xref: /openbmc/qemu/hw/i386/x86.c (revision 430065da)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/cpu-timers.h"
38 #include "trace.h"
39 
40 #include "hw/i386/x86.h"
41 #include "target/i386/cpu.h"
42 #include "hw/i386/topology.h"
43 #include "hw/i386/fw_cfg.h"
44 #include "hw/intc/i8259.h"
45 #include "hw/rtc/mc146818rtc.h"
46 
47 #include "hw/acpi/cpu_hotplug.h"
48 #include "hw/irq.h"
49 #include "hw/nmi.h"
50 #include "hw/loader.h"
51 #include "multiboot.h"
52 #include "elf.h"
53 #include "standard-headers/asm-x86/bootparam.h"
54 #include CONFIG_DEVICES
55 #include "kvm_i386.h"
56 
57 #define BIOS_FILENAME "bios.bin"
58 
59 /* Physical Address of PVH entry point read from kernel ELF NOTE */
60 static size_t pvh_start_addr;
61 
62 inline void init_topo_info(X86CPUTopoInfo *topo_info,
63                            const X86MachineState *x86ms)
64 {
65     MachineState *ms = MACHINE(x86ms);
66 
67     topo_info->dies_per_pkg = x86ms->smp_dies;
68     topo_info->cores_per_die = ms->smp.cores;
69     topo_info->threads_per_core = ms->smp.threads;
70 }
71 
72 /*
73  * Calculates initial APIC ID for a specific CPU index
74  *
75  * Currently we need to be able to calculate the APIC ID from the CPU index
76  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
77  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
78  * all CPUs up to max_cpus.
79  */
80 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
81                                     unsigned int cpu_index)
82 {
83     X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
84     X86CPUTopoInfo topo_info;
85     uint32_t correct_id;
86     static bool warned;
87 
88     init_topo_info(&topo_info, x86ms);
89 
90     correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index);
91     if (x86mc->compat_apic_id_mode) {
92         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
93             error_report("APIC IDs set in compatibility mode, "
94                          "CPU topology won't match the configuration");
95             warned = true;
96         }
97         return cpu_index;
98     } else {
99         return correct_id;
100     }
101 }
102 
103 
104 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
105 {
106     Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
107 
108     if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
109         goto out;
110     }
111     qdev_realize(DEVICE(cpu), NULL, errp);
112 
113 out:
114     object_unref(cpu);
115 }
116 
117 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
118 {
119     int i;
120     const CPUArchIdList *possible_cpus;
121     MachineState *ms = MACHINE(x86ms);
122     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
123 
124     x86_cpu_set_default_version(default_cpu_version);
125 
126     /*
127      * Calculates the limit to CPU APIC ID values
128      *
129      * Limit for the APIC ID value, so that all
130      * CPU APIC IDs are < x86ms->apic_id_limit.
131      *
132      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
133      */
134     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
135                                                       ms->smp.max_cpus - 1) + 1;
136     possible_cpus = mc->possible_cpu_arch_ids(ms);
137     for (i = 0; i < ms->smp.cpus; i++) {
138         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
139     }
140 }
141 
142 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
143 {
144     if (cpus_count > 0xff) {
145         /*
146          * If the number of CPUs can't be represented in 8 bits, the
147          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
148          * to make old BIOSes fail more predictably.
149          */
150         rtc_set_memory(rtc, 0x5f, 0);
151     } else {
152         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
153     }
154 }
155 
156 static int x86_apic_cmp(const void *a, const void *b)
157 {
158    CPUArchId *apic_a = (CPUArchId *)a;
159    CPUArchId *apic_b = (CPUArchId *)b;
160 
161    return apic_a->arch_id - apic_b->arch_id;
162 }
163 
164 /*
165  * returns pointer to CPUArchId descriptor that matches CPU's apic_id
166  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
167  * entry corresponding to CPU's apic_id returns NULL.
