xref: /openbmc/qemu/hw/i386/x86.c (revision 06d4c71f)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
37 #include "trace.h"
38 
39 #include "hw/i386/x86.h"
40 #include "target/i386/cpu.h"
41 #include "hw/i386/topology.h"
42 #include "hw/i386/fw_cfg.h"
43 #include "hw/intc/i8259.h"
44 
45 #include "hw/acpi/cpu_hotplug.h"
46 #include "hw/irq.h"
47 #include "hw/nmi.h"
48 #include "hw/loader.h"
49 #include "multiboot.h"
50 #include "elf.h"
51 #include "standard-headers/asm-x86/bootparam.h"
52 #include "config-devices.h"
53 #include "kvm_i386.h"
54 
55 #define BIOS_FILENAME "bios.bin"
56 
57 /* Physical Address of PVH entry point read from kernel ELF NOTE */
58 static size_t pvh_start_addr;
59 
60 inline void init_topo_info(X86CPUTopoInfo *topo_info,
61                            const X86MachineState *x86ms)
62 {
63     MachineState *ms = MACHINE(x86ms);
64 
65     topo_info->nodes_per_pkg = ms->numa_state->num_nodes / ms->smp.sockets;
66     topo_info->dies_per_pkg = x86ms->smp_dies;
67     topo_info->cores_per_die = ms->smp.cores;
68     topo_info->threads_per_core = ms->smp.threads;
69 }
70 
71 /*
72  * Set up with the new EPYC topology handlers
73  *
74  * AMD uses different apic id encoding for EPYC based cpus. Override
75  * the default topo handlers with EPYC encoding handlers.
76  */
77 static void x86_set_epyc_topo_handlers(MachineState *machine)
78 {
79     X86MachineState *x86ms = X86_MACHINE(machine);
80 
81     x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx_epyc;
82     x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid_epyc;
83     x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids_epyc;
84     x86ms->apicid_pkg_offset = apicid_pkg_offset_epyc;
85 }
86 
87 /*
88  * Calculates initial APIC ID for a specific CPU index
89  *
90  * Currently we need to be able to calculate the APIC ID from the CPU index
91  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
92  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
93  * all CPUs up to max_cpus.
94  */
95 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
96                                     unsigned int cpu_index)
97 {
98     X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
99     X86CPUTopoInfo topo_info;
100     uint32_t correct_id;
101     static bool warned;
102 
103     init_topo_info(&topo_info, x86ms);
104 
105     correct_id = x86ms->apicid_from_cpu_idx(&topo_info, cpu_index);
106     if (x86mc->compat_apic_id_mode) {
107         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
108             error_report("APIC IDs set in compatibility mode, "
109                          "CPU topology won't match the configuration");
110             warned = true;
111         }
112         return cpu_index;
113     } else {
114         return correct_id;
115     }
116 }
117 
118 
119 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
120 {
121     Object *cpu = NULL;
122     Error *local_err = NULL;
123 
124     cpu = object_new(MACHINE(x86ms)->cpu_type);
125 
126     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
127     object_property_set_bool(cpu, true, "realized", &local_err);
128 
129     object_unref(cpu);
130     error_propagate(errp, local_err);
131 }
132 
133 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
134 {
135     int i;
136     const CPUArchIdList *possible_cpus;
137     MachineState *ms = MACHINE(x86ms);
138     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
139 
140     /* Check for apicid encoding */
141     if (cpu_x86_use_epyc_apic_id_encoding(ms->cpu_type)) {
142         x86_set_epyc_topo_handlers(ms);
143     }
144 
145     x86_cpu_set_default_version(default_cpu_version);
146 
147     /*
148      * Calculates the limit to CPU APIC ID values
149      *
150      * Limit for the APIC ID value, so that all
151      * CPU APIC IDs are < x86ms->apic_id_limit.
