory_region_set_readonly(bios, true);
1176          }
1177          ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1178          if (ret != 0) {
1179              goto bios_error;
1180          }
1181      }
1182      g_free(filename);
1183  
1184      /* map the last 128KB of the BIOS in ISA space */
1185      isa_bios_size = MIN(bios_size, 128 * KiB);
1186      isa_bios = g_malloc(sizeof(*isa_bios));
1187      memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1188                               bios_size - isa_bios_size, isa_bios_size);
1189      memory_region_add_subregion_overlap(rom_memory,
1190                                          0x100000 - isa_bios_size,
1191                                          isa_bios,
1192                                          1);
1193      if (!isapc_ram_fw) {
1194          memory_region_set_readonly(isa_bios, true);
1195      }
1196  
1197      /* map all the bios at the top of memory */
1198      memory_region_add_subregion(rom_memory,
1199                                  (uint32_t)(-bios_size),
1200                                  bios);
1201      return;
1202  
1203  bios_error:
1204      fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1205      exit(1);
1206  }
1207  
1208  bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1209  {
1210      bool smm_available = false;
1211  
1212      if (x86ms->smm == ON_OFF_AUTO_OFF) {
1213          return false;
1214      }
1215  
1216      if (tcg_enabled() || qtest_enabled()) {
1217          smm_available = true;
1218      } else if (kvm_enabled()) {
1219          smm_available = kvm_has_smm();
1220      }
1221  
1222      if (smm_available) {
1223          return true;
1224      }
1225  
1226      if (x86ms->smm == ON_OFF_AUTO_ON) {
1227          error_report("System Management Mode not supported by this hypervisor.");
1228          exit(1);
1229      }
1230      return false;
1231  }
1232  
1233  static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1234                                 void *opaque, Error **errp)
1235  {
1236      X86MachineState *x86ms = X86_MACHINE(obj);
1237      OnOffAuto smm = x86ms->smm;
1238  
1239      visit_type_OnOffAuto(v, name, &smm, errp);
1240  }
1241  
1242  static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1243                                 void *opaque, Error **errp)
1244  {
1245      X86MachineState *x86ms = X86_MACHINE(obj);
1246  
1247      visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1248  }
1249  
1250  bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1251  {
1252      if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1253          return false;
1254      }
1255      return true;
1256  }
1257  
1258  static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1259                                   void *opaque, Error **errp)
1260  {
1261      X86MachineState *x86ms = X86_MACHINE(obj);
1262      OnOffAuto acpi = x86ms->acpi;
1263  
1264      visit_type_OnOffAuto(v, name, &acpi, errp);
1265  }
1266  
1267  static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1268                                   void *opaque, Error **errp)
1269  {
1270      X86MachineState *x86ms = X86_MACHINE(obj);
1271  
1272      visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1273  }
1274  
1275  static void x86_machine_get_pit(Object *obj, Visitor *v, const char *name,
1276                                      void *opaque, Error **errp)
1277  {
1278      X86MachineState *x86ms = X86_MACHINE(obj);
1279      OnOffAuto pit = x86ms->pit;
1280  
1281      visit_type_OnOffAuto(v, name, &pit, errp);
1282  }
1283  
1284  static void x86_machine_set_pit(Object *obj, Visitor *v, const char *name,
1285                                      void *opaque, Error **errp)
1286  {
1287      X86MachineState *x86ms = X86_MACHINE(obj);;
1288  
1289      visit_type_OnOffAuto(v, name, &x86ms->pit, errp);
1290  }
1291  
1292  static void x86_machine_get_pic(Object *obj, Visitor *v, const char *name,
1293                                  void *opaque, Error **errp)
1294  {
1295      X86MachineState *x86ms = X86_MACHINE(obj);
1296      OnOffAuto pic = x86ms->pic;
1297  
1298      visit_type_OnOffAuto(v, name, &pic, errp);
1299  }
1300  
1301  static void x86_machine_set_pic(Object *obj, Visitor *v, const char *name,
1302                                  void *opaque, Error **errp)
1303  {
1304      X86MachineState *x86ms = X86_MACHINE(obj);
1305  
1306      visit_type_OnOffAuto(v, name, &x86ms->pic, errp);
1307  }
1308  
1309  static char *x86_machine_get_oem_id(Object *obj, Error **errp)
1310  {
1311      X86MachineState *x86ms = X86_MACHINE(obj);
1312  
1313      return g_strdup(x86ms->oem_id);
1314  }
1315  
1316  static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp)
1317  {
1318      X86MachineState *x86ms = X86_MACHINE(obj);
1319      size_t len = strlen(value);
1320  
1321      if (len > 6) {
1322          error_setg(errp,
1323                     "User specified "X86_MACHINE_OEM_ID" value is bigger than "
1324                     "6 bytes in size");
1325          return;
1326      }
1327  
1328      strncpy(x86ms->oem_id, value, 6);
1329  }
1330  
1331  static char *x86_machine_get_oem_table_id(Object *obj, Error **errp)
1332  {
1333      X86MachineState *x86ms = X86_MACHINE(obj);
1334  
1335      return g_strdup(x86ms->oem_table_id);
1336  }
1337  
1338  static void x86_machine_set_oem_table_id(Object *obj, const char *value,
1339                                           Error **errp)
1340  {
1341      X86MachineState *x86ms = X86_MACHINE(obj);
1342      size_t len = strlen(value);
1343  
1344      if (len > 8) {
1345          error_setg(errp,
1346                     "User specified "X86_MACHINE_OEM_TABLE_ID
1347                     " value is bigger than "
1348                     "8 bytes in size");
1349          return;
1350      }
1351      strncpy(x86ms->oem_table_id, value, 8);
1352  }
1353  
1354  static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v,
