1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/option.h" 26 #include "qemu/cutils.h" 27 #include "qemu/units.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/qmp/qerror.h" 31 #include "qapi/qapi-visit-common.h" 32 #include "qapi/visitor.h" 33 #include "sysemu/qtest.h" 34 #include "sysemu/numa.h" 35 #include "sysemu/replay.h" 36 #include "sysemu/sysemu.h" 37 #include "trace.h" 38 39 #include "hw/i386/x86.h" 40 #include "target/i386/cpu.h" 41 #include "hw/i386/topology.h" 42 #include "hw/i386/fw_cfg.h" 43 #include "hw/intc/i8259.h" 44 45 #include "hw/acpi/cpu_hotplug.h" 46 #include "hw/irq.h" 47 #include "hw/nmi.h" 48 #include "hw/loader.h" 49 #include "multiboot.h" 50 #include "elf.h" 51 #include "standard-headers/asm-x86/bootparam.h" 52 #include "config-devices.h" 53 #include "kvm_i386.h" 54 55 #define BIOS_FILENAME "bios.bin" 56 57 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 58 static size_t pvh_start_addr; 59 60 /* 61 * Calculates initial APIC ID for a specific CPU index 62 * 63 * Currently we need to be able to calculate the APIC ID from the CPU index 64 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 65 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 66 * all CPUs up to max_cpus. 67 */ 68 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, 69 unsigned int cpu_index) 70 { 71 MachineState *ms = MACHINE(x86ms); 72 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms); 73 uint32_t correct_id; 74 static bool warned; 75 76 correct_id = x86_apicid_from_cpu_idx(x86ms->smp_dies, ms->smp.cores, 77 ms->smp.threads, cpu_index); 78 if (x86mc->compat_apic_id_mode) { 79 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 80 error_report("APIC IDs set in compatibility mode, " 81 "CPU topology won't match the configuration"); 82 warned = true; 83 } 84 return cpu_index; 85 } else { 86 return correct_id; 87 } 88 } 89 90 91 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 92 { 93 Object *cpu = NULL; 94 Error *local_err = NULL; 95 CPUX86State *env = NULL; 96 97 cpu = object_new(MACHINE(x86ms)->cpu_type); 98 99 env = &X86_CPU(cpu)->env; 100 env->nr_dies = x86ms->smp_dies; 101 102 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 103 object_property_set_bool(cpu, true, "realized", &local_err); 104 105 object_unref(cpu); 106 error_propagate(errp, local_err); 107 } 108 109 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 110 { 111 int i; 112 const CPUArchIdList *possible_cpus; 113 MachineState *ms = MACHINE(x86ms); 114 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 115 116 x86_cpu_set_default_version(default_cpu_version); 117 118 /* 119 * Calculates the limit to CPU APIC ID values 120 * 121 * Limit for the APIC ID value, so that all 122 * CPU APIC IDs are < x86ms->apic_id_limit. 123 * 124 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 125 */ 126 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 127 ms->smp.max_cpus - 1) + 1; 128 possible_cpus = mc->possible_cpu_arch_ids(ms); 129 for (i = 0; i < ms->smp.cpus; i++) { 130 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 131 } 132 } 133 134 CpuInstanceProperties 135 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 136 { 137 MachineClass *mc = MACHINE_GET_CLASS(ms); 138 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 139 140 assert(cpu_index < possible_cpus->len); 141 return possible_cpus->cpus[cpu_index].props; 142 } 143 144 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) 145 { 146 X86CPUTopoInfo topo; 147 X86MachineState *x86ms = X86_MACHINE(ms); 148 149 assert(idx < ms->possible_cpus->len); 150 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 151 x86ms->smp_dies, ms->smp.cores, 152 ms->smp.threads, &topo); 153 return topo.pkg_id % ms->numa_state->num_nodes; 154 } 155 156 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) 157 { 158 X86MachineState *x86ms = X86_MACHINE(ms); 159 int i; 160 unsigned int max_cpus = ms->smp.max_cpus; 161 162 if (ms->possible_cpus) { 163 /* 164 * make sure that max_cpus hasn't changed since the first use, i.e. 165 * -smp hasn't been parsed after it 166 */ 167 assert(ms->possible_cpus->len == max_cpus); 168 return ms->possible_cpus; 169 } 170 171 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 172 sizeof(CPUArchId) * max_cpus); 173 ms->possible_cpus->len = max_cpus; 174 for (i = 0; i < ms->possible_cpus->len; i++) { 175 X86CPUTopoInfo topo; 176 177 ms->possible_cpus->cpus[i].type = ms->cpu_type; 178 ms->possible_cpus->cpus[i].vcpus_count = 1; 179 ms->possible_cpus->cpus[i].arch_id = 180 x86_cpu_apic_id_from_index(x86ms, i); 181 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 182 x86ms->smp_dies, ms->smp.cores, 183 ms->smp.threads, &topo); 184 ms->possible_cpus->cpus[i].props.has_socket_id = true; 185 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 186 if (x86ms->smp_dies > 1) { 187 ms->possible_cpus->cpus[i].props.has_die_id = true; 188 ms->possible_cpus->cpus[i].props.die_id = topo.die_id; 189 } 190 ms->possible_cpus->cpus[i].props.has_core_id = true; 191 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 192 ms->possible_cpus->cpus[i].props.has_thread_id = true; 193 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 194 } 195 return ms->possible_cpus; 196 } 197 198 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 199 { 200 /* cpu index isn't used */ 201 CPUState *cs; 202 203 CPU_FOREACH(cs) { 204 X86CPU *cpu = X86_CPU(cs); 205 206 if (!cpu->apic_state) { 207 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 208 } else { 209 apic_deliver_nmi(cpu->apic_state); 210 } 211 } 212 } 213 214 static long get_file_size(FILE *f) 215 { 216 long where, size; 217 218 /* XXX: on Unix systems, using fstat() probably makes more sense */ 219 220 where = ftell(f); 221 fseek(f, 0, SEEK_END); 222 size = ftell(f); 223 fseek(f, where, SEEK_SET); 224 225 return size; 226 } 227 228 /* TSC handling */ 229 uint64_t cpu_get_tsc(CPUX86State *env) 230 { 231 return cpu_get_ticks(); 232 } 233 234 /* IRQ handling */ 235 static void pic_irq_request(void *opaque, int irq, int level) 236 { 237 CPUState *cs = first_cpu; 238 X86CPU *cpu = X86_CPU(cs); 239 240 trace_x86_pic_interrupt(irq, level); 241 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 242 CPU_FOREACH(cs) { 243 cpu = X86_CPU(cs); 244 if (apic_accept_pic_intr(cpu->apic_state)) { 245 apic_deliver_pic_intr(cpu->apic_state, level); 246 } 247 } 248 } else { 249 if (level) { 250 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 251 } else { 252 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 253 } 254 } 255 } 256 257 qemu_irq x86_allocate_cpu_irq(void) 258 { 259 return qemu_allocate_irq(pic_irq_request, NULL, 0); 260 } 261 262 int cpu_get_pic_interrupt(CPUX86State *env) 263 { 264 X86CPU *cpu = env_archcpu(env); 265 int intno; 266 267 if (!kvm_irqchip_in_kernel()) { 268 intno = apic_get_interrupt(cpu->apic_state); 269 if (intno >= 0) { 270 return intno; 271 } 272 /* read the irq from the PIC */ 273 if (!apic_accept_pic_intr(cpu->apic_state)) { 274 return -1; 275 } 276 } 277 278 intno = pic_read_irq(isa_pic); 279 return intno; 280 } 281 282 DeviceState *cpu_get_current_apic(void) 283 { 284 if (current_cpu) { 285 X86CPU *cpu = X86_CPU(current_cpu); 286 return cpu->apic_state; 287 } else { 288 return NULL; 289 } 290 } 291 292 void gsi_handler(void *opaque, int n, int level) 293 { 294 GSIState *s = opaque; 295 296 trace_x86_gsi_interrupt(n, level); 297 if (n < ISA_NUM_IRQS) { 298 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 299 qemu_set_irq(s->i8259_irq[n], level); 300 } 301 qemu_set_irq(s->ioapic_irq[n], level); 302 } 303 304 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 305 { 306 DeviceState *dev; 