168  */
169 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
170 {
171     CPUArchId apic_id, *found_cpu;
172 
173     apic_id.arch_id = id;
174     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
175         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
176         x86_apic_cmp);
177     if (found_cpu && idx) {
178         *idx = found_cpu - ms->possible_cpus->cpus;
179     }
180     return found_cpu;
181 }
182 
183 void x86_cpu_plug(HotplugHandler *hotplug_dev,
184                   DeviceState *dev, Error **errp)
185 {
186     CPUArchId *found_cpu;
187     Error *local_err = NULL;
188     X86CPU *cpu = X86_CPU(dev);
189     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
190 
191     if (x86ms->acpi_dev) {
192         hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
193         if (local_err) {
194             goto out;
195         }
196     }
197 
198     /* increment the number of CPUs */
199     x86ms->boot_cpus++;
200     if (x86ms->rtc) {
201         x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
202     }
203     if (x86ms->fw_cfg) {
204         fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
205     }
206 
207     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
208     found_cpu->cpu = OBJECT(dev);
209 out:
210     error_propagate(errp, local_err);
211 }
212 
213 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
214                                DeviceState *dev, Error **errp)
215 {
216     int idx = -1;
217     X86CPU *cpu = X86_CPU(dev);
218     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
219 
220     if (!x86ms->acpi_dev) {
221         error_setg(errp, "CPU hot unplug not supported without ACPI");
222         return;
223     }
224 
225     x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
226     assert(idx != -1);
227     if (idx == 0) {
228         error_setg(errp, "Boot CPU is unpluggable");
229         return;
230     }
231 
232     hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
233                                    errp);
234 }
235 
236 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
237                        DeviceState *dev, Error **errp)
238 {
239     CPUArchId *found_cpu;
240     Error *local_err = NULL;
241     X86CPU *cpu = X86_CPU(dev);
242     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
243 
244     hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
245     if (local_err) {
246         goto out;
247     }
248 
249     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
250     found_cpu->cpu = NULL;
251     qdev_unrealize(dev);
252 
253     /* decrement the number of CPUs */
254     x86ms->boot_cpus--;
255     /* Update the number of CPUs in CMOS */
256     x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
257     fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
258  out:
259     error_propagate(errp, local_err);
260 }
261 
262 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
263                       DeviceState *dev, Error **errp)
264 {
265     int idx;
266     CPUState *cs;
267     CPUArchId *cpu_slot;
268     X86CPUTopoIDs topo_ids;
269     X86CPU *cpu = X86_CPU(dev);
270     CPUX86State *env = &cpu->env;
271     MachineState *ms = MACHINE(hotplug_dev);
272     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
273     unsigned int smp_cores = ms->smp.cores;
274     unsigned int smp_threads = ms->smp.threads;
275     X86CPUTopoInfo topo_info;
276 
277     if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
278         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
279                    ms->cpu_type);
280         return;
281     }
282 
283     if (x86ms->acpi_dev) {
284         Error *local_err = NULL;
285 
286         hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
287                                  &local_err);
288         if (local_err) {
289             error_propagate(errp, local_err);
290             return;
291         }
292     }
293 
294     init_topo_info(&topo_info, x86ms);
295 
296     env->nr_dies = x86ms->smp_dies;
297 
298     /*
299      * If APIC ID is not set,
300      * set it based on socket/die/core/thread properties.
301      */
302     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
303         int max_socket = (ms->smp.max_cpus - 1) /
304                                 smp_threads / smp_cores / x86ms->smp_dies;
305 
306         /*
307          * die-id was optional in QEMU 4.0 and older, so keep it optional
308          * if there's only one die per socket.
