1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/option.h" 26 #include "qemu/cutils.h" 27 #include "qemu/units.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/qmp/qerror.h" 31 #include "qapi/qapi-visit-common.h" 32 #include "qapi/visitor.h" 33 #include "sysemu/qtest.h" 34 #include "sysemu/numa.h" 35 #include "sysemu/replay.h" 36 #include "sysemu/sysemu.h" 37 38 #include "hw/i386/x86.h" 39 #include "target/i386/cpu.h" 40 #include "hw/i386/topology.h" 41 #include "hw/i386/fw_cfg.h" 42 43 #include "hw/acpi/cpu_hotplug.h" 44 #include "hw/nmi.h" 45 #include "hw/loader.h" 46 #include "multiboot.h" 47 #include "elf.h" 48 #include "standard-headers/asm-x86/bootparam.h" 49 50 #define BIOS_FILENAME "bios.bin" 51 52 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 53 static size_t pvh_start_addr; 54 55 /* 56 * Calculates initial APIC ID for a specific CPU index 57 * 58 * Currently we need to be able to calculate the APIC ID from the CPU index 59 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 60 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 61 * all CPUs up to max_cpus. 62 */ 63 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, 64 unsigned int cpu_index) 65 { 66 MachineState *ms = MACHINE(x86ms); 67 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms); 68 uint32_t correct_id; 69 static bool warned; 70 71 correct_id = x86_apicid_from_cpu_idx(x86ms->smp_dies, ms->smp.cores, 72 ms->smp.threads, cpu_index); 73 if (x86mc->compat_apic_id_mode) { 74 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 75 error_report("APIC IDs set in compatibility mode, " 76 "CPU topology won't match the configuration"); 77 warned = true; 78 } 79 return cpu_index; 80 } else { 81 return correct_id; 82 } 83 } 84 85 86 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 87 { 88 Object *cpu = NULL; 89 Error *local_err = NULL; 90 CPUX86State *env = NULL; 91 92 cpu = object_new(MACHINE(x86ms)->cpu_type); 93 94 env = &X86_CPU(cpu)->env; 95 env->nr_dies = x86ms->smp_dies; 96 97 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 98 object_property_set_bool(cpu, true, "realized", &local_err); 99 100 object_unref(cpu); 101 error_propagate(errp, local_err); 102 } 103 104 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 105 { 106 int i; 107 const CPUArchIdList *possible_cpus; 108 MachineState *ms = MACHINE(x86ms); 109 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 110 111 x86_cpu_set_default_version(default_cpu_version); 112 113 /* 114 * Calculates the limit to CPU APIC ID values 115 * 116 * Limit for the APIC ID value, so that all 117 * CPU APIC IDs are < x86ms->apic_id_limit. 118 * 119 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 120 */ 121 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 122 ms->smp.max_cpus - 1) + 1; 123 possible_cpus = mc->possible_cpu_arch_ids(ms); 124 for (i = 0; i < ms->smp.cpus; i++) { 125 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 126 } 127 } 128 129 CpuInstanceProperties 130 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 131 { 132 MachineClass *mc = MACHINE_GET_CLASS(ms); 133 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 134 135 assert(cpu_index < possible_cpus->len); 136 return possible_cpus->cpus[cpu_index].props; 137 } 138 139 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) 140 { 141 X86CPUTopoInfo topo; 142 X86MachineState *x86ms = X86_MACHINE(ms); 143 144 assert(idx < ms->possible_cpus->len); 145 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 146 x86ms->smp_dies, ms->smp.cores, 147 ms->smp.threads, &topo); 148 return topo.pkg_id % ms->numa_state->num_nodes; 149 } 150 151 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) 152 { 153 X86MachineState *x86ms = X86_MACHINE(ms); 154 int i; 155 unsigned int max_cpus = ms->smp.max_cpus; 156 157 if (ms->possible_cpus) { 158 /* 159 * make sure that max_cpus hasn't changed since the first use, i.e. 160 * -smp hasn't been parsed after it 161 */ 162 assert(ms->possible_cpus->len == max_cpus); 163 return ms->possible_cpus; 164 } 165 166 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 167 sizeof(CPUArchId) * max_cpus); 168 ms->possible_cpus->len = max_cpus; 169 for (i = 0; i < ms->possible_cpus->len; i++) { 170 X86CPUTopoInfo topo; 171 172 ms->possible_cpus->cpus[i].type = ms->cpu_type; 173 ms->possible_cpus->cpus[i].vcpus_count = 1; 174 ms->possible_cpus->cpus[i].arch_id = 175 x86_cpu_apic_id_from_index(x86ms, i); 176 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 177 x86ms->smp_dies, ms->smp.cores, 178 ms->smp.threads, &topo); 179 ms->possible_cpus->cpus[i].props.has_socket_id = true; 180 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 181 if (x86ms->smp_dies > 1) { 182 ms->possible_cpus->cpus[i].props.has_die_id = true; 183 ms->possible_cpus->cpus[i].props.die_id = topo.die_id; 184 } 185 ms->possible_cpus->cpus[i].props.has_core_id = true; 186 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 187 ms->possible_cpus->cpus[i].props.has_thread_id = true; 188 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 189 } 190 return ms->possible_cpus; 191 } 192 193 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 194 { 195 /* cpu index isn't used */ 196 CPUState *cs; 197 198 CPU_FOREACH(cs) { 199 X86CPU *cpu = X86_CPU(cs); 200 201 if (!cpu->apic_state) { 202 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 203 } else { 204 apic_deliver_nmi(cpu->apic_state); 205 } 206 } 207 } 208 209 static long get_file_size(FILE *f) 210 { 211 long where, size; 212 213 /* XXX: on Unix systems, using fstat() probably makes more sense */ 214 215 where = ftell(f); 216 fseek(f, 0, SEEK_END); 217 size = ftell(f); 218 fseek(f, where, SEEK_SET); 219 220 return size; 221 } 222 223 struct setup_data { 224 uint64_t next; 225 uint32_t type; 226 uint32_t len; 227 uint8_t data[0]; 228 } __attribute__((packed)); 229 230 231 /* 232 * The entry point into the kernel for PVH boot is different from 233 * the native entry point. The PVH entry is defined by the x86/HVM 234 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 235 * 236 * This function is passed to load_elf() when it is called from 237 * load_elfboot() which then additionally checks for an ELF Note of 238 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 239 * parse the PVH entry address from the ELF Note. 240 * 241 * Due to trickery in elf_opts.h, load_elf() is actually available as 242 * load_elf32() or load_elf64() and this routine needs to be able 243 * to deal with being called as 32 or 64 bit. 244 * 245 * The address of the PVH entry point is saved to the 'pvh_start_addr' 246 * global variable. (although the entry point is 32-bit, the kernel 247 * binary can be either 32-bit or 64-bit). 248 */ 249 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 250 { 251 size_t *elf_note_data_addr; 252 253 /* Check if ELF Note header passed in is valid */ 254 if (arg1 == NULL) { 255 return 0; 256 } 257 258 if (is64) { 259 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 260 uint64_t nhdr_size64 = sizeof(struct elf64_note); 261 uint64_t phdr_align = *(uint64_t *)arg2; 262 uint64_t nhdr_namesz = nhdr64->n_namesz; 263 264 elf_note_data_addr = 265 ((void *)nhdr64) + nhdr_size64 + 266 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 267 } else { 268 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 269 uint32_t nhdr_size32 = sizeof(struct elf32_note); 270 uint32_t phdr_align = *(uint32_t *)arg2; 271 uint32_t nhdr_namesz = nhdr32->n_namesz; 272 273 elf_note_data_addr = 274 ((void *)nhdr32) + nhdr_size32 + 275 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 276 } 277 278 pvh_start_addr = *elf_note_data_addr; 279 280 return pvh_start_addr; 281 } 282 283 static bool load_elfboot(const char *kernel_filename, 284 int kernel_file_size, 285 uint8_t *header, 286 size_t pvh_xen_start_addr, 287 FWCfgState *fw_cfg) 288 { 289 uint32_t flags = 0; 290 uint32_t mh_load_addr = 0; 291 uint32_t elf_kernel_size = 0; 292 uint64_t elf_entry; 293 uint64_t elf_low, elf_high; 294 int kernel_size; 295 296 if (ldl_p(header) != 0x464c457f) { 297 return false; /* no elfboot */ 298 } 299 300 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 301 flags = elf_is64 ? 302 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 303 304 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 305 error_report("elfboot unsupported flags = %x", flags); 306 exit(1); 307 } 308 309 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 310 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 311 NULL, &elf_note_type, &elf_entry, 312 &elf_low, &elf_high, 0, I386_ELF_MACHINE, 313 0, 0); 314 315 if (kernel_size < 0) { 316 error_report("Error while loading elf kernel"); 317 exit(1); 318 } 319 mh_load_addr = elf_low; 320 elf_kernel_size = elf_high - elf_low; 321 322 if (pvh_start_addr == 0) { 323 error_report("Error loading uncompressed kernel without PVH ELF Note"); 324 exit(1); 325 } 326 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 327 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 328 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 329 330 return true; 331 } 332 333 void x86_load_linux(X86MachineState *x86ms, 334 FWCfgState *fw_cfg, 335 int acpi_data_size, 336 bool pvh_enabled, 