307 SysBusDevice *d; 308 unsigned int i; 309 310 assert(parent_name); 311 if (kvm_ioapic_in_kernel()) { 312 dev = qdev_create(NULL, TYPE_KVM_IOAPIC); 313 } else { 314 dev = qdev_create(NULL, TYPE_IOAPIC); 315 } 316 object_property_add_child(object_resolve_path(parent_name, NULL), 317 "ioapic", OBJECT(dev), NULL); 318 qdev_init_nofail(dev); 319 d = SYS_BUS_DEVICE(dev); 320 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 321 322 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 323 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 324 } 325 } 326 327 struct setup_data { 328 uint64_t next; 329 uint32_t type; 330 uint32_t len; 331 uint8_t data[0]; 332 } __attribute__((packed)); 333 334 335 /* 336 * The entry point into the kernel for PVH boot is different from 337 * the native entry point. The PVH entry is defined by the x86/HVM 338 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 339 * 340 * This function is passed to load_elf() when it is called from 341 * load_elfboot() which then additionally checks for an ELF Note of 342 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 343 * parse the PVH entry address from the ELF Note. 344 * 345 * Due to trickery in elf_opts.h, load_elf() is actually available as 346 * load_elf32() or load_elf64() and this routine needs to be able 347 * to deal with being called as 32 or 64 bit. 348 * 349 * The address of the PVH entry point is saved to the 'pvh_start_addr' 350 * global variable. (although the entry point is 32-bit, the kernel 351 * binary can be either 32-bit or 64-bit). 352 */ 353 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 354 { 355 size_t *elf_note_data_addr; 356 357 /* Check if ELF Note header passed in is valid */ 358 if (arg1 == NULL) { 359 return 0; 360 } 361 362 if (is64) { 363 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 364 uint64_t nhdr_size64 = sizeof(struct elf64_note); 365 uint64_t phdr_align = *(uint64_t *)arg2; 366 uint64_t nhdr_namesz = nhdr64->n_namesz; 367 368 elf_note_data_addr = 369 ((void *)nhdr64) + nhdr_size64 + 370 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 371 } else { 372 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 373 uint32_t nhdr_size32 = sizeof(struct elf32_note); 374 uint32_t phdr_align = *(uint32_t *)arg2; 375 uint32_t nhdr_namesz = nhdr32->n_namesz; 376 377 elf_note_data_addr = 378 ((void *)nhdr32) + nhdr_size32 + 379 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 380 } 381 382 pvh_start_addr = *elf_note_data_addr; 383 384 return pvh_start_addr; 385 } 386 387 static bool load_elfboot(const char *kernel_filename, 388 int kernel_file_size, 389 uint8_t *header, 390 size_t pvh_xen_start_addr, 391 FWCfgState *fw_cfg) 392 { 393 uint32_t flags = 0; 394 uint32_t mh_load_addr = 0; 395 uint32_t elf_kernel_size = 0; 396 uint64_t elf_entry; 397 uint64_t elf_low, elf_high; 398 int kernel_size; 399 400 if (ldl_p(header) != 0x464c457f) { 401 return false; /* no elfboot */ 402 } 403 404 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 405 flags = elf_is64 ? 406 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 407 408 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 409 error_report("elfboot unsupported flags = %x", flags); 410 exit(1); 411 } 412 413 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 414 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 415 NULL, &elf_note_type, &elf_entry, 416 &elf_low, &elf_high, 0, I386_ELF_MACHINE, 417 0, 0); 418 419 if (kernel_size < 0) { 420 error_report("Error while loading elf kernel"); 421 exit(1); 422 } 423 mh_load_addr = elf_low; 424 elf_kernel_size = elf_high - elf_low; 425 426 if (pvh_start_addr == 0) { 427 error_report("Error loading uncompressed kernel without PVH ELF Note"); 428 exit(1); 429 } 430 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 431 