152      *
153      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
154      */
155     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
156                                                       ms->smp.max_cpus - 1) + 1;
157     possible_cpus = mc->possible_cpu_arch_ids(ms);
158 
159     for (i = 0; i < ms->possible_cpus->len; i++) {
160         ms->possible_cpus->cpus[i].arch_id =
161             x86_cpu_apic_id_from_index(x86ms, i);
162     }
163 
164     for (i = 0; i < ms->smp.cpus; i++) {
165         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
166     }
167 }
168 
169 CpuInstanceProperties
170 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
171 {
172     MachineClass *mc = MACHINE_GET_CLASS(ms);
173     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
174 
175     assert(cpu_index < possible_cpus->len);
176     return possible_cpus->cpus[cpu_index].props;
177 }
178 
179 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
180 {
181    X86CPUTopoIDs topo_ids;
182    X86MachineState *x86ms = X86_MACHINE(ms);
183    X86CPUTopoInfo topo_info;
184 
185    init_topo_info(&topo_info, x86ms);
186 
187    assert(idx < ms->possible_cpus->len);
188    x86_topo_ids_from_idx(&topo_info, idx, &topo_ids);
189    return topo_ids.pkg_id % ms->numa_state->num_nodes;
190 }
191 
192 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
193 {
194     X86MachineState *x86ms = X86_MACHINE(ms);
195     unsigned int max_cpus = ms->smp.max_cpus;
196     X86CPUTopoInfo topo_info;
197     int i;
198 
199     if (ms->possible_cpus) {
200         /*
201          * make sure that max_cpus hasn't changed since the first use, i.e.
202          * -smp hasn't been parsed after it
203          */
204         assert(ms->possible_cpus->len == max_cpus);
205         return ms->possible_cpus;
206     }
207 
208     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
209                                   sizeof(CPUArchId) * max_cpus);
210     ms->possible_cpus->len = max_cpus;
211 
212     init_topo_info(&topo_info, x86ms);
213 
214     for (i = 0; i < ms->possible_cpus->len; i++) {
215         X86CPUTopoIDs topo_ids;
216 
217         ms->possible_cpus->cpus[i].type = ms->cpu_type;
218         ms->possible_cpus->cpus[i].vcpus_count = 1;
219         x86_topo_ids_from_idx(&topo_info, i, &topo_ids);
220         ms->possible_cpus->cpus[i].props.has_socket_id = true;
221         ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
222         if (x86ms->smp_dies > 1) {
223             ms->possible_cpus->cpus[i].props.has_die_id = true;
224             ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
225         }
226         ms->possible_cpus->cpus[i].props.has_core_id = true;
227         ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
228         ms->possible_cpus->cpus[i].props.has_thread_id = true;
229         ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
230     }
231     return ms->possible_cpus;
232 }
233 
234 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
235 {
236     /* cpu index isn't used */
237     CPUState *cs;
238 
239     CPU_FOREACH(cs) {
240         X86CPU *cpu = X86_CPU(cs);
241 
242         if (!cpu->apic_state) {
243             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
244         } else {
245             apic_deliver_nmi(cpu->apic_state);
246         }
247     }
248 }
249 
250 static long get_file_size(FILE *f)
251 {
252     long where, size;
253 
254     /* XXX: on Unix systems, using fstat() probably makes more sense */
255 
256     where = ftell(f);
257     fseek(f, 0, SEEK_END);
258     size = ftell(f);
259     fseek(f, where, SEEK_SET);
260 
261     return size;
262 }
263 
264 /* TSC handling */
265 uint64_t cpu_get_tsc(CPUX86State *env)
266 {
267     return cpu_get_ticks();
268 }
269 
270 /* IRQ handling */
271 static void pic_irq_request(void *opaque, int irq, int level)
272 {
273     CPUState *cs = first_cpu;
274     X86CPU *cpu = X86_CPU(cs);
275 
276     trace_x86_pic_interrupt(irq, level);
277     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
278         CPU_FOREACH(cs) {
279             cpu = X86_CPU(cs);
280             if (apic_accept_pic_intr(cpu->apic_state)) {
281                 apic_deliver_pic_intr(cpu->apic_state, level);
282             }
283         }
284     } else {
285         if (level) {
286             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
287         } else {
288             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
289         }
290     }
291 }
292 
293 qemu_irq x86_allocate_cpu_irq(void)
294 {
295     return qemu_allocate_irq(pic_irq_request, NULL, 0);
296 }
297 