337 bool linuxboot_dma_enabled) 338 { 339 uint16_t protocol; 340 int setup_size, kernel_size, cmdline_size; 341 int dtb_size, setup_data_offset; 342 uint32_t initrd_max; 343 uint8_t header[8192], *setup, *kernel; 344 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 345 FILE *f; 346 char *vmode; 347 MachineState *machine = MACHINE(x86ms); 348 struct setup_data *setup_data; 349 const char *kernel_filename = machine->kernel_filename; 350 const char *initrd_filename = machine->initrd_filename; 351 const char *dtb_filename = machine->dtb; 352 const char *kernel_cmdline = machine->kernel_cmdline; 353 354 /* Align to 16 bytes as a paranoia measure */ 355 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 356 357 /* load the kernel header */ 358 f = fopen(kernel_filename, "rb"); 359 if (!f) { 360 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 361 kernel_filename, strerror(errno)); 362 exit(1); 363 } 364 365 kernel_size = get_file_size(f); 366 if (!kernel_size || 367 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 368 MIN(ARRAY_SIZE(header), kernel_size)) { 369 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 370 kernel_filename, strerror(errno)); 371 exit(1); 372 } 373 374 /* kernel protocol version */ 375 if (ldl_p(header + 0x202) == 0x53726448) { 376 protocol = lduw_p(header + 0x206); 377 } else { 378 /* 379 * This could be a multiboot kernel. If it is, let's stop treating it 380 * like a Linux kernel. 381 * Note: some multiboot images could be in the ELF format (the same of 382 * PVH), so we try multiboot first since we check the multiboot magic 383 * header before to load it. 384 */ 385 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 386 kernel_cmdline, kernel_size, header)) { 387 return; 388 } 389 /* 390 * Check if the file is an uncompressed kernel file (ELF) and load it, 391 * saving the PVH entry point used by the x86/HVM direct boot ABI. 392 * If load_elfboot() is successful, populate the fw_cfg info. 393 */ 394 if (pvh_enabled && 395 load_elfboot(kernel_filename, kernel_size, 396 header, pvh_start_addr, fw_cfg)) { 397 fclose(f); 398 399 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 400 strlen(kernel_cmdline) + 1); 401 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 402 403 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 404 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 405 header, sizeof(header)); 406 407 /* load initrd */ 408 if (initrd_filename) { 409 GMappedFile *mapped_file; 410 gsize initrd_size; 411 gchar *initrd_data; 412 GError *gerr = NULL; 413 414 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 415 if (!mapped_file) { 416 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 417 initrd_filename, gerr->message); 418 exit(1); 419 } 420 x86ms->initrd_mapped_file = mapped_file; 421 422 initrd_data = g_mapped_file_get_contents(mapped_file); 423 initrd_size = g_mapped_file_get_length(mapped_file); 424 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 425 if (initrd_size >= initrd_max) { 426 fprintf(stderr, "qemu: initrd is too large, cannot support." 427 "(max: %"PRIu32", need %"PRId64")\n", 428 initrd_max, (uint64_t)initrd_size); 429 exit(1); 430 } 431 432 initrd_addr = (initrd_max - initrd_size) & ~4095; 433 434 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 435 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 436 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 437 initrd_size); 438 } 439 440 option_rom[nb_option_roms].bootindex = 0; 441 option_rom[nb_option_roms].name = "pvh.bin"; 442 nb_option_roms++; 443 444 return; 445 } 446 protocol = 0; 447 } 448 449 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 450 /* Low kernel */ 451 real_addr = 0x90000; 452 cmdline_addr = 0x9a000 - cmdline_size; 453 prot_addr = 0x10000; 454 } else if (protocol < 0x202) { 455 /* High but ancient kernel */ 456 real_addr = 0x90000; 457 cmdline_addr = 0x9a000 - cmdline_size; 458 prot_addr = 0x100000; 459 } else { 460 /* High and recent kernel */ 461 real_addr = 0x10000; 462 cmdline_addr = 0x20000; 463 prot_addr = 0x100000; 464 } 465 466 /* highest address for loading the initrd */ 467 if (protocol >= 0x20c && 468 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 469 /* 470 * Linux has supported initrd up to 4 GB for a very long time (2007, 471 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 472 * though it only sets initrd_max to 2 GB to "work around bootloader 473 * bugs". Luckily, QEMU firmware(which does something like bootloader) 474 * has supported this. 475 * 476 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 477 * be loaded into any address. 