1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/option.h" 26 #include "qemu/cutils.h" 27 #include "qemu/units.h" 28 #include "qemu/datadir.h" 29 #include "qemu/guest-random.h" 30 #include "qapi/error.h" 31 #include "qapi/qapi-visit-common.h" 32 #include "qapi/clone-visitor.h" 33 #include "qapi/qapi-visit-machine.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/qtest.h" 36 #include "sysemu/whpx.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/replay.h" 39 #include "sysemu/reset.h" 40 #include "sysemu/sysemu.h" 41 #include "sysemu/cpu-timers.h" 42 #include "sysemu/xen.h" 43 #include "trace.h" 44 45 #include "hw/i386/x86.h" 46 #include "target/i386/cpu.h" 47 #include "hw/i386/topology.h" 48 #include "hw/i386/fw_cfg.h" 49 #include "hw/intc/i8259.h" 50 #include "hw/rtc/mc146818rtc.h" 51 #include "target/i386/sev.h" 52 #include "hw/i386/microvm.h" 53 54 #include "hw/acpi/cpu_hotplug.h" 55 #include "hw/irq.h" 56 #include "hw/nmi.h" 57 #include "hw/loader.h" 58 #include "multiboot.h" 59 #include "elf.h" 60 #include "standard-headers/asm-x86/bootparam.h" 61 #include CONFIG_DEVICES 62 #include "kvm/kvm_i386.h" 63 64 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 65 static size_t pvh_start_addr; 66 67 inline void init_topo_info(X86CPUTopoInfo *topo_info, 68 const X86MachineState *x86ms) 69 { 70 MachineState *ms = MACHINE(x86ms); 71 72 topo_info->dies_per_pkg = ms->smp.dies; 73 topo_info->cores_per_die = ms->smp.cores; 74 topo_info->threads_per_core = ms->smp.threads; 75 } 76 77 /* 78 * Calculates initial APIC ID for a specific CPU index 79 * 80 * Currently we need to be able to calculate the APIC ID from the CPU index 81 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 82 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 83 * all CPUs up to max_cpus. 84 */ 85 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, 86 unsigned int cpu_index) 87 { 88 X86CPUTopoInfo topo_info; 89 90 init_topo_info(&topo_info, x86ms); 91 92 return x86_apicid_from_cpu_idx(&topo_info, cpu_index); 93 } 94 95 96 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 97 { 98 Object *cpu = object_new(MACHINE(x86ms)->cpu_type); 99 100 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { 101 goto out; 102 } 103 qdev_realize(DEVICE(cpu), NULL, errp); 104 105 out: 106 object_unref(cpu); 107 } 108 109 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 110 { 111 int i; 112 const CPUArchIdList *possible_cpus; 113 MachineState *ms = MACHINE(x86ms); 114 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 115 116 x86_cpu_set_default_version(default_cpu_version); 117 118 /* 119 * Calculates the limit to CPU APIC ID values 120 * 121 * Limit for the APIC ID value, so that all 122 * CPU APIC IDs are < x86ms->apic_id_limit. 123 * 124 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 125 */ 126 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 127 ms->smp.max_cpus - 1) + 1; 128 129 /* 130 * Can we support APIC ID 255 or higher? 131 * 132 * Under Xen: yes. 133 * With userspace emulated lapic: no 134 * With KVM's in-kernel lapic: only if X2APIC API is enabled. 135 */ 136 if (x86ms->apic_id_limit > 255 && !xen_enabled() && 137 (!kvm_irqchip_in_kernel() || !kvm_enable_x2apic())) { 138 error_report("current -smp configuration requires kernel " 139 "irqchip and X2APIC API support."); 140 exit(EXIT_FAILURE); 141 } 142 143 if (kvm_enabled()) { 144 kvm_set_max_apic_id(x86ms->apic_id_limit); 145 } 146 147 possible_cpus = mc->possible_cpu_arch_ids(ms); 148 for (i = 0; i < ms->smp.cpus; i++) { 149 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 150 } 151 } 152 153 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 154 { 155 if (cpus_count > 0xff) { 156 /* 157 * If the number of CPUs can't be represented in 8 bits, the 158 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 159 * to make old BIOSes fail more predictably. 160 */ 161 rtc_set_memory(rtc, 0x5f, 0); 162 } else { 163 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 164 } 165 } 166 167 static int x86_apic_cmp(const void *a, const void *b) 168 { 169 CPUArchId *apic_a = (CPUArchId *)a; 170 CPUArchId *apic_b = (CPUArchId *)b; 171 172 return apic_a->arch_id - apic_b->arch_id; 173 } 174 175 /* 176 * returns pointer to CPUArchId descriptor that matches CPU's apic_id 177 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 178 * entry corresponding to CPU's apic_id returns NULL. 179 */ 180 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 181 { 182 CPUArchId apic_id, *found_cpu; 183 184 apic_id.arch_id = id; 185 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 186 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 187 x86_apic_cmp); 188 if (found_cpu && idx) { 189 *idx = found_cpu - ms->possible_cpus->cpus; 190 } 191 return found_cpu; 192 } 193 194 void x86_cpu_plug(HotplugHandler *hotplug_dev, 195 DeviceState *dev, Error **errp) 196 { 197 CPUArchId *found_cpu; 198 Error *local_err = NULL; 199 X86CPU *cpu = X86_CPU(dev); 200 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 201 202 if (x86ms->acpi_dev) { 203 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); 204 if (local_err) { 205 goto out; 206 } 207 } 208 209 /* increment the number of CPUs */ 210 x86ms->boot_cpus++; 211 if (x86ms->rtc) { 212 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 213 } 214 if (x86ms->fw_cfg) { 215 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 216 } 217 218 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 219 found_cpu->cpu = OBJECT(dev); 220 out: 221 error_propagate(errp, local_err); 222 } 223 224 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 225 DeviceState *dev, Error **errp) 226 { 227 int idx = -1; 