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 432 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 433 434 return true; 435 } 436 437 void x86_load_linux(X86MachineState *x86ms, 438 FWCfgState *fw_cfg, 439 int acpi_data_size, 440 bool pvh_enabled, 441 bool linuxboot_dma_enabled) 442 { 443 uint16_t protocol; 444 int setup_size, kernel_size, cmdline_size; 445 int dtb_size, setup_data_offset; 446 uint32_t initrd_max; 447 uint8_t header[8192], *setup, *kernel; 448 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 449 FILE *f; 450 char *vmode; 451 MachineState *machine = MACHINE(x86ms); 452 struct setup_data *setup_data; 453 const char *kernel_filename = machine->kernel_filename; 454 const char *initrd_filename = machine->initrd_filename; 455 const char *dtb_filename = machine->dtb; 456 const char *kernel_cmdline = machine->kernel_cmdline; 457 458 /* Align to 16 bytes as a paranoia measure */ 459 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 460 461 /* load the kernel header */ 462 f = fopen(kernel_filename, "rb"); 463 if (!f) { 464 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 465 kernel_filename, strerror(errno)); 466 exit(1); 467 } 468 469 kernel_size = get_file_size(f); 470 if (!kernel_size || 471 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 472 MIN(ARRAY_SIZE(header), kernel_size)) { 473 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 474 kernel_filename, strerror(errno)); 475 exit(1); 476 } 477 478 /* kernel protocol version */ 479 if (ldl_p(header + 0x202) == 0x53726448) { 480 protocol = lduw_p(header + 0x206); 481 } else { 482 /* 483 * This could be a multiboot kernel. If it is, let's stop treating it 484 * like a Linux kernel. 485 * Note: some multiboot images could be in the ELF format (the same of 486 * PVH), so we try multiboot first since we check the multiboot magic 487 * header before to load it. 488 */ 489 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 490 kernel_cmdline, kernel_size, header)) { 491 return; 492 } 493 /* 494 * Check if the file is an uncompressed kernel file (ELF) and load it, 495 * saving the PVH entry point used by the x86/HVM direct boot ABI. 496 * If load_elfboot() is successful, populate the fw_cfg info. 497 */ 498 if (pvh_enabled && 499 load_elfboot(kernel_filename, kernel_size, 500 header, pvh_start_addr, fw_cfg)) { 501 fclose(f); 502 503 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 504 strlen(kernel_cmdline) + 1); 505 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 506 507 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 508 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 509 header, sizeof(header)); 510 511 /* load initrd */ 512 if (initrd_filename) { 513 GMappedFile *mapped_file; 514 gsize initrd_size; 515 gchar *initrd_data; 516 GError *gerr = NULL; 517 518 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 519 if (!mapped_file) { 520 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 521 initrd_filename, gerr->message); 522 exit(1); 523 } 524 x86ms->initrd_mapped_file = mapped_file; 525 526 initrd_data = g_mapped_file_get_contents(mapped_file); 527 initrd_size = g_mapped_file_get_length(mapped_file); 528 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 529 if (initrd_size >= initrd_max) { 530 fprintf(stderr, "qemu: initrd is too large, cannot support." 