478 * 479 * In addition, initrd_max is uint32_t simply because QEMU doesn't 480 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 481 * field). 482 * 483 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 484 */ 485 initrd_max = UINT32_MAX; 486 } else if (protocol >= 0x203) { 487 initrd_max = ldl_p(header + 0x22c); 488 } else { 489 initrd_max = 0x37ffffff; 490 } 491 492 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 493 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 494 } 495 496 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 497 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 498 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 499 500 if (protocol >= 0x202) { 501 stl_p(header + 0x228, cmdline_addr); 502 } else { 503 stw_p(header + 0x20, 0xA33F); 504 stw_p(header + 0x22, cmdline_addr - real_addr); 505 } 506 507 /* handle vga= parameter */ 508 vmode = strstr(kernel_cmdline, "vga="); 509 if (vmode) { 510 unsigned int video_mode; 511 int ret; 512 /* skip "vga=" */ 513 vmode += 4; 514 if (!strncmp(vmode, "normal", 6)) { 515 video_mode = 0xffff; 516 } else if (!strncmp(vmode, "ext", 3)) { 517 video_mode = 0xfffe; 518 } else if (!strncmp(vmode, "ask", 3)) { 519 video_mode = 0xfffd; 520 } else { 521 ret = qemu_strtoui(vmode, NULL, 0, &video_mode); 522 if (ret != 0) { 523 fprintf(stderr, "qemu: can't parse 'vga' parameter: %s\n", 524 strerror(-ret)); 525 exit(1); 526 } 527 } 528 stw_p(header + 0x1fa, video_mode); 529 } 530 531 /* loader type */ 532 /* 533 * High nybble = B reserved for QEMU; low nybble is revision number. 534 * If this code is substantially changed, you may want to consider 535 * incrementing the revision. 536 */ 537 if (protocol >= 0x200) { 538 header[0x210] = 0xB0; 539 } 540 /* heap */ 541 if (protocol >= 0x201) { 542 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 543 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 544 } 545 546 /* load initrd */ 547 if (initrd_filename) { 548 GMappedFile *mapped_file; 549 gsize initrd_size; 550 gchar *initrd_data; 551 GError *gerr = NULL; 552 553 if (protocol < 0x200) { 554 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 555 exit(1); 556 } 557 558 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 559 if (!mapped_file) { 560 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 561 initrd_filename, gerr->message); 562 exit(1); 563 } 564 x86ms->initrd_mapped_file = mapped_file; 565 566 initrd_data = g_mapped_file_get_contents(mapped_file); 567 initrd_size = g_mapped_file_get_length(mapped_file); 568 if (initrd_size >= initrd_max) { 569 fprintf(stderr, "qemu: initrd is too large, cannot support." 570 "(max: %"PRIu32", need %"PRId64")\n", 571 initrd_max, (uint64_t)initrd_size); 572 exit(1); 573 } 574 575 initrd_addr = (initrd_max - initrd_size) & ~4095; 576 577 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 578 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 579 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 580 581 stl_p(header + 0x218, initrd_addr); 582 stl_p(header + 0x21c, initrd_size); 583 } 584 585 /* load kernel and setup */ 586 setup_size = header[0x1f1]; 587 if (setup_size == 0) { 588 setup_size = 4; 589 } 590 setup_size = (setup_size + 1) * 512; 591 if (setup_size > kernel_size) { 592 fprintf(stderr, "qemu: invalid kernel header\n"); 593 exit(1); 594 } 595 kernel_size -= setup_size; 596 597 setup = g_malloc(setup_size); 598 kernel = g_malloc(kernel_size); 599 fseek(f, 0, SEEK_SET); 600 if (fread(setup, 1, setup_size, f) != setup_size) { 601 fprintf(stderr, "fread() failed\n"); 602 exit(1); 603 } 604 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 605 fprintf(stderr, "fread() failed\n"); 606 exit(1); 607 } 608 fclose(f); 609 610 /* append dtb to kernel */ 611 if (dtb_filename) { 612 if (protocol < 0x209) { 613 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 614 exit(1); 615 } 616 617 dtb_size = get_image_size(dtb_filename); 618 if (dtb_size <= 0) { 619 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 620 dtb_filename, strerror(errno)); 621 exit(1); 622 } 623 624 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 625 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 626 kernel = g_realloc(kernel, kernel_size); 627 628 stq_p(header + 0x250, prot_addr + setup_data_offset); 629 630 setup_data = (struct setup_data *)(kernel + setup_data_offset); 631 setup_data->next = 0; 632 setup_data->type = cpu_to_le32(SETUP_DTB); 633 setup_data->len = cpu_to_le32(dtb_size); 634 635 load_image_size(dtb_filename, setup_data->data, dtb_size); 636 } 637 638 