1355                                  const char *name, void *opaque, Error **errp)
1356  {
1357      X86MachineState *x86ms = X86_MACHINE(obj);
1358      uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit;
1359  
1360      visit_type_uint64(v, name, &bus_lock_ratelimit, errp);
1361  }
1362  
1363  static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v,
1364                                 const char *name, void *opaque, Error **errp)
1365  {
1366      X86MachineState *x86ms = X86_MACHINE(obj);
1367  
1368      visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp);
1369  }
1370  
1371  static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name,
1372                                  void *opaque, Error **errp)
1373  {
1374      X86MachineState *x86ms = X86_MACHINE(obj);
1375      SgxEPCList *list = x86ms->sgx_epc_list;
1376  
1377      visit_type_SgxEPCList(v, name, &list, errp);
1378  }
1379  
1380  static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name,
1381                                  void *opaque, Error **errp)
1382  {
1383      X86MachineState *x86ms = X86_MACHINE(obj);
1384      SgxEPCList *list;
1385  
1386      list = x86ms->sgx_epc_list;
1387      visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp);
1388  
1389      qapi_free_SgxEPCList(list);
1390  }
1391  
1392  static void x86_machine_initfn(Object *obj)
1393  {
1394      X86MachineState *x86ms = X86_MACHINE(obj);
1395  
1396      x86ms->smm = ON_OFF_AUTO_AUTO;
1397      x86ms->acpi = ON_OFF_AUTO_AUTO;
1398      x86ms->pit = ON_OFF_AUTO_AUTO;
1399      x86ms->pic = ON_OFF_AUTO_AUTO;
1400      x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
1401      x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
1402      x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
1403      x86ms->bus_lock_ratelimit = 0;
1404      x86ms->above_4g_mem_start = 4 * GiB;
1405  }
1406  
1407  static void x86_machine_class_init(ObjectClass *oc, void *data)
1408  {
1409      MachineClass *mc = MACHINE_CLASS(oc);
1410      X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1411      NMIClass *nc = NMI_CLASS(oc);
1412  
1413      mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1414      mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1415      mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1416      x86mc->save_tsc_khz = true;
1417      x86mc->fwcfg_dma_enabled = true;
1418      nc->nmi_monitor_handler = x86_nmi;
1419  
1420      object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1421          x86_machine_get_smm, x86_machine_set_smm,
1422          NULL, NULL);
1423      object_class_property_set_description(oc, X86_MACHINE_SMM,
1424          "Enable SMM");
1425  
1426      object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1427          x86_machine_get_acpi, x86_machine_set_acpi,
1428          NULL, NULL);
1429      object_class_property_set_description(oc, X86_MACHINE_ACPI,
1430          "Enable ACPI");
1431  
1432      object_class_property_add(oc, X86_MACHINE_PIT, "OnOffAuto",
1433                                x86_machine_get_pit,
1434                                x86_machine_set_pit,
1435                                NULL, NULL);
1436      object_class_property_set_description(oc, X86_MACHINE_PIT,
1437          "Enable i8254 PIT");
1438  
1439      object_class_property_add(oc, X86_MACHINE_PIC, "OnOffAuto",
1440                                x86_machine_get_pic,
1441                                x86_machine_set_pic,
1442                                NULL, NULL);
1443      object_class_property_set_description(oc, X86_MACHINE_PIC,
1444          "Enable i8259 PIC");
1445  
1446      object_class_property_add_str(oc, X86_MACHINE_OEM_ID,
1447                                    x86_machine_get_oem_id,
1448                                    x86_machine_set_oem_id);
1449      object_class_property_set_description(oc, X86_MACHINE_OEM_ID,
1450                                            "Override the default value of field OEMID "
1451                                            "in ACPI table header."
1452                                            "The string may be up to 6 bytes in size");
1453  
1454  
1455      object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID,
1456                                    x86_machine_get_oem_table_id,
1457                                    x86_machine_set_oem_table_id);
1458      object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID,
1459                                            "Override the default value of field OEM Table ID "
1460                                            "in ACPI table header."
1461                                            "The string may be up to 8 bytes in size");
1462  
1463      object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t",
1464                                  x86_machine_get_bus_lock_ratelimit,
1465                                  x86_machine_set_bus_lock_ratelimit, NULL, NULL);
1466      object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT,
1467              "Set the ratelimit for the bus locks acquired in VMs");
1468  
1469      object_class_property_add(oc, "sgx-epc", "SgxEPC",
1470          machine_get_sgx_epc, machine_set_sgx_epc,
1471          NULL, NULL);
1472      object_class_property_set_description(oc, "sgx-epc",
1473          "SGX EPC device");
1474  }
1475  
1476  static const TypeInfo x86_machine_info = {
1477      .name = TYPE_X86_MACHINE,
1478      .parent = TYPE_MACHINE,
1479      .abstract = true,
1480      .instance_size = sizeof(X86MachineState),
1481      .instance_init = x86_machine_initfn,
1482      .class_size = sizeof(X86MachineClass),
1483      .class_init = x86_machine_class_init,
1484      .interfaces = (InterfaceInfo[]) {
1485           { TYPE_NMI },
1486           { }
1487      },
1488  };
1489  
1490  static void x86_machine_register_types(void)
1491  {
1492      type_register_static(&x86_machine_info);
1493  }
1494  
1495  type_init(x86_machine_register_types)
1496