309          */
310         if (cpu->die_id < 0 && x86ms->smp_dies == 1) {
311             cpu->die_id = 0;
312         }
313 
314         if (cpu->socket_id < 0) {
315             error_setg(errp, "CPU socket-id is not set");
316             return;
317         } else if (cpu->socket_id > max_socket) {
318             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
319                        cpu->socket_id, max_socket);
320             return;
321         }
322         if (cpu->die_id < 0) {
323             error_setg(errp, "CPU die-id is not set");
324             return;
325         } else if (cpu->die_id > x86ms->smp_dies - 1) {
326             error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
327                        cpu->die_id, x86ms->smp_dies - 1);
328             return;
329         }
330         if (cpu->core_id < 0) {
331             error_setg(errp, "CPU core-id is not set");
332             return;
333         } else if (cpu->core_id > (smp_cores - 1)) {
334             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
335                        cpu->core_id, smp_cores - 1);
336             return;
337         }
338         if (cpu->thread_id < 0) {
339             error_setg(errp, "CPU thread-id is not set");
340             return;
341         } else if (cpu->thread_id > (smp_threads - 1)) {
342             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
343                        cpu->thread_id, smp_threads - 1);
344             return;
345         }
346 
347         topo_ids.pkg_id = cpu->socket_id;
348         topo_ids.die_id = cpu->die_id;
349         topo_ids.core_id = cpu->core_id;
350         topo_ids.smt_id = cpu->thread_id;
351         cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
352     }
353 
354     cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
355     if (!cpu_slot) {
356         MachineState *ms = MACHINE(x86ms);
357 
358         x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
359         error_setg(errp,
360             "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
361             " APIC ID %" PRIu32 ", valid index range 0:%d",
362             topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
363             cpu->apic_id, ms->possible_cpus->len - 1);
364         return;
365     }
366 
367     if (cpu_slot->cpu) {
368         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
369                    idx, cpu->apic_id);
370         return;
371     }
372 
373     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
374      * so that machine_query_hotpluggable_cpus would show correct values
375      */
376     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
377      * once -smp refactoring is complete and there will be CPU private
378      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
379     x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
380     if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
381         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
382             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
383             topo_ids.pkg_id);
384         return;
385     }
386     cpu->socket_id = topo_ids.pkg_id;
387 
388     if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
389         error_setg(errp, "property die-id: %u doesn't match set apic-id:"
390             " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
391         return;
392     }
393     cpu->die_id = topo_ids.die_id;
394 
395     if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
396         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
397             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
398             topo_ids.core_id);
399         return;
400     }
401     cpu->core_id = topo_ids.core_id;
402 
403     if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
404         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
405             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
406             topo_ids.smt_id);
407         return;
408     }
409     cpu->thread_id = topo_ids.smt_id;
410 
411     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
412         !kvm_hv_vpindex_settable()) {
413         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
414         return;
415     }
416 
417     cs = CPU(cpu);
418     cs->cpu_index = idx;
419 
420     numa_cpu_pre_plug(cpu_slot, dev, errp);
421 }
422 
423 CpuInstanceProperties
424 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
425 {
426     MachineClass *mc = MACHINE_GET_CLASS(ms);
427     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
428 
429     assert(cpu_index < possible_cpus->len);
430     return possible_cpus->cpus[cpu_index].props;
431 }
432 
433 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
434 {
435    X86CPUTopoIDs topo_ids;
436    X86MachineState *x86ms = X86_MACHINE(ms);
437    X86CPUTopoInfo topo_info;
438 
439    init_topo_info(&topo_info, x86ms);
440 
441    assert(idx < ms->possible_cpus->len);
442    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
443                             &topo_info, &topo_ids);
444    return topo_ids.pkg_id % ms->numa_state->num_nodes;
445 }
446 
447 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
448 {
449     X86MachineState *x86ms = X86_MACHINE(ms);
450     unsigned int max_cpus = ms->smp.max_cpus;
451     X86CPUTopoInfo topo_info;
452     int i;
453 
454     if (ms->possible_cpus) {
455         /*
456          * make sure that max_cpus hasn't changed since the first use, i.e.
457          * -smp hasn't been parsed after it
458          */
459         assert(ms->possible_cpus->len == max_cpus);
460         return ms->possible_cpus;
461     }
462 
463     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