memcpy(setup, header, MIN(sizeof(header), setup_size)); 639 640 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 641 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 642 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 643 644 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 645 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 646 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 647 648 option_rom[nb_option_roms].bootindex = 0; 649 option_rom[nb_option_roms].name = "linuxboot.bin"; 650 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 651 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 652 } 653 nb_option_roms++; 654 } 655 656 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw) 657 { 658 char *filename; 659 MemoryRegion *bios, *isa_bios; 660 int bios_size, isa_bios_size; 661 int ret; 662 663 /* BIOS load */ 664 if (bios_name == NULL) { 665 bios_name = BIOS_FILENAME; 666 } 667 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 668 if (filename) { 669 bios_size = get_image_size(filename); 670 } else { 671 bios_size = -1; 672 } 673 if (bios_size <= 0 || 674 (bios_size % 65536) != 0) { 675 goto bios_error; 676 } 677 bios = g_malloc(sizeof(*bios)); 678 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); 679 if (!isapc_ram_fw) { 680 memory_region_set_readonly(bios, true); 681 } 682 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 683 if (ret != 0) { 684 bios_error: 685 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 686 exit(1); 687 } 688 g_free(filename); 689 690 /* map the last 128KB of the BIOS in ISA space */ 691 isa_bios_size = MIN(bios_size, 128 * KiB); 692 isa_bios = g_malloc(sizeof(*isa_bios)); 693 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 694 bios_size - isa_bios_size, isa_bios_size); 695 memory_region_add_subregion_overlap(rom_memory, 696 0x100000 - isa_bios_size, 697 isa_bios, 698 1); 699 if (!isapc_ram_fw) { 700 memory_region_set_readonly(isa_bios, true); 701 } 702 703 /* map all the bios at the top of memory */ 704 memory_region_add_subregion(rom_memory, 705 (uint32_t)(-bios_size), 706 bios); 707 } 708 709 static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 710 const char *name, void *opaque, 711 Error **errp) 712 { 713 X86MachineState *x86ms = X86_MACHINE(obj); 714 uint64_t value = x86ms->max_ram_below_4g; 715 716 visit_type_size(v, name, &value, errp); 717 } 718 719 static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 720 const char *name, void *opaque, 721 Error **errp) 722 { 723 X86MachineState *x86ms = X86_MACHINE(obj); 724 Error *error = NULL; 725 uint64_t value; 726 727 visit_type_size(v, name, &value, &error); 728 if (error) { 729 error_propagate(errp, error); 730 return; 731 } 732 if (value > 4 * GiB) { 733 error_setg(&error, 734 "Machine option 'max-ram-below-4g=%"PRIu64 735 "' expects size less than or equal to 4G", value); 736 error_propagate(errp, error); 737 return; 738 } 739 740 if (value < 1 * MiB) { 741 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 742 "BIOS may not work with less than 1MiB", value); 743 } 744 745 x86ms->max_ram_below_4g = value; 746 } 747 748 static void x86_machine_initfn(Object *obj) 749 { 750 X86MachineState *x86ms = X86_MACHINE(obj); 751 752 x86ms->max_ram_below_4g = 0; /* use default */ 753 x86ms->smp_dies = 1; 754 } 755 756 static void x86_machine_class_init(ObjectClass *oc, void *data) 757 { 758 MachineClass *mc = MACHINE_CLASS(oc); 759 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); 760 NMIClass *nc = NMI_CLASS(oc); 761 762 mc->cpu_index_to_instance_props = x86_cpu_index_to_props; 763 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; 764 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; 765 x86mc->compat_apic_id_mode = false; 766 nc->nmi_monitor_handler = x86_nmi; 767 768 object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size", 769 x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g, 770 NULL, NULL, &error_abort); 771 772 object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G, 773 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 774 } 775 776 static const TypeInfo x86_machine_info = { 777 .name = TYPE_X86_MACHINE, 778 .parent = TYPE_MACHINE, 779 .abstract = true, 780 .instance_size = sizeof(X86MachineState), 781 .instance_init = x86_machine_initfn, 782 .class_size = sizeof(X86MachineClass), 783 .class_init = x86_machine_class_init, 784 .interfaces = (InterfaceInfo[]) { 785 { TYPE_NMI }, 786 { } 787 }, 788 }; 789 790 static void x86_machine_register_types(void) 791 { 792 type_register_static(&x86_machine_info); 793 } 794 795 type_init(x86_machine_register_types) 796