1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019, 2024 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/cutils.h" 26 #include "qemu/units.h" 27 #include "qemu/datadir.h" 28 #include "qapi/error.h" 29 #include "sysemu/numa.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/xen.h" 32 #include "trace.h" 33 34 #include "hw/i386/x86.h" 35 #include "target/i386/cpu.h" 36 #include "hw/rtc/mc146818rtc.h" 37 #include "target/i386/sev.h" 38 39 #include "hw/acpi/cpu_hotplug.h" 40 #include "hw/irq.h" 41 #include "hw/loader.h" 42 #include "multiboot.h" 43 #include "elf.h" 44 #include "standard-headers/asm-x86/bootparam.h" 45 #include CONFIG_DEVICES 46 #include "kvm/kvm_i386.h" 47 48 #ifdef CONFIG_XEN_EMU 49 #include "hw/xen/xen.h" 50 #include "hw/i386/kvm/xen_evtchn.h" 51 #endif 52 53 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 54 static size_t pvh_start_addr; 55 56 static void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 57 { 58 Object *cpu = object_new(MACHINE(x86ms)->cpu_type); 59 60 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { 61 goto out; 62 } 63 qdev_realize(DEVICE(cpu), NULL, errp); 64 65 out: 66 object_unref(cpu); 67 } 68 69 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 70 { 71 int i; 72 const CPUArchIdList *possible_cpus; 73 MachineState *ms = MACHINE(x86ms); 74 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 75 76 x86_cpu_set_default_version(default_cpu_version); 77 78 /* 79 * Calculates the limit to CPU APIC ID values 80 * 81 * Limit for the APIC ID value, so that all 82 * CPU APIC IDs are < x86ms->apic_id_limit. 83 * 84 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 85 */ 86 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 87 ms->smp.max_cpus - 1) + 1; 88 89 /* 90 * Can we support APIC ID 255 or higher? With KVM, that requires 91 * both in-kernel lapic and X2APIC userspace API. 92 * 93 * kvm_enabled() must go first to ensure that kvm_* references are 94 * not emitted for the linker to consume (kvm_enabled() is 95 * a literal `0` in configurations where kvm_* aren't defined) 96 */ 97 if (kvm_enabled() && x86ms->apic_id_limit > 255 && 98 kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) { 99 error_report("current -smp configuration requires kernel " 100 "irqchip and X2APIC API support."); 101 exit(EXIT_FAILURE); 102 } 103 104 if (kvm_enabled()) { 105 kvm_set_max_apic_id(x86ms->apic_id_limit); 106 } 107 108 if (!kvm_irqchip_in_kernel()) { 109 apic_set_max_apic_id(x86ms->apic_id_limit); 110 } 111 112 possible_cpus = mc->possible_cpu_arch_ids(ms); 113 for (i = 0; i < ms->smp.cpus; i++) { 114 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 115 } 116 } 117 118 void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count) 119 { 120 MC146818RtcState *rtc = MC146818_RTC(s); 121 122 if (cpus_count > 0xff) { 123 /* 124 * If the number of CPUs can't be represented in 8 bits, the 125 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 126 * to make old BIOSes fail more predictably. 127 */ 128 mc146818rtc_set_cmos_data(rtc, 0x5f, 0); 129 } else { 130 mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1); 131 } 132 } 133 134 static int x86_apic_cmp(const void *a, const void *b) 135 { 136 CPUArchId *apic_a = (CPUArchId *)a; 137 CPUArchId *apic_b = (CPUArchId *)b; 138 139 return apic_a->arch_id - apic_b->arch_id; 140 } 141 142 /* 143 * returns pointer to CPUArchId descriptor that matches CPU's apic_id 144 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 145 * entry corresponding to CPU's apic_id returns NULL. 146 */ 147 static CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 148 { 149 CPUArchId apic_id, *found_cpu; 150 151 apic_id.arch_id = id; 152 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 153 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 154 x86_apic_cmp); 155 if (found_cpu && idx) { 156 *idx = found_cpu - ms->possible_cpus->cpus; 157 } 158 return found_cpu; 159 } 160 161 void x86_cpu_plug(HotplugHandler *hotplug_dev, 162 DeviceState *dev, Error **errp) 163 { 164 CPUArchId *found_cpu; 165 Error *local_err = NULL; 166 X86CPU *cpu = X86_CPU(dev); 167 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 168 169 if (x86ms->acpi_dev) { 170 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); 171 if (local_err) { 172 goto out; 173 } 174 } 175 176 /* increment the number of CPUs */ 177 x86ms->boot_cpus++; 178 if (x86ms->rtc) { 179 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 180 } 181 if (x86ms->fw_cfg) { 182 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 183 } 184 185 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 186 found_cpu->cpu = CPU(dev); 187 out: 188 error_propagate(errp, local_err); 189 } 190 191 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 192 DeviceState *dev, Error **errp) 193 { 194 int idx = -1; 195 X86CPU *cpu = X86_CPU(dev); 196 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 197 198 if (!x86ms->acpi_dev) { 199 error_setg(errp, "CPU hot unplug not supported without ACPI"); 200 return; 201 } 202 203 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 204 assert(idx != -1); 205 if (idx == 0) { 206 error_setg(errp, "Boot CPU is unpluggable"); 207 return; 208 } 209 210 hotplug_handler_unplug_request(x86ms->acpi_dev, dev, 211 errp); 212 } 213 214 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, 215 DeviceState *dev, Error **errp) 216 { 217 CPUArchId *found_cpu; 218 Error *local_err = NULL; 219 X86CPU *cpu = X86_CPU(dev); 220 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 221 222 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); 223 if (local_err) { 224 goto out; 225 } 226 227 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 228 found_cpu->cpu = NULL; 229 qdev_unrealize(dev); 230 231 /* decrement the number of CPUs */ 232 x86ms->boot_cpus--; 233 /* Update the number of CPUs in CMOS */ 234 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 235 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 236 out: 237 error_propagate(errp, local_err); 238 } 239 240 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, 241 DeviceState *dev, Error **errp) 242 { 243 int idx; 244 CPUState *cs; 245 CPUArchId *cpu_slot; 246 X86CPUTopoIDs topo_ids; 247 X86CPU *cpu = X86_CPU(dev); 248 CPUX86State *env = &cpu->env; 249 MachineState *ms = MACHINE(hotplug_dev); 250 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 251 unsigned int smp_cores = ms->smp.cores; 252 unsigned int smp_threads = ms->smp.threads; 253 X86CPUTopoInfo topo_info; 254 255 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 256 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 257 ms->cpu_type); 258 return; 259 } 260 261 if (x86ms->acpi_dev) { 262 Error *local_err = NULL; 263 264 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, 265 &local_err); 266 if (local_err) { 267 error_propagate(errp, local_err); 268 return; 269 } 270 } 271 272 init_topo_info(&topo_info, x86ms); 273 274 if (ms->smp.modules > 1) { 275 env->nr_modules = ms->smp.modules; 276 set_bit(CPU_TOPO_LEVEL_MODULE, env->avail_cpu_topo); 277 } 278 279 if (ms->smp.dies > 1) { 280 env->nr_dies = ms->smp.dies; 281 set_bit(CPU_TOPO_LEVEL_DIE, env->avail_cpu_topo); 282 } 283 284 /* 285 * If APIC ID is not set, 286 * set it based on socket/die/module/core/thread properties. 287 */ 288 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 289 /* 290 * die-id was optional in QEMU 4.0 and older, so keep it optional 291 * if there's only one die per socket. 292 */ 293 if (cpu->die_id < 0 && ms->smp.dies == 1) { 294 cpu->die_id = 0; 295 } 296 297 /* 298 * module-id was optional in QEMU 9.0 and older, so keep it optional 299 * if there's only one module per die. 300 */ 301 if (cpu->module_id < 0 && ms->smp.modules == 1) { 302 cpu->module_id = 0; 303 } 304 305 if (cpu->socket_id < 0) { 306 error_setg(errp, "CPU socket-id is not set"); 307 return; 308 } else if (cpu->socket_id > ms->smp.sockets - 1) { 309 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 310 cpu->socket_id, ms->smp.sockets - 1); 311 return; 312 } 313 if (cpu->die_id < 0) { 314 error_setg(errp, "CPU