228 X86CPU *cpu = X86_CPU(dev); 229 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 230 231 if (!x86ms->acpi_dev) { 232 error_setg(errp, "CPU hot unplug not supported without ACPI"); 233 return; 234 } 235 236 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 237 assert(idx != -1); 238 if (idx == 0) { 239 error_setg(errp, "Boot CPU is unpluggable"); 240 return; 241 } 242 243 hotplug_handler_unplug_request(x86ms->acpi_dev, dev, 244 errp); 245 } 246 247 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, 248 DeviceState *dev, Error **errp) 249 { 250 CPUArchId *found_cpu; 251 Error *local_err = NULL; 252 X86CPU *cpu = X86_CPU(dev); 253 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 254 255 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); 256 if (local_err) { 257 goto out; 258 } 259 260 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 261 found_cpu->cpu = NULL; 262 qdev_unrealize(dev); 263 264 /* decrement the number of CPUs */ 265 x86ms->boot_cpus--; 266 /* Update the number of CPUs in CMOS */ 267 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 268 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 269 out: 270 error_propagate(errp, local_err); 271 } 272 273 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, 274 DeviceState *dev, Error **errp) 275 { 276 int idx; 277 CPUState *cs; 278 CPUArchId *cpu_slot; 279 X86CPUTopoIDs topo_ids; 280 X86CPU *cpu = X86_CPU(dev); 281 CPUX86State *env = &cpu->env; 282 MachineState *ms = MACHINE(hotplug_dev); 283 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 284 unsigned int smp_cores = ms->smp.cores; 285 unsigned int smp_threads = ms->smp.threads; 286 X86CPUTopoInfo topo_info; 287 288 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 289 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 290 ms->cpu_type); 291 return; 292 } 293 294 if (x86ms->acpi_dev) { 295 Error *local_err = NULL; 296 297 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, 298 &local_err); 299 if (local_err) { 300 error_propagate(errp, local_err); 301 return; 302 } 303 } 304 305 init_topo_info(&topo_info, x86ms); 306 307 env->nr_dies = ms->smp.dies; 308 309 /* 310 * If APIC ID is not set, 311 * set it based on socket/die/core/thread properties. 312 */ 313 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 314 int max_socket = (ms->smp.max_cpus - 1) / 315 smp_threads / smp_cores / ms->smp.dies; 316 317 /* 318 * die-id was optional in QEMU 4.0 and older, so keep it optional 319 * if there's only one die per socket. 320 */ 321 if (cpu->die_id < 0 && ms->smp.dies == 1) { 322 cpu->die_id = 0; 323 } 324 325 if (cpu->socket_id < 0) { 326 error_setg(errp, "CPU socket-id is not set"); 327 return; 328 } else if (cpu->socket_id > max_socket) { 329 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 330 cpu->socket_id, max_socket); 331 return; 332 } 333 if (cpu->die_id < 0) { 334 error_setg(errp, "CPU die-id is not set"); 335 return; 336 } else if (cpu->die_id > ms->smp.dies - 1) { 337 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", 338 cpu->die_id, ms->smp.dies - 1); 339 return; 340 } 341 if (cpu->core_id < 0) { 342 error_setg(errp, "CPU core-id is not set"); 343 return; 344 } else if (cpu->core_id > (smp_cores - 1)) { 345 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 346 cpu->core_id, smp_cores - 1); 347 return; 348 } 349 if (cpu->thread_id < 0) { 350 error_setg(errp, "CPU thread-id is not set"); 351 return; 352 } else if (cpu->thread_id > (smp_threads - 1)) { 353 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 354 cpu->thread_id, smp_threads - 1); 355 return; 356 } 357 358 topo_ids.pkg_id = cpu->socket_id; 359 topo_ids.die_id = cpu->die_id; 360 topo_ids.core_id = cpu->core_id; 361 topo_ids.smt_id = cpu->thread_id; 362 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids); 363 } 364 365 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 366 if (!cpu_slot) { 367 MachineState *ms = MACHINE(x86ms); 368 369 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 370 error_setg(errp, 371 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with" 372 " APIC ID %" PRIu32 ", valid index range 0:%d", 373 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id, 374 cpu->apic_id, ms->possible_cpus->len - 1); 375 return; 376 } 377 378 if (cpu_slot->cpu) { 379 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 380 idx, cpu->apic_id); 381 return; 382 } 383 384 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 385 * so that machine_query_hotpluggable_cpus would show correct values 386 */ 387 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 388 * once -smp refactoring is complete and there will be CPU private 389 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 390 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 391 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { 392 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 393 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, 394 topo_ids.pkg_id); 395 return; 396 } 397 cpu->socket_id = topo_ids.pkg_id; 398 399 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { 400 error_setg(errp, "property die-id: %u doesn't match set apic-id:" 401 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); 402 return; 403 } 404 cpu->die_id = topo_ids.die_id; 405 406 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { 407 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 408 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, 409 topo_ids.core_id); 410 return; 411 } 412 cpu->core_id = topo_ids.core_id; 413 414 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { 415 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 416 