464                                   sizeof(CPUArchId) * max_cpus);
465     ms->possible_cpus->len = max_cpus;
466 
467     init_topo_info(&topo_info, x86ms);
468 
469     for (i = 0; i < ms->possible_cpus->len; i++) {
470         X86CPUTopoIDs topo_ids;
471 
472         ms->possible_cpus->cpus[i].type = ms->cpu_type;
473         ms->possible_cpus->cpus[i].vcpus_count = 1;
474         ms->possible_cpus->cpus[i].arch_id =
475             x86_cpu_apic_id_from_index(x86ms, i);
476         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
477                                  &topo_info, &topo_ids);
478         ms->possible_cpus->cpus[i].props.has_socket_id = true;
479         ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
480         if (x86ms->smp_dies > 1) {
481             ms->possible_cpus->cpus[i].props.has_die_id = true;
482             ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
483         }
484         ms->possible_cpus->cpus[i].props.has_core_id = true;
485         ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
486         ms->possible_cpus->cpus[i].props.has_thread_id = true;
487         ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
488     }
489     return ms->possible_cpus;
490 }
491 
492 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
493 {
494     /* cpu index isn't used */
495     CPUState *cs;
496 
497     CPU_FOREACH(cs) {
498         X86CPU *cpu = X86_CPU(cs);
499 
500         if (!cpu->apic_state) {
501             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
502         } else {
503             apic_deliver_nmi(cpu->apic_state);
504         }
505     }
506 }
507 
508 static long get_file_size(FILE *f)
509 {
510     long where, size;
511 
512     /* XXX: on Unix systems, using fstat() probably makes more sense */
513 
514     where = ftell(f);
515     fseek(f, 0, SEEK_END);
516     size = ftell(f);
517     fseek(f, where, SEEK_SET);
518 
519     return size;
520 }
521 
522 /* TSC handling */
523 uint64_t cpu_get_tsc(CPUX86State *env)
524 {
525     return cpus_get_elapsed_ticks();
526 }
527 
528 /* IRQ handling */
529 static void pic_irq_request(void *opaque, int irq, int level)
530 {
531     CPUState *cs = first_cpu;
532     X86CPU *cpu = X86_CPU(cs);
533 
534     trace_x86_pic_interrupt(irq, level);
535     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
536         CPU_FOREACH(cs) {
537             cpu = X86_CPU(cs);
538             if (apic_accept_pic_intr(cpu->apic_state)) {
539                 apic_deliver_pic_intr(cpu->apic_state, level);
540             }
541         }
542     } else {
543         if (level) {
544             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
545         } else {
546             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
547         }
548     }
549 }
550 
551 qemu_irq x86_allocate_cpu_irq(void)
552 {
553     return qemu_allocate_irq(pic_irq_request, NULL, 0);
554 }
555 
556 int cpu_get_pic_interrupt(CPUX86State *env)
557 {
558     X86CPU *cpu = env_archcpu(env);
559     int intno;
560 
561     if (!kvm_irqchip_in_kernel()) {
562         intno = apic_get_interrupt(cpu->apic_state);
563         if (intno >= 0) {
564             return intno;
565         }
566         /* read the irq from the PIC */
567         if (!apic_accept_pic_intr(cpu->apic_state)) {
568             return -1;
569         }
570     }
571 
572     intno = pic_read_irq(isa_pic);
573     return intno;
574 }
575 
576 DeviceState *cpu_get_current_apic(void)
577 {
578     if (current_cpu) {
579         X86CPU *cpu = X86_CPU(current_cpu);
580         return cpu->apic_state;
581     } else {
582         return NULL;
583     }
584 }
585 
586 void gsi_handler(void *opaque, int n, int level)
587 {
588     GSIState *s = opaque;
589 
590     trace_x86_gsi_interrupt(n, level);
591     if (n < ISA_NUM_IRQS) {
592         /* Under KVM, Kernel will forward to both PIC and IOAPIC */
593         qemu_set_irq(s->i8259_irq[n], level);
594     }
595     qemu_set_irq(s->ioapic_irq[n], level);
596 }
597 
598 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
599 {
600     DeviceState *dev;
601     SysBusDevice *d;
602     unsigned int i;
603 
604     assert(parent_name);
605     if (kvm_ioapic_in_kernel()) {
606         dev = qdev_new(TYPE_KVM_IOAPIC);
607     } else {
608         dev = qdev_new(TYPE_IOAPIC);
609     }
610     object_property_add_child(object_resolve_path(parent_name, NULL),
611                               "ioapic", OBJECT(dev));
612     d = SYS_BUS_DEVICE(dev);
613     sysbus_realize_and_unref(d, &error_fatal);
614     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
615 
616     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
617         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
618     }
619 }
620 
621 struct setup_data {
622     uint64_t next;
623     uint32_t type;
624     uint32_t len;
625     uint8_t data[];
626 } __attribute__((packed));
627 
628 
629 /*
630  * The entry point into the kernel for PVH boot is different from
631  * the native entry point.  The PVH entry is defined by the x86/HVM
632  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
633  *
634  * This function is passed to load_elf() when it is called from
635  * load_elfboot() which then additionally checks for an ELF Note of
636  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
637  * parse the PVH entry address from the ELF Note.
638  *
639  * Due to trickery in elf_opts.h, load_elf() is actually available as
640  * load_elf32() or load_elf64() and this routine needs to be able
641  * to deal with being called as 32 or 64 bit.
642  *
643  * The address of the PVH entry point is saved to the 'pvh_start_addr'
644  * global variable.  (although the entry point is 32-bit, the kernel
645  * binary can be either 32-bit or 64-bit).