531 "(max: %"PRIu32", need %"PRId64")\n", 532 initrd_max, (uint64_t)initrd_size); 533 exit(1); 534 } 535 536 initrd_addr = (initrd_max - initrd_size) & ~4095; 537 538 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 539 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 540 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 541 initrd_size); 542 } 543 544 option_rom[nb_option_roms].bootindex = 0; 545 option_rom[nb_option_roms].name = "pvh.bin"; 546 nb_option_roms++; 547 548 return; 549 } 550 protocol = 0; 551 } 552 553 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 554 /* Low kernel */ 555 real_addr = 0x90000; 556 cmdline_addr = 0x9a000 - cmdline_size; 557 prot_addr = 0x10000; 558 } else if (protocol < 0x202) { 559 /* High but ancient kernel */ 560 real_addr = 0x90000; 561 cmdline_addr = 0x9a000 - cmdline_size; 562 prot_addr = 0x100000; 563 } else { 564 /* High and recent kernel */ 565 real_addr = 0x10000; 566 cmdline_addr = 0x20000; 567 prot_addr = 0x100000; 568 } 569 570 /* highest address for loading the initrd */ 571 if (protocol >= 0x20c && 572 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 573 /* 574 * Linux has supported initrd up to 4 GB for a very long time (2007, 575 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 576 * though it only sets initrd_max to 2 GB to "work around bootloader 577 * bugs". Luckily, QEMU firmware(which does something like bootloader) 578 * has supported this. 579 * 580 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 581 * be loaded into any address. 582 * 583 * In addition, initrd_max is uint32_t simply because QEMU doesn't 584 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 585 * field). 586 * 587 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 588 */ 589 initrd_max = UINT32_MAX; 590 } else if (protocol >= 0x203) { 591 initrd_max = ldl_p(header + 0x22c); 592 } else { 593 initrd_max = 0x37ffffff; 594 } 595 596 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 597 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 598 } 599 600 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 601 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 602 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 603 604 if (protocol >= 0x202) { 605 stl_p(header + 0x228, cmdline_addr); 606 } else { 607 stw_p(header + 0x20, 0xA33F); 608 stw_p(header + 0x22, cmdline_addr - real_addr); 609 } 610 611 /* handle vga= parameter */ 612 vmode = strstr(kernel_cmdline, "vga="); 613 if (vmode) { 614 unsigned int video_mode; 615 int ret; 616 /* skip "vga=" */ 617 vmode += 4; 618 if (!strncmp(vmode, "normal", 6)) { 619 video_mode = 0xffff; 620 } else if (!strncmp(vmode, "ext", 3)) { 621 video_mode = 0xfffe; 622 } else if (!strncmp(vmode, "ask", 3)) { 623 video_mode = 0xfffd; 624 } else { 625 ret = qemu_strtoui(vmode, NULL, 0, &video_mode); 626 if (ret != 0) { 627 fprintf(stderr, "qemu: can't parse 'vga' parameter: %s\n", 628 strerror(-ret)); 629 exit(1); 630 } 631 } 632 stw_p(header + 0x1fa, video_mode); 633 } 634 635 /* loader type */ 636 /* 637 * High nybble = B reserved for QEMU; low nybble is revision number. 638 * If this code is substantially changed, you may want to consider 639 * incrementing the revision. 640 */ 641 if (protocol >= 0x200) { 642 header[0x210] = 0xB0; 643 } 644 /* heap */ 645 if (protocol >= 0x201) { 646 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 647 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 648 } 649 650 /* load initrd */ 651 if (initrd_filename) { 652 GMappedFile *mapped_file; 653 gsize initrd_size; 654 gchar *initrd_data; 655 GError *gerr = NULL; 656 657 if (protocol < 0x200) { 658 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 659 exit(1); 660 } 661 662 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 663 if (!mapped_file) { 664 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 665 initrd_filename, gerr->message); 666 exit(1); 667 } 668 x86ms->initrd_mapped_file = mapped_file; 669 670 initrd_data = g_mapped_file_get_contents(mapped_file); 671 initrd_size = g_mapped_file_get_length(mapped_file); 672 if (initrd_size >= initrd_max) { 673 fprintf(stderr, "qemu: initrd is too large, cannot support." 