298 int cpu_get_pic_interrupt(CPUX86State *env)
299 {
300     X86CPU *cpu = env_archcpu(env);
301     int intno;
302 
303     if (!kvm_irqchip_in_kernel()) {
304         intno = apic_get_interrupt(cpu->apic_state);
305         if (intno >= 0) {
306             return intno;
307         }
308         /* read the irq from the PIC */
309         if (!apic_accept_pic_intr(cpu->apic_state)) {
310             return -1;
311         }
312     }
313 
314     intno = pic_read_irq(isa_pic);
315     return intno;
316 }
317 
318 DeviceState *cpu_get_current_apic(void)
319 {
320     if (current_cpu) {
321         X86CPU *cpu = X86_CPU(current_cpu);
322         return cpu->apic_state;
323     } else {
324         return NULL;
325     }
326 }
327 
328 void gsi_handler(void *opaque, int n, int level)
329 {
330     GSIState *s = opaque;
331 
332     trace_x86_gsi_interrupt(n, level);
333     if (n < ISA_NUM_IRQS) {
334         /* Under KVM, Kernel will forward to both PIC and IOAPIC */
335         qemu_set_irq(s->i8259_irq[n], level);
336     }
337     qemu_set_irq(s->ioapic_irq[n], level);
338 }
339 
340 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
341 {
342     DeviceState *dev;
343     SysBusDevice *d;
344     unsigned int i;
345 
346     assert(parent_name);
347     if (kvm_ioapic_in_kernel()) {
348         dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
349     } else {
350         dev = qdev_create(NULL, TYPE_IOAPIC);
351     }
352     object_property_add_child(object_resolve_path(parent_name, NULL),
353                               "ioapic", OBJECT(dev));
354     qdev_init_nofail(dev);
355     d = SYS_BUS_DEVICE(dev);
356     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
357 
358     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
359         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
360     }
361 }
362 
363 struct setup_data {
364     uint64_t next;
365     uint32_t type;
366     uint32_t len;
367     uint8_t data[];
368 } __attribute__((packed));
369 
370 
371 /*
372  * The entry point into the kernel for PVH boot is different from
373  * the native entry point.  The PVH entry is defined by the x86/HVM
374  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
375  *
376  * This function is passed to load_elf() when it is called from
377  * load_elfboot() which then additionally checks for an ELF Note of
378  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
379  * parse the PVH entry address from the ELF Note.
380  *
381  * Due to trickery in elf_opts.h, load_elf() is actually available as
382  * load_elf32() or load_elf64() and this routine needs to be able
383  * to deal with being called as 32 or 64 bit.
384  *
385  * The address of the PVH entry point is saved to the 'pvh_start_addr'
386  * global variable.  (although the entry point is 32-bit, the kernel
387  * binary can be either 32-bit or 64-bit).
388  */
389 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
390 {
391     size_t *elf_note_data_addr;
392 
393     /* Check if ELF Note header passed in is valid */
394     if (arg1 == NULL) {
395         return 0;
396     }
397 
398     if (is64) {
399         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
400         uint64_t nhdr_size64 = sizeof(struct elf64_note);
401         uint64_t phdr_align = *(uint64_t *)arg2;
402         uint64_t nhdr_namesz = nhdr64->n_namesz;
403 
404         elf_note_data_addr =
405             ((void *)nhdr64) + nhdr_size64 +
406             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
407     } else {
408         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
409         uint32_t nhdr_size32 = sizeof(struct elf32_note);
410         uint32_t phdr_align = *(uint32_t *)arg2;
411         uint32_t nhdr_namesz = nhdr32->n_namesz;
412 
413         elf_note_data_addr =
414             ((void *)nhdr32) + nhdr_size32 +
415             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
416     }
417 
418     pvh_start_addr = *elf_note_data_addr;
419 
420     return pvh_start_addr;
421 }
422 
423 static bool load_elfboot(const char *kernel_filename,
424                          int kernel_file_size,
425                          uint8_t *header,
426                          size_t pvh_xen_start_addr,
427                          FWCfgState *fw_cfg)
428 {
429     uint32_t flags = 0;
430     uint32_t mh_load_addr = 0;
431     uint32_t elf_kernel_size = 0;
432     uint64_t elf_entry;
433     uint64_t elf_low, elf_high;
434     int kernel_size;
435 
436     if (ldl_p(header) != 0x464c457f) {
437         return false; /* no elfboot */
438     }
439 
440     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
441     flags = elf_is64 ?