646  */
647 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
648 {
649     size_t *elf_note_data_addr;
650 
651     /* Check if ELF Note header passed in is valid */
652     if (arg1 == NULL) {
653         return 0;
654     }
655 
656     if (is64) {
657         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
658         uint64_t nhdr_size64 = sizeof(struct elf64_note);
659         uint64_t phdr_align = *(uint64_t *)arg2;
660         uint64_t nhdr_namesz = nhdr64->n_namesz;
661 
662         elf_note_data_addr =
663             ((void *)nhdr64) + nhdr_size64 +
664             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
665     } else {
666         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
667         uint32_t nhdr_size32 = sizeof(struct elf32_note);
668         uint32_t phdr_align = *(uint32_t *)arg2;
669         uint32_t nhdr_namesz = nhdr32->n_namesz;
670 
671         elf_note_data_addr =
672             ((void *)nhdr32) + nhdr_size32 +
673             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
674     }
675 
676     pvh_start_addr = *elf_note_data_addr;
677 
678     return pvh_start_addr;
679 }
680 
681 static bool load_elfboot(const char *kernel_filename,
682                          int kernel_file_size,
683                          uint8_t *header,
684                          size_t pvh_xen_start_addr,
685                          FWCfgState *fw_cfg)
686 {
687     uint32_t flags = 0;
688     uint32_t mh_load_addr = 0;
689     uint32_t elf_kernel_size = 0;
690     uint64_t elf_entry;
691     uint64_t elf_low, elf_high;
692     int kernel_size;
693 
694     if (ldl_p(header) != 0x464c457f) {
695         return false; /* no elfboot */
696     }
697 
698     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
699     flags = elf_is64 ?
700         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
701 
702     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
703         error_report("elfboot unsupported flags = %x", flags);
704         exit(1);
705     }
706 
707     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
708     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
709                            NULL, &elf_note_type, &elf_entry,
710                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
711                            0, 0);
712 
713     if (kernel_size < 0) {
714         error_report("Error while loading elf kernel");
715         exit(1);
716     }
717     mh_load_addr = elf_low;
718     elf_kernel_size = elf_high - elf_low;
719 
720     if (pvh_start_addr == 0) {
721         error_report("Error loading uncompressed kernel without PVH ELF Note");
722         exit(1);
723     }
724     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
725     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
726     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
727 
728     return true;
729 }
730 
731 void x86_load_linux(X86MachineState *x86ms,
732                     FWCfgState *fw_cfg,
733                     int acpi_data_size,
734                     bool pvh_enabled,
735                     bool linuxboot_dma_enabled)
736 {
737     uint16_t protocol;
738     int setup_size, kernel_size, cmdline_size;
739     int dtb_size, setup_data_offset;
740     uint32_t initrd_max;
741     uint8_t header[8192], *setup, *kernel;
742     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
743     FILE *f;
744     char *vmode;
745     MachineState *machine = MACHINE(x86ms);
746     struct setup_data *setup_data;
747     const char *kernel_filename = machine->kernel_filename;
748     const char *initrd_filename = machine->initrd_filename;
749     const char *dtb_filename = machine->dtb;
750     const char *kernel_cmdline = machine->kernel_cmdline;
751 
752     /* Align to 16 bytes as a paranoia measure */
753     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
754 
755     /* load the kernel header */
756     f = fopen(kernel_filename, "rb");
757     if (!f) {
758         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
759                 kernel_filename, strerror(errno));
760         exit(1);
761     }
762 
763     kernel_size = get_file_size(f);
764     if (!kernel_size ||
765         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
766         MIN(ARRAY_SIZE(header), kernel_size)) {
767         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
768                 kernel_filename, strerror(errno));
769         exit(1);
770     }
771 
772     /* kernel protocol version */
773     if (ldl_p(header + 0x202) == 0x53726448) {
774         protocol = lduw_p(header + 0x206);
775     } else {
776         /*
777          * This could be a multiboot kernel. If it is, let's stop treating it
778          * like a Linux kernel.
779          * Note: some multiboot images could be in the ELF format (the same of
780          * PVH), so we try multiboot first since we check the multiboot magic
781          * header before to load it.
782          */
783         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
784                            kernel_cmdline, kernel_size, header)) {
785             return;
786         }
787         /*
788          * Check if the file is an uncompressed kernel file (ELF) and load it,
789          * saving the PVH entry point used by the x86/HVM direct boot ABI.
790          * If load_elfboot() is successful, populate the fw_cfg info.