674 "(max: %"PRIu32", need %"PRId64")\n", 675 initrd_max, (uint64_t)initrd_size); 676 exit(1); 677 } 678 679 initrd_addr = (initrd_max - initrd_size) & ~4095; 680 681 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 682 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 683 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 684 685 stl_p(header + 0x218, initrd_addr); 686 stl_p(header + 0x21c, initrd_size); 687 } 688 689 /* load kernel and setup */ 690 setup_size = header[0x1f1]; 691 if (setup_size == 0) { 692 setup_size = 4; 693 } 694 setup_size = (setup_size + 1) * 512; 695 if (setup_size > kernel_size) { 696 fprintf(stderr, "qemu: invalid kernel header\n"); 697 exit(1); 698 } 699 kernel_size -= setup_size; 700 701 setup = g_malloc(setup_size); 702 kernel = g_malloc(kernel_size); 703 fseek(f, 0, SEEK_SET); 704 if (fread(setup, 1, setup_size, f) != setup_size) { 705 fprintf(stderr, "fread() failed\n"); 706 exit(1); 707 } 708 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 709 fprintf(stderr, "fread() failed\n"); 710 exit(1); 711 } 712 fclose(f); 713 714 /* append dtb to kernel */ 715 if (dtb_filename) { 716 if (protocol < 0x209) { 717 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 718 exit(1); 719 } 720 721 dtb_size = get_image_size(dtb_filename); 722 if (dtb_size <= 0) { 723 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 724 dtb_filename, strerror(errno)); 725 exit(1); 726 } 727 728 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 729 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 730 kernel = g_realloc(kernel, kernel_size); 731 732 stq_p(header + 0x250, prot_addr + setup_data_offset); 733 734 setup_data = (struct setup_data *)(kernel + setup_data_offset); 735 setup_data->next = 0; 736 setup_data->type = cpu_to_le32(SETUP_DTB); 737 setup_data->len = cpu_to_le32(dtb_size); 738 739 load_image_size(dtb_filename, setup_data->data, dtb_size); 740 } 741 742 memcpy(setup, header, MIN(sizeof(header), setup_size)); 743 744 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 745 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 746 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 747 748 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 749 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 750 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 751 752 option_rom[nb_option_roms].bootindex = 0; 753 option_rom[nb_option_roms].name = "linuxboot.bin"; 754 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 755 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 756 } 757 nb_option_roms++; 758 } 759 760 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw) 761 { 762 char *filename; 763 MemoryRegion *bios, *isa_bios; 764 int bios_size, isa_bios_size; 765 int ret; 766 767 /* BIOS load */ 768 if (bios_name == NULL) { 769 bios_name = BIOS_FILENAME; 770 } 771 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 772 if (filename) { 773 bios_size = get_image_size(filename); 774 } else { 775 bios_size = -1; 776 } 777 if (bios_size <= 0 || 778 (bios_size % 65536) != 0) { 779 goto bios_error; 780 } 781 bios = g_malloc(sizeof(*bios)); 782 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); 783 if (!isapc_ram_fw) { 784 memory_region_set_readonly(bios, true); 785 } 786 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 787 if (ret != 0) { 788 bios_error: 789 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 790 exit(1); 791 } 792 g_free(filename); 793 794 /* map the last 128KB of the BIOS in ISA space */ 795 isa_bios_size = MIN(bios_size, 128 * KiB); 796 isa_bios = g_malloc(sizeof(*isa_bios)); 797 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 798 bios_size - isa_bios_size, isa_bios_size); 799 memory_region_add_subregion_overlap(rom_memory, 800 0x100000 - isa_bios_size, 801 isa_bios, 802 1); 803 if (!isapc_ram_fw) { 804 memory_region_set_readonly(isa_bios, true); 805 } 806 807 /* map all the bios at the top of memory */ 808 memory_region_add_subregion(rom_memory, 809 (uint32_t)(-bios_size), 