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, 417 topo_ids.smt_id); 418 return; 419 } 420 cpu->thread_id = topo_ids.smt_id; 421 422 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && 423 !kvm_hv_vpindex_settable()) { 424 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 425 return; 426 } 427 428 cs = CPU(cpu); 429 cs->cpu_index = idx; 430 431 numa_cpu_pre_plug(cpu_slot, dev, errp); 432 } 433 434 CpuInstanceProperties 435 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 436 { 437 MachineClass *mc = MACHINE_GET_CLASS(ms); 438 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 439 440 assert(cpu_index < possible_cpus->len); 441 return possible_cpus->cpus[cpu_index].props; 442 } 443 444 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) 445 { 446 X86CPUTopoIDs topo_ids; 447 X86MachineState *x86ms = X86_MACHINE(ms); 448 X86CPUTopoInfo topo_info; 449 450 init_topo_info(&topo_info, x86ms); 451 452 assert(idx < ms->possible_cpus->len); 453 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 454 &topo_info, &topo_ids); 455 return topo_ids.pkg_id % ms->numa_state->num_nodes; 456 } 457 458 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) 459 { 460 X86MachineState *x86ms = X86_MACHINE(ms); 461 unsigned int max_cpus = ms->smp.max_cpus; 462 X86CPUTopoInfo topo_info; 463 int i; 464 465 if (ms->possible_cpus) { 466 /* 467 * make sure that max_cpus hasn't changed since the first use, i.e. 468 * -smp hasn't been parsed after it 469 */ 470 assert(ms->possible_cpus->len == max_cpus); 471 return ms->possible_cpus; 472 } 473 474 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 475 sizeof(CPUArchId) * max_cpus); 476 ms->possible_cpus->len = max_cpus; 477 478 init_topo_info(&topo_info, x86ms); 479 480 for (i = 0; i < ms->possible_cpus->len; i++) { 481 X86CPUTopoIDs topo_ids; 482 483 ms->possible_cpus->cpus[i].type = ms->cpu_type; 484 ms->possible_cpus->cpus[i].vcpus_count = 1; 485 ms->possible_cpus->cpus[i].arch_id = 486 x86_cpu_apic_id_from_index(x86ms, i); 487 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 488 &topo_info, &topo_ids); 489 ms->possible_cpus->cpus[i].props.has_socket_id = true; 490 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id; 491 if (ms->smp.dies > 1) { 492 ms->possible_cpus->cpus[i].props.has_die_id = true; 493 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id; 494 } 495 ms->possible_cpus->cpus[i].props.has_core_id = true; 496 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id; 497 ms->possible_cpus->cpus[i].props.has_thread_id = true; 498 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id; 499 } 500 return ms->possible_cpus; 501 } 502 503 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 504 { 505 /* cpu index isn't used */ 506 CPUState *cs; 507 508 CPU_FOREACH(cs) { 509 X86CPU *cpu = X86_CPU(cs); 510 511 if (!cpu->apic_state) { 512 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 513 } else { 514 apic_deliver_nmi(cpu->apic_state); 515 } 516 } 517 } 518 519 static long get_file_size(FILE *f) 520 { 521 long where, size; 522 523 /* XXX: on Unix systems, using fstat() probably makes more sense */ 524 525 where = ftell(f); 526 fseek(f, 0, SEEK_END); 527 size = ftell(f); 528 fseek(f, where, SEEK_SET); 529 530 return size; 531 } 532 533 /* TSC handling */ 534 uint64_t cpu_get_tsc(CPUX86State *env) 535 { 536 return cpus_get_elapsed_ticks(); 537 } 538 539 /* IRQ handling */ 540 static void pic_irq_request(void *opaque, int irq, int level) 541 { 542 CPUState *cs = first_cpu; 543 X86CPU *cpu = X86_CPU(cs); 544 545 trace_x86_pic_interrupt(irq, level); 546 if (cpu->apic_state && !kvm_irqchip_in_kernel() && 547 !whpx_apic_in_platform()) { 548 CPU_FOREACH(cs) { 549 cpu = X86_CPU(cs); 550 if (apic_accept_pic_intr(cpu->apic_state)) { 551 apic_deliver_pic_intr(cpu->apic_state, level); 552 } 553 } 554 } else { 555 if (level) { 556 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 557 } else { 558 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 559 } 560 } 561 } 562 563 qemu_irq x86_allocate_cpu_irq(void) 564 { 565 return qemu_allocate_irq(pic_irq_request, NULL, 0); 566 } 567 568 int cpu_get_pic_interrupt(CPUX86State *env) 569 { 570 X86CPU *cpu = env_archcpu(env); 571 int intno; 572 573 if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) { 574 intno = apic_get_interrupt(cpu->apic_state); 575 if (intno >= 0) { 576 return intno; 577 } 578 /* read the irq from the PIC */ 579 if (!apic_accept_pic_intr(cpu->apic_state)) { 580 return -1; 581 } 582 } 583 584 intno = pic_read_irq(isa_pic); 585 return intno; 586 } 587 588 DeviceState *cpu_get_current_apic(void) 589 { 590 if (current_cpu) { 591 X86CPU *cpu = X86_CPU(current_cpu); 592 return cpu->apic_state; 593 } else { 594 return NULL; 595 } 596 } 597 598 void gsi_handler(void *opaque, int n, int level) 599 { 600 GSIState *s = opaque; 601 602 trace_x86_gsi_interrupt(n, level); 603 switch (n) { 604 case 0 ... ISA_NUM_IRQS - 1: 605 if (s->i8259_irq[n]) { 606 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 607 qemu_set_irq(s->i8259_irq[n], level); 608 } 609 /* fall through */ 610 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1: 611 qemu_set_irq(s->ioapic_irq[n], level); 612 break; 613 case IO_APIC_SECONDARY_IRQBASE 614 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1: 615 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level); 616 break; 617 } 618 } 619 620 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 621 { 622 DeviceState *dev; 623 SysBusDevice *d; 624 unsigned int i; 625 626 assert(parent_name); 627 if (kvm_ioapic_in_kernel()) { 628 dev = qdev_new(TYPE_KVM_IOAPIC); 629 } else { 630 dev = qdev_new(TYPE_IOAPIC); 631 } 632 