791          */
792         if (pvh_enabled &&
793             load_elfboot(kernel_filename, kernel_size,
794                          header, pvh_start_addr, fw_cfg)) {
795             fclose(f);
796 
797             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
798                 strlen(kernel_cmdline) + 1);
799             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
800 
801             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
802             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
803                              header, sizeof(header));
804 
805             /* load initrd */
806             if (initrd_filename) {
807                 GMappedFile *mapped_file;
808                 gsize initrd_size;
809                 gchar *initrd_data;
810                 GError *gerr = NULL;
811 
812                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
813                 if (!mapped_file) {
814                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
815                             initrd_filename, gerr->message);
816                     exit(1);
817                 }
818                 x86ms->initrd_mapped_file = mapped_file;
819 
820                 initrd_data = g_mapped_file_get_contents(mapped_file);
821                 initrd_size = g_mapped_file_get_length(mapped_file);
822                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
823                 if (initrd_size >= initrd_max) {
824                     fprintf(stderr, "qemu: initrd is too large, cannot support."
825                             "(max: %"PRIu32", need %"PRId64")\n",
826                             initrd_max, (uint64_t)initrd_size);
827                     exit(1);
828                 }
829 
830                 initrd_addr = (initrd_max - initrd_size) & ~4095;
831 
832                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
833                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
834                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
835                                  initrd_size);
836             }
837 
838             option_rom[nb_option_roms].bootindex = 0;
839             option_rom[nb_option_roms].name = "pvh.bin";
840             nb_option_roms++;
841 
842             return;
843         }
844         protocol = 0;
845     }
846 
847     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
848         /* Low kernel */
849         real_addr    = 0x90000;
850         cmdline_addr = 0x9a000 - cmdline_size;
851         prot_addr    = 0x10000;
852     } else if (protocol < 0x202) {
853         /* High but ancient kernel */
854         real_addr    = 0x90000;
855         cmdline_addr = 0x9a000 - cmdline_size;
856         prot_addr    = 0x100000;
857     } else {
858         /* High and recent kernel */
859         real_addr    = 0x10000;
860         cmdline_addr = 0x20000;
861         prot_addr    = 0x100000;
862     }
863 
864     /* highest address for loading the initrd */
865     if (protocol >= 0x20c &&
866         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
867         /*
868          * Linux has supported initrd up to 4 GB for a very long time (2007,
869          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
870          * though it only sets initrd_max to 2 GB to "work around bootloader
871          * bugs". Luckily, QEMU firmware(which does something like bootloader)
872          * has supported this.
873          *
874          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
875          * be loaded into any address.
876          *
877          * In addition, initrd_max is uint32_t simply because QEMU doesn't
878          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
879          * field).
880          *
881          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
882          */
883         initrd_max = UINT32_MAX;
884     } else if (protocol >= 0x203) {
885         initrd_max = ldl_p(header + 0x22c);
886     } else {
887         initrd_max = 0x37ffffff;
888     }
889 
890     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
891         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
892     }
893 
894     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
895     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
896     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
897 
898     if (protocol >= 0x202) {
899         stl_p(header + 0x228, cmdline_addr);
900     } else {
901         stw_p(header + 0x20, 0xA33F);
902         stw_p(header + 0x22, cmdline_addr - real_addr);
903     }
904 
905     /* handle vga= parameter */
906     vmode = strstr(kernel_cmdline, "vga=");
907     if (vmode) {
908         unsigned int video_mode;
909         const char *end;
910         int ret;
911         /* skip "vga=" */
912         vmode += 4;
913         if (!strncmp(vmode, "normal", 6)) {
914             video_mode = 0xffff;
915         } else if (!strncmp(vmode, "ext", 3)) {
916             video_mode = 0xfffe;
917         } else if (!strncmp(vmode, "ask", 3)) {
918             video_mode = 0xfffd;
919         } else {
920             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
921             if (ret != 0 || (*end && *end != ' ')) {
922                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
923                 exit(1);
924             }
925         }
926         stw_p(header + 0x1fa, video_mode);
927     }
928 
929     /* loader type */
930     /*
931      * High nybble = B reserved for QEMU; low nybble is revision number.
932      * If this code is substantially changed, you may want to consider
933      * incrementing the revision.