810 bios); 811 } 812 813 static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 814 const char *name, void *opaque, 815 Error **errp) 816 { 817 X86MachineState *x86ms = X86_MACHINE(obj); 818 uint64_t value = x86ms->max_ram_below_4g; 819 820 visit_type_size(v, name, &value, errp); 821 } 822 823 static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 824 const char *name, void *opaque, 825 Error **errp) 826 { 827 X86MachineState *x86ms = X86_MACHINE(obj); 828 Error *error = NULL; 829 uint64_t value; 830 831 visit_type_size(v, name, &value, &error); 832 if (error) { 833 error_propagate(errp, error); 834 return; 835 } 836 if (value > 4 * GiB) { 837 error_setg(&error, 838 "Machine option 'max-ram-below-4g=%"PRIu64 839 "' expects size less than or equal to 4G", value); 840 error_propagate(errp, error); 841 return; 842 } 843 844 if (value < 1 * MiB) { 845 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 846 "BIOS may not work with less than 1MiB", value); 847 } 848 849 x86ms->max_ram_below_4g = value; 850 } 851 852 bool x86_machine_is_smm_enabled(X86MachineState *x86ms) 853 { 854 bool smm_available = false; 855 856 if (x86ms->smm == ON_OFF_AUTO_OFF) { 857 return false; 858 } 859 860 if (tcg_enabled() || qtest_enabled()) { 861 smm_available = true; 862 } else if (kvm_enabled()) { 863 smm_available = kvm_has_smm(); 864 } 865 866 if (smm_available) { 867 return true; 868 } 869 870 if (x86ms->smm == ON_OFF_AUTO_ON) { 871 error_report("System Management Mode not supported by this hypervisor."); 872 exit(1); 873 } 874 return false; 875 } 876 877 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name, 878 void *opaque, Error **errp) 879 { 880 X86MachineState *x86ms = X86_MACHINE(obj); 881 OnOffAuto smm = x86ms->smm; 882 883 visit_type_OnOffAuto(v, name, &smm, errp); 884 } 885 886 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name, 887 void *opaque, Error **errp) 888 { 889 X86MachineState *x86ms = X86_MACHINE(obj); 890 891 visit_type_OnOffAuto(v, name, &x86ms->smm, errp); 892 } 893 894 static void x86_machine_initfn(Object *obj) 895 { 896 X86MachineState *x86ms = X86_MACHINE(obj); 897 898 x86ms->smm = ON_OFF_AUTO_AUTO; 899 x86ms->max_ram_below_4g = 0; /* use default */ 900 x86ms->smp_dies = 1; 901 } 902 903 static void x86_machine_class_init(ObjectClass *oc, void *data) 904 { 905 MachineClass *mc = MACHINE_CLASS(oc); 906 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); 907 NMIClass *nc = NMI_CLASS(oc); 908 909 mc->cpu_index_to_instance_props = x86_cpu_index_to_props; 910 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; 911 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; 912 x86mc->compat_apic_id_mode = false; 913 x86mc->save_tsc_khz = true; 914 nc->nmi_monitor_handler = x86_nmi; 915 916 object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size", 917 x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g, 918 NULL, NULL, &error_abort); 919 object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G, 920 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 921 922 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto", 923 x86_machine_get_smm, x86_machine_set_smm, 924 NULL, NULL, &error_abort); 925 object_class_property_set_description(oc, X86_MACHINE_SMM, 926 "Enable SMM", &error_abort); 927 } 928 929 static const TypeInfo x86_machine_info = { 930 .name = TYPE_X86_MACHINE, 931 .parent = TYPE_MACHINE, 932 .abstract = true, 933 .instance_size = sizeof(X86MachineState), 934 .instance_init = x86_machine_initfn, 935 .class_size = sizeof(X86MachineClass), 936 .class_init = x86_machine_class_init, 937 .interfaces = (InterfaceInfo[]) { 938 { TYPE_NMI }, 939 { } 940 }, 941 }; 942 943 static void x86_machine_register_types(void) 944 { 945 type_register_static(&x86_machine_info); 946 } 947 948 type_init(x86_machine_register_types) 949