object_property_add_child(object_resolve_path(parent_name, NULL), 633 "ioapic", OBJECT(dev)); 634 d = SYS_BUS_DEVICE(dev); 635 sysbus_realize_and_unref(d, &error_fatal); 636 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 637 638 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 639 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 640 } 641 } 642 643 DeviceState *ioapic_init_secondary(GSIState *gsi_state) 644 { 645 DeviceState *dev; 646 SysBusDevice *d; 647 unsigned int i; 648 649 dev = qdev_new(TYPE_IOAPIC); 650 d = SYS_BUS_DEVICE(dev); 651 sysbus_realize_and_unref(d, &error_fatal); 652 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS); 653 654 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 655 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i); 656 } 657 return dev; 658 } 659 660 typedef struct SetupData { 661 uint64_t next; 662 uint32_t type; 663 uint32_t len; 664 uint8_t data[]; 665 } __attribute__((packed)) SetupData; 666 667 668 /* 669 * The entry point into the kernel for PVH boot is different from 670 * the native entry point. The PVH entry is defined by the x86/HVM 671 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 672 * 673 * This function is passed to load_elf() when it is called from 674 * load_elfboot() which then additionally checks for an ELF Note of 675 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 676 * parse the PVH entry address from the ELF Note. 677 * 678 * Due to trickery in elf_opts.h, load_elf() is actually available as 679 * load_elf32() or load_elf64() and this routine needs to be able 680 * to deal with being called as 32 or 64 bit. 681 * 682 * The address of the PVH entry point is saved to the 'pvh_start_addr' 683 * global variable. (although the entry point is 32-bit, the kernel 684 * binary can be either 32-bit or 64-bit). 685 */ 686 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 687 { 688 size_t *elf_note_data_addr; 689 690 /* Check if ELF Note header passed in is valid */ 691 if (arg1 == NULL) { 692 return 0; 693 } 694 695 if (is64) { 696 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 697 uint64_t nhdr_size64 = sizeof(struct elf64_note); 698 uint64_t phdr_align = *(uint64_t *)arg2; 699 uint64_t nhdr_namesz = nhdr64->n_namesz; 700 701 elf_note_data_addr = 702 ((void *)nhdr64) + nhdr_size64 + 703 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 704 705 pvh_start_addr = *elf_note_data_addr; 706 } else { 707 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 708 uint32_t nhdr_size32 = sizeof(struct elf32_note); 709 uint32_t phdr_align = *(uint32_t *)arg2; 710 uint32_t nhdr_namesz = nhdr32->n_namesz; 711 712 elf_note_data_addr = 713 ((void *)nhdr32) + nhdr_size32 + 714 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 715 716 pvh_start_addr = *(uint32_t *)elf_note_data_addr; 717 } 718 719 return pvh_start_addr; 720 } 721 722 static bool load_elfboot(const char *kernel_filename, 723 int kernel_file_size, 724 uint8_t *header, 725 size_t pvh_xen_start_addr, 726 FWCfgState *fw_cfg) 727 { 728 uint32_t flags = 0; 729 uint32_t mh_load_addr = 0; 730 uint32_t elf_kernel_size = 0; 731 uint64_t elf_entry; 732 uint64_t elf_low, elf_high; 733 int kernel_size; 734 735 if (ldl_p(header) != 0x464c457f) { 736 return false; /* no elfboot */ 737 } 738 739 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 740 flags = elf_is64 ? 741 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 742 743 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 744 error_report("elfboot unsupported flags = %x", flags); 745 exit(1); 746 } 747 748 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 749 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 750 NULL, &elf_note_type, &elf_entry, 751 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 752 0, 0); 753 754 if (kernel_size < 0) { 755 error_report("Error while loading elf kernel"); 756 exit(1); 757 } 758 mh_load_addr = elf_low; 759 elf_kernel_size = elf_high - elf_low; 760 761 if (pvh_start_addr == 0) { 762 error_report("Error loading uncompressed kernel without PVH ELF Note"); 763 exit(1); 764 } 765 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 766 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 767 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 768 769 return true; 770 } 771 772 typedef struct SetupDataFixup { 773 void *pos; 774 hwaddr orig_val, new_val; 775 uint32_t addr; 776 } SetupDataFixup; 777 778 static void fixup_setup_data(void *opaque) 779 { 780 SetupDataFixup *fixup = opaque; 781 stq_p(fixup->pos, fixup->new_val); 782 } 783 784 static void reset_setup_data(void *opaque) 785 { 786 SetupDataFixup *fixup = opaque; 787 stq_p(fixup->pos, fixup->orig_val); 788 } 789 790 static void reset_rng_seed(void *opaque) 791 { 792 SetupData *setup_data = opaque; 793 qemu_guest_getrandom_nofail(setup_data->data, le32_to_cpu(setup_data->len)); 794 } 795 796 void x86_load_linux(X86MachineState *x86ms, 797 FWCfgState *fw_cfg, 798 int acpi_data_size, 799 bool pvh_enabled, 800 bool legacy_no_rng_seed) 801 { 802 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled; 803 uint16_t protocol; 804 int setup_size, kernel_size, cmdline_size; 805 int dtb_size, setup_data_offset; 806 uint32_t initrd_max; 807 uint8_t header[8192], *setup, *kernel; 808 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0, first_setup_data = 0; 809 FILE *f; 810 char *vmode; 811 MachineState *machine = MACHINE(x86ms); 812 SetupData *setup_data; 813 const char *kernel_filename = machine->kernel_filename; 814 const char *initrd_filename = machine->initrd_filename; 815 const char *dtb_filename = machine->dtb; 816 char *kernel_cmdline; 817 SevKernelLoaderContext sev_load_ctx = {}; 818 enum { RNG_SEED_LENGTH = 32 }; 819 820 /* 821 * Add the NUL terminator, some padding for the microvm cmdline fiddling 822 * hack, and then align to 16 bytes as a paranoia measure 823 */ 824 cmdline_size = (strlen(machine->kernel_cmdline) + 1 + 825 VIRTIO_CMDLINE_TOTAL_MAX_LEN + 16) & ~15; 826 /* Make a copy, since we might append arbitrary bytes to it later. */ 827 kernel_cmdline = g_strndup(machine->kernel_cmdline, cmdline_size); 828 829 /* load the kernel header */ 830 f = fopen(kernel_filename, "rb"); 831 if (!f) { 832 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 833 kernel_filename, strerror(errno)); 834 exit(1); 835 } 836 837 kernel_size = get_file_size(f); 838 if (!kernel_size || 839 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 840 MIN(ARRAY_SIZE(header), kernel_size)) { 841 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 842 kernel_filename, strerror(errno)); 843 exit(1); 844 } 845 846 /* kernel protocol version */ 847 if (ldl_p(header + 0x202) == 0x53726448) { 848 protocol = lduw_p(header + 0x206); 849 } else { 850 /* 851 * This could be a multiboot kernel. If it is, let's stop treating it 852 * like a Linux kernel. 853 * Note: some multiboot images could be in the ELF format (the same of 854 * PVH), so we try multiboot first since we check the multiboot magic 855 * header before to load it. 856 */ 857 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename, 858 kernel_cmdline, kernel_size, header)) { 859 return; 860 } 861 /* 862 * Check if the file is an uncompressed kernel file (ELF) and load it, 863 * saving the PVH entry point used by the x86/HVM direct boot ABI. 864 * If load_elfboot() is successful, populate the fw_cfg info. 865 */ 866 if (pvh_enabled && 867 load_elfboot(kernel_filename, kernel_size, 868 header, pvh_start_addr, fw_cfg)) { 869 fclose(f); 870 871 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 872 strlen(kernel_cmdline) + 1); 873 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 874 875 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 876 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 877 header, sizeof(header)); 878 879 /* load initrd */ 880 if (initrd_filename) { 881 GMappedFile *mapped_file; 882 gsize initrd_size; 883 gchar *initrd_data; 884 GError *gerr = NULL; 885 886 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 887 if (!mapped_file) { 888 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 889 initrd_filename, gerr->message); 890 exit(1); 891 } 892 x86ms->initrd_mapped_file = mapped_file; 893 894 initrd_data = g_mapped_file_get_contents(mapped_file); 895 initrd_size = g_mapped_file_get_length(mapped_file); 896 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 897 if (initrd_size >= initrd_max) { 898 fprintf(stderr, "qemu: initrd is too large, cannot support." 899 "(max: %"PRIu32", need %"PRId64")\n", 900 initrd_max, (uint64_t)initrd_size); 901 exit(1); 902 } 903 904 initrd_addr = (initrd_max - initrd_size) & ~4095; 905 906 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 907 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 908 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 909 initrd_size); 910 } 911 912 option_rom[nb_option_roms].bootindex = 0; 913 option_rom[nb_option_roms].name = "pvh.bin"; 914 nb_option_roms++; 915 916 return; 917 } 918 protocol = 0; 919 } 920 921 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 922 /* Low kernel */ 923 real_addr = 0x90000; 924 cmdline_addr = 0x9a000 - cmdline_size; 925 prot_addr = 0x10000; 926 } else if (protocol < 0x202) { 927 /* High but ancient kernel */ 928 real_addr = 0x90000; 929 cmdline_addr = 0x9a000 - cmdline_size; 930 prot_addr = 0x100000; 931 } else { 932 /* High and recent kernel */ 933 real_addr = 0x10000; 934 cmdline_addr = 0x20000; 935 prot_addr = 0x100000; 936 } 937 938 /* highest address for loading the initrd */ 939 if (protocol >= 0x20c && 940 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 941 /* 942 * Linux has supported initrd up to 4 GB for a very long time (2007, 943 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 944 * though it only sets initrd_max to 2 GB to "work around bootloader 945 * bugs". Luckily, QEMU firmware(which does something like bootloader) 946 * has supported this. 947 * 948 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 949 * be loaded into any address. 950 * 951 * In addition, initrd_max is uint32_t simply because QEMU doesn't 952 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 953 * field). 954 * 955 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 956 */ 957 initrd_max = UINT32_MAX; 958 } else if (protocol >= 0x203) { 959 initrd_max = ldl_p(header + 0x22c); 960 } else { 961 initrd_max = 0x37ffffff; 962 } 963 964 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 965 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 966 } 967 968 if (protocol >= 0x202) { 969 stl_p(header + 0x228, cmdline_addr); 970 } else { 971 stw_p(header + 0x20, 0xA33F); 972 stw_p(header + 0x22, cmdline_addr - real_addr); 973 } 974 975 /* handle vga= parameter */ 976 vmode = strstr(kernel_cmdline, "vga="); 977 if (vmode) { 978 unsigned int video_mode; 979 const char *end; 980 int ret; 981 /* skip "vga=" */ 982 vmode += 4; 983 if (!strncmp(vmode, "normal", 6)) { 984 video_mode = 0xffff; 985 } else if (!strncmp(vmode, "ext", 3)) { 986 video_mode = 0xfffe; 987 } else if (!strncmp(vmode, "ask", 3)) { 988 video_mode = 0xfffd; 989 } else { 990 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 991 if (ret != 0 || (*end && *end != ' ')) { 992 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 993 exit(1); 994 } 995 } 996 stw_p(header + 0x1fa, video_mode); 997 } 998 999 /* loader type */ 1000 /* 1001 * High nybble = B reserved for QEMU; low nybble is revision number. 