934      */
935     if (protocol >= 0x200) {
936         header[0x210] = 0xB0;
937     }
938     /* heap */
939     if (protocol >= 0x201) {
940         header[0x211] |= 0x80; /* CAN_USE_HEAP */
941         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
942     }
943 
944     /* load initrd */
945     if (initrd_filename) {
946         GMappedFile *mapped_file;
947         gsize initrd_size;
948         gchar *initrd_data;
949         GError *gerr = NULL;
950 
951         if (protocol < 0x200) {
952             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
953             exit(1);
954         }
955 
956         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
957         if (!mapped_file) {
958             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
959                     initrd_filename, gerr->message);
960             exit(1);
961         }
962         x86ms->initrd_mapped_file = mapped_file;
963 
964         initrd_data = g_mapped_file_get_contents(mapped_file);
965         initrd_size = g_mapped_file_get_length(mapped_file);
966         if (initrd_size >= initrd_max) {
967             fprintf(stderr, "qemu: initrd is too large, cannot support."
968                     "(max: %"PRIu32", need %"PRId64")\n",
969                     initrd_max, (uint64_t)initrd_size);
970             exit(1);
971         }
972 
973         initrd_addr = (initrd_max - initrd_size) & ~4095;
974 
975         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
976         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
977         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
978 
979         stl_p(header + 0x218, initrd_addr);
980         stl_p(header + 0x21c, initrd_size);
981     }
982 
983     /* load kernel and setup */
984     setup_size = header[0x1f1];
985     if (setup_size == 0) {
986         setup_size = 4;
987     }
988     setup_size = (setup_size + 1) * 512;
989     if (setup_size > kernel_size) {
990         fprintf(stderr, "qemu: invalid kernel header\n");
991         exit(1);
992     }
993     kernel_size -= setup_size;
994 
995     setup  = g_malloc(setup_size);
996     kernel = g_malloc(kernel_size);
997     fseek(f, 0, SEEK_SET);
998     if (fread(setup, 1, setup_size, f) != setup_size) {
999         fprintf(stderr, "fread() failed\n");
1000         exit(1);
1001     }
1002     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1003         fprintf(stderr, "fread() failed\n");
1004         exit(1);
1005     }
1006     fclose(f);
1007 
1008     /* append dtb to kernel */
1009     if (dtb_filename) {
1010         if (protocol < 0x209) {
1011             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1012             exit(1);
1013         }
1014 
1015         dtb_size = get_image_size(dtb_filename);
1016         if (dtb_size <= 0) {
1017             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1018                     dtb_filename, strerror(errno));
1019             exit(1);
1020         }
1021 
1022         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1023         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1024         kernel = g_realloc(kernel, kernel_size);
1025 
1026         stq_p(header + 0x250, prot_addr + setup_data_offset);
1027 
1028         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1029         setup_data->next = 0;
1030         setup_data->type = cpu_to_le32(SETUP_DTB);
1031         setup_data->len = cpu_to_le32(dtb_size);
1032 
1033         load_image_size(dtb_filename, setup_data->data, dtb_size);
1034     }
1035 
1036     memcpy(setup, header, MIN(sizeof(header), setup_size));
1037 
1038     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1039     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1040     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1041 
1042     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1043     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1044     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1045 
1046     option_rom[nb_option_roms].bootindex = 0;
1047     option_rom[nb_option_roms].name = "linuxboot.bin";
1048     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1049         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1050     }
1051     nb_option_roms++;
1052 }
1053 
1054 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
1055 {
1056     char *filename;
1057     MemoryRegion *bios, *isa_bios;
1058     int bios_size, isa_bios_size;
1059     int ret;
1060 
1061     /* BIOS load */
1062     if (bios_name == NULL) {
1063         bios_name = BIOS_FILENAME;
1064     }
1065     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1066     if (filename) {
1067         bios_size = get_image_size(filename);
1068     } else {
1069         bios_size = -1;
1070     }
1071     if (bios_size <= 0 ||
1072         (bios_size % 65536) != 0) {
1073         goto bios_error;
1074     }
1075     bios = g_malloc(sizeof(*bios));
1076     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1077     if (!isapc_ram_fw) {