die-id is not set"); 315 return; 316 } else if (cpu->die_id > ms->smp.dies - 1) { 317 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", 318 cpu->die_id, ms->smp.dies - 1); 319 return; 320 } 321 if (cpu->module_id < 0) { 322 error_setg(errp, "CPU module-id is not set"); 323 return; 324 } else if (cpu->module_id > ms->smp.modules - 1) { 325 error_setg(errp, "Invalid CPU module-id: %u must be in range 0:%u", 326 cpu->module_id, ms->smp.modules - 1); 327 return; 328 } 329 if (cpu->core_id < 0) { 330 error_setg(errp, "CPU core-id is not set"); 331 return; 332 } else if (cpu->core_id > (smp_cores - 1)) { 333 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 334 cpu->core_id, smp_cores - 1); 335 return; 336 } 337 if (cpu->thread_id < 0) { 338 error_setg(errp, "CPU thread-id is not set"); 339 return; 340 } else if (cpu->thread_id > (smp_threads - 1)) { 341 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 342 cpu->thread_id, smp_threads - 1); 343 return; 344 } 345 346 topo_ids.pkg_id = cpu->socket_id; 347 topo_ids.die_id = cpu->die_id; 348 topo_ids.module_id = cpu->module_id; 349 topo_ids.core_id = cpu->core_id; 350 topo_ids.smt_id = cpu->thread_id; 351 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids); 352 } 353 354 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 355 if (!cpu_slot) { 356 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 357 358 error_setg(errp, 359 "Invalid CPU [socket: %u, die: %u, module: %u, core: %u, thread: %u]" 360 " with APIC ID %" PRIu32 ", valid index range 0:%d", 361 topo_ids.pkg_id, topo_ids.die_id, topo_ids.module_id, 362 topo_ids.core_id, topo_ids.smt_id, cpu->apic_id, 363 ms->possible_cpus->len - 1); 364 return; 365 } 366 367 if (cpu_slot->cpu) { 368 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 369 idx, cpu->apic_id); 370 return; 371 } 372 373 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 374 * so that machine_query_hotpluggable_cpus would show correct values 375 */ 376 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 377 * once -smp refactoring is complete and there will be CPU private 378 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 379 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 380 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { 381 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 382 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, 383 topo_ids.pkg_id); 384 return; 385 } 386 cpu->socket_id = topo_ids.pkg_id; 387 388 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { 389 error_setg(errp, "property die-id: %u doesn't match set apic-id:" 390 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); 391 return; 392 } 393 cpu->die_id = topo_ids.die_id; 394 395 if (cpu->module_id != -1 && cpu->module_id != topo_ids.module_id) { 396 error_setg(errp, "property module-id: %u doesn't match set apic-id:" 397 " 0x%x (module-id: %u)", cpu->module_id, cpu->apic_id, 398 topo_ids.module_id); 399 return; 400 } 401 cpu->module_id = topo_ids.module_id; 402 403 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { 404 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 405 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, 406 topo_ids.core_id); 407 return; 408 } 409 cpu->core_id = topo_ids.core_id; 410 411 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { 412 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 413 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, 414 topo_ids.smt_id); 415 return; 416 } 417 cpu->thread_id = topo_ids.smt_id; 418 419 /* 420 * kvm_enabled() must go first to ensure that kvm_* references are 421 * not emitted for the linker to consume (kvm_enabled() is 422 * a literal `0` in configurations where kvm_* aren't defined) 423 */ 424 if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && 425 !kvm_hv_vpindex_settable()) { 426 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 427 return; 428 } 429 430 cs = CPU(cpu); 431 cs->cpu_index = idx; 432 433 numa_cpu_pre_plug(cpu_slot, dev, errp); 434 } 435 436 static long get_file_size(FILE *f) 