1002 * If this code is substantially changed, you may want to consider 1003 * incrementing the revision. 1004 */ 1005 if (protocol >= 0x200) { 1006 header[0x210] = 0xB0; 1007 } 1008 /* heap */ 1009 if (protocol >= 0x201) { 1010 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 1011 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 1012 } 1013 1014 /* load initrd */ 1015 if (initrd_filename) { 1016 GMappedFile *mapped_file; 1017 gsize initrd_size; 1018 gchar *initrd_data; 1019 GError *gerr = NULL; 1020 1021 if (protocol < 0x200) { 1022 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 1023 exit(1); 1024 } 1025 1026 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 1027 if (!mapped_file) { 1028 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 1029 initrd_filename, gerr->message); 1030 exit(1); 1031 } 1032 x86ms->initrd_mapped_file = mapped_file; 1033 1034 initrd_data = g_mapped_file_get_contents(mapped_file); 1035 initrd_size = g_mapped_file_get_length(mapped_file); 1036 if (initrd_size >= initrd_max) { 1037 fprintf(stderr, "qemu: initrd is too large, cannot support." 1038 "(max: %"PRIu32", need %"PRId64")\n", 1039 initrd_max, (uint64_t)initrd_size); 1040 exit(1); 1041 } 1042 1043 initrd_addr = (initrd_max - initrd_size) & ~4095; 1044 1045 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 1046 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1047 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 1048 sev_load_ctx.initrd_data = initrd_data; 1049 sev_load_ctx.initrd_size = initrd_size; 1050 1051 stl_p(header + 0x218, initrd_addr); 1052 stl_p(header + 0x21c, initrd_size); 1053 } 1054 1055 /* load kernel and setup */ 1056 setup_size = header[0x1f1]; 1057 if (setup_size == 0) { 1058 setup_size = 4; 1059 } 1060 setup_size = (setup_size + 1) * 512; 1061 if (setup_size > kernel_size) { 1062 fprintf(stderr, "qemu: invalid kernel header\n"); 1063 exit(1); 1064 } 1065 kernel_size -= setup_size; 1066 1067 setup = g_malloc(setup_size); 1068 kernel = g_malloc(kernel_size); 1069 fseek(f, 0, SEEK_SET); 1070 if (fread(setup, 1, setup_size, f) != setup_size) { 1071 fprintf(stderr, "fread() failed\n"); 1072 exit(1); 1073 } 1074 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1075 fprintf(stderr, "fread() failed\n"); 1076 exit(1); 1077 } 1078 fclose(f); 1079 1080 /* append dtb to kernel */ 1081 if (dtb_filename) { 1082 if (protocol < 0x209) { 1083 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1084 exit(1); 1085 } 1086 1087 dtb_size = get_image_size(dtb_filename); 1088 if (dtb_size <= 0) { 1089 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1090 dtb_filename, strerror(errno)); 1091 exit(1); 1092 } 1093 1094 setup_data_offset = cmdline_size; 1095 cmdline_size += sizeof(SetupData) + dtb_size; 1096 kernel_cmdline = g_realloc(kernel_cmdline, cmdline_size); 1097 setup_data = (void *)kernel_cmdline + setup_data_offset; 1098 setup_data->next = cpu_to_le64(first_setup_data); 1099 first_setup_data = cmdline_addr + setup_data_offset; 1100 setup_data->type = cpu_to_le32(SETUP_DTB); 1101 setup_data->len = cpu_to_le32(dtb_size); 1102 load_image_size(dtb_filename, setup_data->data, dtb_size); 1103 } 1104 1105 if (!legacy_no_rng_seed && protocol >= 0x209) { 1106 setup_data_offset = cmdline_size; 1107 cmdline_size += sizeof(SetupData) + RNG_SEED_LENGTH; 1108 kernel_cmdline = g_realloc(kernel_cmdline, cmdline_size); 1109 setup_data = (void *)kernel_cmdline + setup_data_offset; 1110 setup_data->next = cpu_to_le64(first_setup_data); 1111 first_setup_data = cmdline_addr + setup_data_offset; 1112 setup_data->type = cpu_to_le32(SETUP_RNG_SEED); 1113 setup_data->len = cpu_to_le32(RNG_SEED_LENGTH); 1114 qemu_guest_getrandom_nofail(setup_data->data, RNG_SEED_LENGTH); 1115 qemu_register_reset_nosnapshotload(reset_rng_seed, setup_data); 1116 fw_cfg_add_bytes_callback(fw_cfg, FW_CFG_KERNEL_DATA, reset_rng_seed, NULL, 1117 setup_data, kernel, kernel_size, true); 1118 } else { 1119 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1120 } 1121 1122 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 1123 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, cmdline_size); 1124 fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline, cmdline_size); 1125 sev_load_ctx.cmdline_data = (char *)kernel_cmdline; 1126 sev_load_ctx.cmdline_size = cmdline_size; 1127 1128 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1129 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1130 sev_load_ctx.kernel_data = (char *)kernel; 1131 sev_load_ctx.kernel_size = kernel_size; 1132 1133 /* 1134 * If we're starting an encrypted VM, it will be OVMF based, which uses the 1135 * efi stub for booting and doesn't require any values to be placed in the 1136 * kernel header. We therefore don't update the header so the hash of the 1137 * kernel on the other side of the fw_cfg interface matches the hash of the 1138 * file the user passed in. 1139 */ 1140 if (!sev_enabled() && first_setup_data) { 1141 SetupDataFixup *fixup = g_malloc(sizeof(*fixup)); 1142 1143 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1144 /* Offset 0x250 is a pointer to the first setup_data link. */ 1145 fixup->pos = setup + 0x250; 1146 fixup->orig_val = ldq_p(fixup->pos); 1147 fixup->new_val = first_setup_data; 1148 fixup->addr = cpu_to_le32(real_addr); 1149 fw_cfg_add_bytes_callback(fw_cfg, FW_CFG_SETUP_ADDR, fixup_setup_data, NULL, 1150 fixup, &fixup->addr, sizeof(fixup->addr), true); 1151 qemu_register_reset(reset_setup_data, fixup); 1152 } else { 1153 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1154 } 1155 