442         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
443 
444     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
445         error_report("elfboot unsupported flags = %x", flags);
446         exit(1);
447     }
448 
449     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
450     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
451                            NULL, &elf_note_type, &elf_entry,
452                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
453                            0, 0);
454 
455     if (kernel_size < 0) {
456         error_report("Error while loading elf kernel");
457         exit(1);
458     }
459     mh_load_addr = elf_low;
460     elf_kernel_size = elf_high - elf_low;
461 
462     if (pvh_start_addr == 0) {
463         error_report("Error loading uncompressed kernel without PVH ELF Note");
464         exit(1);
465     }
466     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
467     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
468     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
469 
470     return true;
471 }
472 
473 void x86_load_linux(X86MachineState *x86ms,
474                     FWCfgState *fw_cfg,
475                     int acpi_data_size,
476                     bool pvh_enabled,
477                     bool linuxboot_dma_enabled)
478 {
479     uint16_t protocol;
480     int setup_size, kernel_size, cmdline_size;
481     int dtb_size, setup_data_offset;
482     uint32_t initrd_max;
483     uint8_t header[8192], *setup, *kernel;
484     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
485     FILE *f;
486     char *vmode;
487     MachineState *machine = MACHINE(x86ms);
488     struct setup_data *setup_data;
489     const char *kernel_filename = machine->kernel_filename;
490     const char *initrd_filename = machine->initrd_filename;
491     const char *dtb_filename = machine->dtb;
492     const char *kernel_cmdline = machine->kernel_cmdline;
493 
494     /* Align to 16 bytes as a paranoia measure */
495     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
496 
497     /* load the kernel header */
498     f = fopen(kernel_filename, "rb");
499     if (!f) {
500         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
501                 kernel_filename, strerror(errno));
502         exit(1);
503     }
504 
505     kernel_size = get_file_size(f);
506     if (!kernel_size ||
507         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
508         MIN(ARRAY_SIZE(header), kernel_size)) {
509         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
510                 kernel_filename, strerror(errno));
511         exit(1);
512     }
513 
514     /* kernel protocol version */
515     if (ldl_p(header + 0x202) == 0x53726448) {
516         protocol = lduw_p(header + 0x206);
517     } else {
518         /*
519          * This could be a multiboot kernel. If it is, let's stop treating it
520          * like a Linux kernel.
521          * Note: some multiboot images could be in the ELF format (the same of
522          * PVH), so we try multiboot first since we check the multiboot magic
523          * header before to load it.
524          */
525         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
526                            kernel_cmdline, kernel_size, header)) {
527             return;
528         }
529         /*
530          * Check if the file is an uncompressed kernel file (ELF) and load it,
531          * saving the PVH entry point used by the x86/HVM direct boot ABI.
532          * If load_elfboot() is successful, populate the fw_cfg info.
533          */
534         if (pvh_enabled &&
535             load_elfboot(kernel_filename, kernel_size,
536                          header, pvh_start_addr, fw_cfg)) {
537             fclose(f);
538 
539             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
540                 strlen(kernel_cmdline) + 1);
541             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
542 
543             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
544             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
545                              header, sizeof(header));
546 
547             /* load initrd */
548             if (initrd_filename) {
549                 GMappedFile *mapped_file;
550                 gsize initrd_size;
551                 gchar *initrd_data;
552                 GError *gerr = NULL;
553 
554                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
555                 if (!mapped_file) {
556                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
557                             initrd_filename, gerr->message);
558                     exit(1);
559                 }
560                 x86ms->initrd_mapped_file = mapped_file;
561 
562                 initrd_data = g_mapped_file_get_contents(mapped_file);
563                 initrd_size = g_mapped_file_get_length(mapped_file);
564                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
565                 if (initrd_size >= initrd_max) {
566                     fprintf(stderr, "qemu: initrd is too large, cannot support."