1078         memory_region_set_readonly(bios, true);
1079     }
1080     ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1081     if (ret != 0) {
1082     bios_error:
1083         fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1084         exit(1);
1085     }
1086     g_free(filename);
1087 
1088     /* map the last 128KB of the BIOS in ISA space */
1089     isa_bios_size = MIN(bios_size, 128 * KiB);
1090     isa_bios = g_malloc(sizeof(*isa_bios));
1091     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1092                              bios_size - isa_bios_size, isa_bios_size);
1093     memory_region_add_subregion_overlap(rom_memory,
1094                                         0x100000 - isa_bios_size,
1095                                         isa_bios,
1096                                         1);
1097     if (!isapc_ram_fw) {
1098         memory_region_set_readonly(isa_bios, true);
1099     }
1100 
1101     /* map all the bios at the top of memory */
1102     memory_region_add_subregion(rom_memory,
1103                                 (uint32_t)(-bios_size),
1104                                 bios);
1105 }
1106 
1107 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1108 {
1109     bool smm_available = false;
1110 
1111     if (x86ms->smm == ON_OFF_AUTO_OFF) {
1112         return false;
1113     }
1114 
1115     if (tcg_enabled() || qtest_enabled()) {
1116         smm_available = true;
1117     } else if (kvm_enabled()) {
1118         smm_available = kvm_has_smm();
1119     }
1120 
1121     if (smm_available) {
1122         return true;
1123     }
1124 
1125     if (x86ms->smm == ON_OFF_AUTO_ON) {
1126         error_report("System Management Mode not supported by this hypervisor.");
1127         exit(1);
1128     }
1129     return false;
1130 }
1131 
1132 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1133                                void *opaque, Error **errp)
1134 {
1135     X86MachineState *x86ms = X86_MACHINE(obj);
1136     OnOffAuto smm = x86ms->smm;
1137 
1138     visit_type_OnOffAuto(v, name, &smm, errp);
1139 }
1140 
1141 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1142                                void *opaque, Error **errp)
1143 {
1144     X86MachineState *x86ms = X86_MACHINE(obj);
1145 
1146     visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1147 }
1148 
1149 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1150 {
1151     if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1152         return false;
1153     }
1154     return true;
1155 }
1156 
1157 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1158                                  void *opaque, Error **errp)
1159 {
1160     X86MachineState *x86ms = X86_MACHINE(obj);
1161     OnOffAuto acpi = x86ms->acpi;
1162 
1163     visit_type_OnOffAuto(v, name, &acpi, errp);
1164 }
1165 
1166 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1167                                  void *opaque, Error **errp)
1168 {
1169     X86MachineState *x86ms = X86_MACHINE(obj);
1170 
1171     visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1172 }
1173 
1174 static void x86_machine_initfn(Object *obj)
1175 {
1176     X86MachineState *x86ms = X86_MACHINE(obj);
1177 
1178     x86ms->smm = ON_OFF_AUTO_AUTO;
1179     x86ms->acpi = ON_OFF_AUTO_AUTO;
1180     x86ms->smp_dies = 1;
1181 }
1182 
1183 static void x86_machine_class_init(ObjectClass *oc, void *data)
1184 {
1185     MachineClass *mc = MACHINE_CLASS(oc);
1186     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1187     NMIClass *nc = NMI_CLASS(oc);
1188 
1189     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1190     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1191     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1192     x86mc->compat_apic_id_mode = false;
1193     x86mc->save_tsc_khz = true;
1194     nc->nmi_monitor_handler = x86_nmi;
1195 
1196     object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1197         x86_machine_get_smm, x86_machine_set_smm,
1198         NULL, NULL);
1199     object_class_property_set_description(oc, X86_MACHINE_SMM,
1200         "Enable SMM");
1201 
1202     object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1203         x86_machine_get_acpi, x86_machine_set_acpi,
1204         NULL, NULL);
1205     object_class_property_set_description(oc, X86_MACHINE_ACPI,
1206         "Enable ACPI");
1207 }
1208 
1209 static const TypeInfo x86_machine_info = {
1210     .name = TYPE_X86_MACHINE,
1211     .parent = TYPE_MACHINE,
1212     .abstract = true,
1213     .instance_size = sizeof(X86MachineState),
1214     .instance_init = x86_machine_initfn,
1215     .class_size = sizeof(X86MachineClass),
1216     .class_init = x86_machine_class_init,
1217     .interfaces = (InterfaceInfo[]) {
1218          { TYPE_NMI },
1219          { }
1220     },
1221 };
1222 
1223 static void x86_machine_register_types(void)
1224 {
1225     type_register_static(&x86_machine_info);
1226 }
1227 
1228 type_init(x86_machine_register_types)
1229