437 { 438 long where, size; 439 440 /* XXX: on Unix systems, using fstat() probably makes more sense */ 441 442 where = ftell(f); 443 fseek(f, 0, SEEK_END); 444 size = ftell(f); 445 fseek(f, where, SEEK_SET); 446 447 return size; 448 } 449 450 void gsi_handler(void *opaque, int n, int level) 451 { 452 GSIState *s = opaque; 453 454 trace_x86_gsi_interrupt(n, level); 455 switch (n) { 456 case 0 ... ISA_NUM_IRQS - 1: 457 if (s->i8259_irq[n]) { 458 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 459 qemu_set_irq(s->i8259_irq[n], level); 460 } 461 /* fall through */ 462 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1: 463 #ifdef CONFIG_XEN_EMU 464 /* 465 * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC 466 * routing actually works properly under Xen). And then to 467 * *either* the PIRQ handling or the I/OAPIC depending on 468 * whether the former wants it. 469 */ 470 if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) { 471 break; 472 } 473 #endif 474 qemu_set_irq(s->ioapic_irq[n], level); 475 break; 476 case IO_APIC_SECONDARY_IRQBASE 477 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1: 478 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level); 479 break; 480 } 481 } 482 483 void ioapic_init_gsi(GSIState *gsi_state, Object *parent) 484 { 485 DeviceState *dev; 486 SysBusDevice *d; 487 unsigned int i; 488 489 assert(parent); 490 if (kvm_ioapic_in_kernel()) { 491 dev = qdev_new(TYPE_KVM_IOAPIC); 492 } else { 493 dev = qdev_new(TYPE_IOAPIC); 494 } 495 object_property_add_child(parent, "ioapic", OBJECT(dev)); 496 d = SYS_BUS_DEVICE(dev); 497 sysbus_realize_and_unref(d, &error_fatal); 498 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 499 500 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 501 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 502 } 503 } 504 505 DeviceState *ioapic_init_secondary(GSIState *gsi_state) 506 { 507 DeviceState *dev; 508 SysBusDevice *d; 509 unsigned int i; 510 511 dev = qdev_new(TYPE_IOAPIC); 512 d = SYS_BUS_DEVICE(dev); 513 sysbus_realize_and_unref(d, &error_fatal); 514 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS); 515 516 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 517 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i); 518 } 519 return dev; 520 } 521 522 /* 523 * The entry point into the kernel for PVH boot is different from 524 * the native entry point. The PVH entry is defined by the x86/HVM 525 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 526 * 527 * This function is passed to load_elf() when it is called from 528 * load_elfboot() which then additionally checks for an ELF Note of 529 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 530 * parse the PVH entry address from the ELF Note. 531 * 532 * Due to trickery in elf_opts.h, load_elf() is actually available as 533 * load_elf32() or load_elf64() and this routine needs to be able 534 * to deal with being called as 32 or 64 bit. 535 * 536 * The address of the PVH entry point is saved to the 'pvh_start_addr' 537 * global variable. (although the entry point is 32-bit, the kernel 538 * binary can be either 32-bit or 64-bit). 539 */ 540 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 541 { 542 size_t *elf_note_data_addr; 543 544 /* Check if ELF Note header passed in is valid */ 545 if (arg1 == NULL) { 546 return 0; 547 } 548 549 if (is64) { 550 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 551 uint64_t nhdr_size64 = sizeof(struct elf64_note); 552 uint64_t phdr_align = *(uint64_t *)arg2; 553 uint64_t nhdr_namesz = nhdr64->n_namesz; 554 555 elf_note_data_addr = 556 ((void *)nhdr64) + nhdr_size64 + 557 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 558 559 pvh_start_addr = *elf_note_data_addr; 560 } else { 561 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 562 uint32_t nhdr_size32 = sizeof(struct elf32_note); 563 uint32_t phdr_align = *(uint32_t *)arg2; 564 uint32_t nhdr_namesz = nhdr32->n_namesz; 565 566 elf_note_data_addr = 567 ((void *)nhdr32) + nhdr_size32 + 568 