567                             "(max: %"PRIu32", need %"PRId64")\n",
568                             initrd_max, (uint64_t)initrd_size);
569                     exit(1);
570                 }
571 
572                 initrd_addr = (initrd_max - initrd_size) & ~4095;
573 
574                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
575                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
576                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
577                                  initrd_size);
578             }
579 
580             option_rom[nb_option_roms].bootindex = 0;
581             option_rom[nb_option_roms].name = "pvh.bin";
582             nb_option_roms++;
583 
584             return;
585         }
586         protocol = 0;
587     }
588 
589     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
590         /* Low kernel */
591         real_addr    = 0x90000;
592         cmdline_addr = 0x9a000 - cmdline_size;
593         prot_addr    = 0x10000;
594     } else if (protocol < 0x202) {
595         /* High but ancient kernel */
596         real_addr    = 0x90000;
597         cmdline_addr = 0x9a000 - cmdline_size;
598         prot_addr    = 0x100000;
599     } else {
600         /* High and recent kernel */
601         real_addr    = 0x10000;
602         cmdline_addr = 0x20000;
603         prot_addr    = 0x100000;
604     }
605 
606     /* highest address for loading the initrd */
607     if (protocol >= 0x20c &&
608         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
609         /*
610          * Linux has supported initrd up to 4 GB for a very long time (2007,
611          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
612          * though it only sets initrd_max to 2 GB to "work around bootloader
613          * bugs". Luckily, QEMU firmware(which does something like bootloader)
614          * has supported this.
615          *
616          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
617          * be loaded into any address.
618          *
619          * In addition, initrd_max is uint32_t simply because QEMU doesn't
620          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
621          * field).
622          *
623          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
624          */
625         initrd_max = UINT32_MAX;
626     } else if (protocol >= 0x203) {
627         initrd_max = ldl_p(header + 0x22c);
628     } else {
629         initrd_max = 0x37ffffff;
630     }
631 
632     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
633         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
634     }
635 
636     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
637     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
638     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
639 
640     if (protocol >= 0x202) {
641         stl_p(header + 0x228, cmdline_addr);
642     } else {
643         stw_p(header + 0x20, 0xA33F);
644         stw_p(header + 0x22, cmdline_addr - real_addr);
645     }
646 
647     /* handle vga= parameter */
648     vmode = strstr(kernel_cmdline, "vga=");
649     if (vmode) {
650         unsigned int video_mode;
651         const char *end;
652         int ret;
653         /* skip "vga=" */
654         vmode += 4;
655         if (!strncmp(vmode, "normal", 6)) {
656             video_mode = 0xffff;
657         } else if (!strncmp(vmode, "ext", 3)) {
658             video_mode = 0xfffe;
659         } else if (!strncmp(vmode, "ask", 3)) {
660             video_mode = 0xfffd;
661         } else {
662             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
663             if (ret != 0 || (*end && *end != ' ')) {
664                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
665                 exit(1);
666             }
667         }
668         stw_p(header + 0x1fa, video_mode);
669     }
670 
671     /* loader type */
672     /*
673      * High nybble = B reserved for QEMU; low nybble is revision number.
674      * If this code is substantially changed, you may want to consider
675      * incrementing the revision.
676      */
677     if (protocol >= 0x200) {
678         header[0x210] = 0xB0;
679     }
680     /* heap */
681     if (protocol >= 0x201) {
682         header[0x211] |= 0x80; /* CAN_USE_HEAP */
683         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
684     }
685 
686     /* load initrd */
687     if (initrd_filename) {
688         GMappedFile *mapped_file;
689         gsize initrd_size;
690         gchar *initrd_data;
691         GError *gerr = NULL;
692 
693         if (protocol < 0x200) {
694             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
695             exit(1);
696         }
697 
698         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
699         if (!mapped_file) {
700             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
701                     initrd_filename, gerr->message);
702             exit(1);
703         }
704         x86ms->initrd_mapped_file = mapped_file;
705 
706         initrd_data = g_mapped_file_get_contents(mapped_file);
707         initrd_size = g_mapped_file_get_length(mapped_file);
708         if (initrd_size >= initrd_max) {
709             fprintf(stderr, "qemu: initrd is too large, cannot support."