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1156 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1157 sev_load_ctx.setup_data = (char *)setup; 1158 sev_load_ctx.setup_size = setup_size; 1159 1160 if (sev_enabled()) { 1161 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal); 1162 } 1163 1164 option_rom[nb_option_roms].bootindex = 0; 1165 option_rom[nb_option_roms].name = "linuxboot.bin"; 1166 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1167 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1168 } 1169 nb_option_roms++; 1170 } 1171 1172 void x86_bios_rom_init(MachineState *ms, const char *default_firmware, 1173 MemoryRegion *rom_memory, bool isapc_ram_fw) 1174 { 1175 const char *bios_name; 1176 char *filename; 1177 MemoryRegion *bios, *isa_bios; 1178 int bios_size, isa_bios_size; 1179 ssize_t ret; 1180 1181 /* BIOS load */ 1182 bios_name = ms->firmware ?: default_firmware; 1183 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1184 if (filename) { 1185 bios_size = get_image_size(filename); 1186 } else { 1187 bios_size = -1; 1188 } 1189 if (bios_size <= 0 || 1190 (bios_size % 65536) != 0) { 1191 goto bios_error; 1192 } 1193 bios = g_malloc(sizeof(*bios)); 1194 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); 1195 if (sev_enabled()) { 1196 /* 1197 * The concept of a "reset" simply doesn't exist for 1198 * confidential computing guests, we have to destroy and 1199 * re-launch them instead. So there is no need to register 1200 * the firmware as rom to properly re-initialize on reset. 1201 * Just go for a straight file load instead. 1202 */ 1203 void *ptr = memory_region_get_ram_ptr(bios); 1204 load_image_size(filename, ptr, bios_size); 1205 x86_firmware_configure(ptr, bios_size); 1206 } else { 1207 if (!isapc_ram_fw) { 1208 memory_region_set_readonly(bios, true); 1209 } 1210 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 1211 if (ret != 0) { 1212 goto bios_error; 1213 } 1214 } 1215 g_free(filename); 1216 1217 /* map the last 128KB of the BIOS in ISA space */ 1218 isa_bios_size = MIN(bios_size, 128 * KiB); 1219 isa_bios = g_malloc(sizeof(*isa_bios)); 1220 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 1221 bios_size - isa_bios_size, isa_bios_size); 1222 memory_region_add_subregion_overlap(rom_memory, 1223 0x100000 - isa_bios_size, 1224 isa_bios, 1225 1); 1226 if (!isapc_ram_fw) { 1227 memory_region_set_readonly(isa_bios, true); 1228 } 1229 1230 /* map all the bios at the top of memory */ 1231 memory_region_add_subregion(rom_memory, 1232 (uint32_t)(-bios_size), 1233 bios); 1234 return; 1235 1236 bios_error: 1237 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 1238 exit(1); 1239 } 1240 1241 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms) 1242 { 1243 bool smm_available = false; 1244 1245 if (x86ms->smm == ON_OFF_AUTO_OFF) { 1246 return false; 1247 } 1248 1249 if (tcg_enabled() || qtest_enabled()) { 1250 smm_available = true; 1251 } else if (kvm_enabled()) { 1252 smm_available = kvm_has_smm(); 1253 } 1254 1255 if (smm_available) { 1256 return true; 1257 } 1258 1259 if (x86ms->smm == ON_OFF_AUTO_ON) { 1260 error_report("System Management Mode not supported by this hypervisor."); 1261 exit(1); 1262 } 1263 return false; 1264 } 1265 1266 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name, 1267 void *opaque, Error **errp) 1268 { 1269 X86MachineState *x86ms = X86_MACHINE(obj); 1270 OnOffAuto smm = x86ms->smm; 1271 1272 visit_type_OnOffAuto(v, name, &smm, errp); 1273 } 1274 1275 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name, 1276 void *opaque, Error **errp) 1277 { 1278 X86MachineState *x86ms = X86_MACHINE(obj); 1279 1280 visit_type_OnOffAuto(v, name, &x86ms->smm, errp); 1281 } 1282 1283 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms) 1284 { 1285 if (x86ms->acpi == ON_OFF_AUTO_OFF) { 1286 return false; 1287 } 1288 return true; 1289 } 1290 1291 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name, 1292 void *opaque, Error **errp) 1293 { 1294 X86MachineState *x86ms = X86_MACHINE(obj); 1295 OnOffAuto acpi = x86ms->acpi; 1296 1297 visit_type_OnOffAuto(v, name, &acpi, errp); 1298 } 1299 1300 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name, 1301 void *opaque, Error **errp) 1302 { 1303 X86MachineState *x86ms = X86_MACHINE(obj); 1304 1305 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp); 1306 } 1307 1308 static void x86_machine_get_pit(Object *obj, Visitor *v, const char *name, 1309 void *opaque, Error **errp) 1310 { 1311 X86MachineState *x86ms = X86_MACHINE(obj); 1312 OnOffAuto pit = x86ms->pit; 1313 1314 visit_type_OnOffAuto(v, name, &pit, errp); 1315 } 1316 1317 static void x86_machine_set_pit(Object *obj, Visitor *v, const char *name, 1318 void *opaque, Error **errp) 1319 { 1320 X86MachineState *x86ms = X86_MACHINE(obj);; 1321 1322 visit_type_OnOffAuto(v, name, &x86ms->pit, errp); 1323 } 1324 1325 static void x86_machine_get_pic(Object *obj, Visitor *v, const char *name, 1326 void *opaque, Error **errp) 1327 { 1328 X86MachineState *x86ms = X86_MACHINE(obj); 1329 OnOffAuto pic = x86ms->pic; 1330 1331 visit_type_OnOffAuto(v, name, &pic, errp); 1332 } 1333 1334 static void x86_machine_set_pic(Object *obj, Visitor *v, const char *name, 1335 void *opaque, Error **errp) 1336 { 1337 X86MachineState *x86ms = X86_MACHINE(obj); 1338 1339 visit_type_OnOffAuto(v, name, &x86ms->pic, errp); 1340 } 1341 1342 static char *x86_machine_get_oem_id(Object *obj, Error **errp) 1343 { 1344 X86MachineState *x86ms = X86_MACHINE(obj); 1345 1346 return g_strdup(x86ms->oem_id); 1347 } 1348 1349 static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp) 1350 { 1351 X86MachineState *x86ms = X86_MACHINE(obj); 1352 size_t