710                     "(max: %"PRIu32", need %"PRId64")\n",
711                     initrd_max, (uint64_t)initrd_size);
712             exit(1);
713         }
714 
715         initrd_addr = (initrd_max - initrd_size) & ~4095;
716 
717         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
718         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
719         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
720 
721         stl_p(header + 0x218, initrd_addr);
722         stl_p(header + 0x21c, initrd_size);
723     }
724 
725     /* load kernel and setup */
726     setup_size = header[0x1f1];
727     if (setup_size == 0) {
728         setup_size = 4;
729     }
730     setup_size = (setup_size + 1) * 512;
731     if (setup_size > kernel_size) {
732         fprintf(stderr, "qemu: invalid kernel header\n");
733         exit(1);
734     }
735     kernel_size -= setup_size;
736 
737     setup  = g_malloc(setup_size);
738     kernel = g_malloc(kernel_size);
739     fseek(f, 0, SEEK_SET);
740     if (fread(setup, 1, setup_size, f) != setup_size) {
741         fprintf(stderr, "fread() failed\n");
742         exit(1);
743     }
744     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
745         fprintf(stderr, "fread() failed\n");
746         exit(1);
747     }
748     fclose(f);
749 
750     /* append dtb to kernel */
751     if (dtb_filename) {
752         if (protocol < 0x209) {
753             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
754             exit(1);
755         }
756 
757         dtb_size = get_image_size(dtb_filename);
758         if (dtb_size <= 0) {
759             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
760                     dtb_filename, strerror(errno));
761             exit(1);
762         }
763 
764         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
765         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
766         kernel = g_realloc(kernel, kernel_size);
767 
768         stq_p(header + 0x250, prot_addr + setup_data_offset);
769 
770         setup_data = (struct setup_data *)(kernel + setup_data_offset);
771         setup_data->next = 0;
772         setup_data->type = cpu_to_le32(SETUP_DTB);
773         setup_data->len = cpu_to_le32(dtb_size);
774 
775         load_image_size(dtb_filename, setup_data->data, dtb_size);
776     }
777 
778     memcpy(setup, header, MIN(sizeof(header), setup_size));
779 
780     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
781     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
782     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
783 
784     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
785     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
786     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
787 
788     option_rom[nb_option_roms].bootindex = 0;
789     option_rom[nb_option_roms].name = "linuxboot.bin";
790     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
791         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
792     }
793     nb_option_roms++;
794 }
795 
796 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
797 {
798     char *filename;
799     MemoryRegion *bios, *isa_bios;
800     int bios_size, isa_bios_size;
801     int ret;
802 
803     /* BIOS load */
804     if (bios_name == NULL) {
805         bios_name = BIOS_FILENAME;
806     }
807     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
808     if (filename) {
809         bios_size = get_image_size(filename);
810     } else {
811         bios_size = -1;
812     }
813     if (bios_size <= 0 ||
814         (bios_size % 65536) != 0) {
815         goto bios_error;
816     }
817     bios = g_malloc(sizeof(*bios));
818     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
819     if (!isapc_ram_fw) {
820         memory_region_set_readonly(bios, true);
821     }
822     ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
823     if (ret != 0) {
824     bios_error:
825         fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
826         exit(1);
827     }
828     g_free(filename);
829 
830     /* map the last 128KB of the BIOS in ISA space */
831     isa_bios_size = MIN(bios_size, 128 * KiB);
832     isa_bios = g_malloc(sizeof(*isa_bios));
833     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
834                              bios_size - isa_bios_size, isa_bios_size);
835     memory_region_add_subregion_overlap(rom_memory,
836                                         0x100000 - isa_bios_size,
837                                         isa_bios,
838                                         1);
839     if (!isapc_ram_fw) {
840         memory_region_set_readonly(isa_bios, true);
841     }
842 
843     /* map all the bios at the top of memory */
844     memory_region_add_subregion(rom_memory,
845                                 (uint32_t)(-bios_size),
846                                 bios);
847 }
848 
849 static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
850                                              const char *name, void *opaque,
851                                              Error **errp)
852 {
853     X86MachineState *x86ms = X86_MACHINE(obj);
854     uint64_t value = x86ms->max_ram_below_4g;
855 
856     visit_type_size(v, name, &value, errp);
857 }
858 
859 static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
860                                              const char *name, void *opaque,
861                                              Error **errp)
862 {
863     X86MachineState *x86ms = X86_MACHINE(obj);
864     Error *error = NULL;
865     uint64_t value;
866 
867     visit_type_size(v, name, &value, &error);
868     if (error) {
869         error_propagate(errp, error);
870         return;
871     }
872     if (value > 4 * GiB) {
873         error_setg(&error,
874                    "Machine option 'max-ram-below-4g=%"PRIu64
875                    "' expects size less than or equal to 4G", value);
876         error_propagate(errp, error);
877         return;
878     }
879 
880     if (value < 1 * MiB) {
881         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
882                     "BIOS may not work with less than 1MiB", value);
883     }
884 
885     x86ms->max_ram_below_4g = value;
886 }
887 
888 bool x86_machine_is_smm_enabled(X86MachineState *x86ms)
889 {
890     bool smm_available = false;
891 
892     if (x86ms->smm == ON_OFF_AUTO_OFF) {
893         return false;
894     }
895 
896     if (tcg_enabled() || qtest_enabled()) {
897         smm_available = true;
898     } else if (kvm_enabled()) {
899         smm_available = kvm_has_smm();
900     }
901 
902     if (smm_available) {
903         return true;
904     }
905 
906     if (x86ms->smm == ON_OFF_AUTO_ON) {
907         error_report("System Management Mode not supported by this hypervisor.");
908         exit(1);
909     }
910     return false;
911 }
912 
913 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
914                                void *opaque, Error **errp)
915 {
916     X86MachineState *x86ms = X86_MACHINE(obj);
917     OnOffAuto smm = x86ms->smm;
918 
919     visit_type_OnOffAuto(v, name, &smm, errp);
920 }
921 
922 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
923                                void *opaque, Error **errp)
924 {
925     X86MachineState *x86ms = X86_MACHINE(obj);
926 
927     visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
928 }
929 
930 bool x86_machine_is_acpi_enabled(X86MachineState *x86ms)
931 {
932     if (x86ms->acpi == ON_OFF_AUTO_OFF) {
933         return false;
934     }
935     return true;
936 }
937 
938 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
939                                  void *opaque, Error **errp)
940 {
941     X86MachineState *x86ms = X86_MACHINE(obj);
942     OnOffAuto acpi = x86ms->acpi;
943 
944     visit_type_OnOffAuto(v, name, &acpi, errp);
945 }
946 
947 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
948                                  void *opaque, Error **errp)
949 {
950     X86MachineState *x86ms = X86_MACHINE(obj);
951 
952     visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
953 }
954 
955 static void x86_machine_initfn(Object *obj)
956 {
957     X86MachineState *x86ms = X86_MACHINE(obj);
958 
959     x86ms->smm = ON_OFF_AUTO_AUTO;
960     x86ms->acpi = ON_OFF_AUTO_AUTO;
961     x86ms->max_ram_below_4g = 0; /* use default */
962     x86ms->smp_dies = 1;
963 
964     x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx;
965     x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid;
966     x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids;
967     x86ms->apicid_pkg_offset = apicid_pkg_offset;
968 }
969 
970 static void x86_machine_class_init(ObjectClass *oc, void *data)
971 {
972     MachineClass *mc = MACHINE_CLASS(oc);
973     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
974     NMIClass *nc = NMI_CLASS(oc);
975 
976     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
977     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
978     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
979     x86mc->compat_apic_id_mode = false;
980     x86mc->save_tsc_khz = true;
981     nc->nmi_monitor_handler = x86_nmi;
982 
983     object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size",
984         x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g,
985         NULL, NULL);
986     object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G,
987         "Maximum ram below the 4G boundary (32bit boundary)");
988 
989     object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
990         x86_machine_get_smm, x86_machine_set_smm,
991         NULL, NULL);
992     object_class_property_set_description(oc, X86_MACHINE_SMM,
993         "Enable SMM");
994 
995     object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
996         x86_machine_get_acpi, x86_machine_set_acpi,
997         NULL, NULL);
998     object_class_property_set_description(oc, X86_MACHINE_ACPI,
999         "Enable ACPI");
1000 }
1001 
1002 static const TypeInfo x86_machine_info = {
1003     .name = TYPE_X86_MACHINE,
1004     .parent = TYPE_MACHINE,
1005     .abstract = true,
1006     .instance_size = sizeof(X86MachineState),
1007     .instance_init = x86_machine_initfn,
1008     .class_size = sizeof(X86MachineClass),
1009     .class_init = x86_machine_class_init,
1010     .interfaces = (InterfaceInfo[]) {
1011          { TYPE_NMI },
1012          { }
1013     },
1014 };
1015 
1016 static void x86_machine_register_types(void)
1017 {
1018     type_register_static(&x86_machine_info);
1019 }
1020 
1021 type_init(x86_machine_register_types)
1022