len = strlen(value); 1353 1354 if (len > 6) { 1355 error_setg(errp, 1356 "User specified "X86_MACHINE_OEM_ID" value is bigger than " 1357 "6 bytes in size"); 1358 return; 1359 } 1360 1361 strncpy(x86ms->oem_id, value, 6); 1362 } 1363 1364 static char *x86_machine_get_oem_table_id(Object *obj, Error **errp) 1365 { 1366 X86MachineState *x86ms = X86_MACHINE(obj); 1367 1368 return g_strdup(x86ms->oem_table_id); 1369 } 1370 1371 static void x86_machine_set_oem_table_id(Object *obj, const char *value, 1372 Error **errp) 1373 { 1374 X86MachineState *x86ms = X86_MACHINE(obj); 1375 size_t len = strlen(value); 1376 1377 if (len > 8) { 1378 error_setg(errp, 1379 "User specified "X86_MACHINE_OEM_TABLE_ID 1380 " value is bigger than " 1381 "8 bytes in size"); 1382 return; 1383 } 1384 strncpy(x86ms->oem_table_id, value, 8); 1385 } 1386 1387 static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v, 1388 const char *name, void *opaque, Error **errp) 1389 { 1390 X86MachineState *x86ms = X86_MACHINE(obj); 1391 uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit; 1392 1393 visit_type_uint64(v, name, &bus_lock_ratelimit, errp); 1394 } 1395 1396 static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v, 1397 const char *name, void *opaque, Error **errp) 1398 { 1399 X86MachineState *x86ms = X86_MACHINE(obj); 1400 1401 visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp); 1402 } 1403 1404 static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name, 1405 void *opaque, Error **errp) 1406 { 1407 X86MachineState *x86ms = X86_MACHINE(obj); 1408 SgxEPCList *list = x86ms->sgx_epc_list; 1409 1410 visit_type_SgxEPCList(v, name, &list, errp); 1411 } 1412 1413 static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name, 1414 void *opaque, Error **errp) 1415 { 1416 X86MachineState *x86ms = X86_MACHINE(obj); 1417 SgxEPCList *list; 1418 1419 list = x86ms->sgx_epc_list; 1420 visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp); 1421 1422 qapi_free_SgxEPCList(list); 1423 } 1424 1425 static void x86_machine_initfn(Object *obj) 1426 { 1427 X86MachineState *x86ms = X86_MACHINE(obj); 1428 1429 x86ms->smm = ON_OFF_AUTO_AUTO; 1430 x86ms->acpi = ON_OFF_AUTO_AUTO; 1431 x86ms->pit = ON_OFF_AUTO_AUTO; 1432 x86ms->pic = ON_OFF_AUTO_AUTO; 1433 x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS; 1434 x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 1435 x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 1436 x86ms->bus_lock_ratelimit = 0; 1437 x86ms->above_4g_mem_start = 4 * GiB; 1438 } 1439 1440 static void x86_machine_class_init(ObjectClass *oc, void *data) 1441 { 1442 MachineClass *mc = MACHINE_CLASS(oc); 1443 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); 1444 NMIClass *nc = NMI_CLASS(oc); 1445 1446 mc->cpu_index_to_instance_props = x86_cpu_index_to_props; 1447 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; 1448 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; 1449 x86mc->save_tsc_khz = true; 1450 x86mc->fwcfg_dma_enabled = true; 1451 nc->nmi_monitor_handler = x86_nmi; 1452 1453 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto", 1454 x86_machine_get_smm, x86_machine_set_smm, 1455 NULL, NULL); 1456 object_class_property_set_description(oc, X86_MACHINE_SMM, 1457 "Enable SMM"); 1458 1459 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto", 1460 x86_machine_get_acpi, x86_machine_set_acpi, 1461 NULL, NULL); 1462 object_class_property_set_description(oc, X86_MACHINE_ACPI, 1463 "Enable ACPI"); 1464 1465 object_class_property_add(oc, X86_MACHINE_PIT, "OnOffAuto", 1466 x86_machine_get_pit, 1467 x86_machine_set_pit, 1468 NULL, NULL); 1469 object_class_property_set_description(oc, X86_MACHINE_PIT, 1470 "Enable i8254 PIT"); 1471 1472 object_class_property_add(oc, X86_MACHINE_PIC, "OnOffAuto", 1473 x86_machine_get_pic, 1474 x86_machine_set_pic, 1475 NULL, NULL); 1476 object_class_property_set_description(oc, X86_MACHINE_PIC, 1477 "Enable i8259 PIC"); 1478 1479 object_class_property_add_str(oc, X86_MACHINE_OEM_ID, 1480 x86_machine_get_oem_id, 1481 x86_machine_set_oem_id); 1482 object_class_property_set_description(oc, X86_MACHINE_OEM_ID, 1483 "Override the default value of field OEMID " 1484 "in ACPI table header." 1485 "The string may be up to 6 bytes in size"); 1486 1487 1488 object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID, 1489 x86_machine_get_oem_table_id, 1490 x86_machine_set_oem_table_id); 1491 object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID, 1492 "Override the default value of field OEM Table ID " 1493 "in ACPI table header." 1494 "The string may be up to 8 bytes in size"); 1495 1496 object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t", 1497 x86_machine_get_bus_lock_ratelimit, 1498 x86_machine_set_bus_lock_ratelimit, NULL, NULL); 1499 object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, 1500 "Set the ratelimit for the bus locks acquired in VMs"); 1501 1502 object_class_property_add(oc, "sgx-epc", "SgxEPC", 1503 machine_get_sgx_epc, machine_set_sgx_epc, 1504 NULL, NULL); 1505 object_class_property_set_description(oc, "sgx-epc", 1506 "SGX EPC device"); 1507 } 1508 1509 static const TypeInfo x86_machine_info = { 1510 .name = TYPE_X86_MACHINE, 1511 .parent = TYPE_MACHINE, 1512 .abstract = true, 1513 .instance_size = sizeof(X86MachineState), 1514 .instance_init = x86_machine_initfn, 1515 .class_size = sizeof(X86MachineClass), 1516 .class_init = x86_machine_class_init, 1517 .interfaces = (InterfaceInfo[]) { 1518 { TYPE_NMI }, 1519 { } 1520 }, 1521 }; 1522 1523 static void x86_machine_register_types(void) 1524 { 1525 type_register_static(&x86_machine_info); 1526 } 1527 1528 type_init(x86_machine_register_types) 1529