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 569 570 pvh_start_addr = *(uint32_t *)elf_note_data_addr; 571 } 572 573 return pvh_start_addr; 574 } 575 576 static bool load_elfboot(const char *kernel_filename, 577 int kernel_file_size, 578 uint8_t *header, 579 size_t pvh_xen_start_addr, 580 FWCfgState *fw_cfg) 581 { 582 uint32_t flags = 0; 583 uint32_t mh_load_addr = 0; 584 uint32_t elf_kernel_size = 0; 585 uint64_t elf_entry; 586 uint64_t elf_low, elf_high; 587 int kernel_size; 588 589 if (ldl_le_p(header) != 0x464c457f) { 590 return false; /* no elfboot */ 591 } 592 593 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 594 flags = elf_is64 ? 595 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 596 597 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 598 error_report("elfboot unsupported flags = %x", flags); 599 exit(1); 600 } 601 602 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 603 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 604 NULL, &elf_note_type, &elf_entry, 605 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 606 0, 0); 607 608 if (kernel_size < 0) { 609 error_report("Error while loading elf kernel"); 610 exit(1); 611 } 612 mh_load_addr = elf_low; 613 elf_kernel_size = elf_high - elf_low; 614 615 if (pvh_start_addr == 0) { 616 error_report("Error loading uncompressed kernel without PVH ELF Note"); 617 exit(1); 618 } 619 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 620 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 621 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 622 623 return true; 624 } 625 626 void x86_load_linux(X86MachineState *x86ms, 627 FWCfgState *fw_cfg, 628 int acpi_data_size, 629 bool pvh_enabled) 630 { 631 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled; 632 uint16_t protocol; 633 int setup_size, kernel_size, cmdline_size; 634 int dtb_size, setup_data_offset; 635 uint32_t initrd_max; 636 uint8_t header[8192], *setup, *kernel; 637 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 638 FILE *f; 639 char *vmode; 640 MachineState *machine = MACHINE(x86ms); 641 struct setup_data *setup_data; 642 const char *kernel_filename = machine->kernel_filename; 643 const char *initrd_filename = machine->initrd_filename; 644 const char *dtb_filename = machine->dtb; 645 const char *kernel_cmdline = machine->kernel_cmdline; 646 SevKernelLoaderContext sev_load_ctx = {}; 647 648 /* Align to 16 bytes as a paranoia measure */ 649 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 650 651 /* load the kernel header */ 652 f = fopen(kernel_filename, "rb"); 653 if (!f) { 654 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 655 kernel_filename, strerror(errno)); 656 exit(1); 657 } 658 659 kernel_size = get_file_size(f); 660 if (!kernel_size || 661 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 662 MIN(ARRAY_SIZE(header), kernel_size)) { 663 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 664 kernel_filename, strerror(errno)); 665 exit(1); 666 } 667 668 /* 669 * kernel protocol version. 670 * Please see https://www.kernel.org/doc/Documentation/x86/boot.txt 671 */ 672 if (ldl_le_p(header + 0x202) == 0x53726448) /* Magic signature "HdrS" */ { 673 protocol = lduw_le_p(header + 0x206); 674 } else { 675 /* 676 * This could be a multiboot kernel. If it is, let's stop treating it 677 * like a Linux kernel. 678 * Note: some multiboot images could be in the ELF format (the same of 679 * PVH), so we try multiboot first since we check the multiboot magic 680 * header before to load it. 681 */ 682 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename, 683 kernel_cmdline, kernel_size, header)) { 684 return; 685 } 686 /* 687 * Check if the file is an uncompressed kernel file (ELF) and load it, 688 * saving the PVH entry point used by the x86/HVM direct boot ABI. 689 * If load_elfboot() is successful, populate the fw_cfg info. 690 */ 691 if (pvh_enabled && 692 load_elfboot(kernel_filename, kernel_size, 693 header, pvh_start_addr, fw_cfg)) { 694 fclose(f); 695 696 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 697 strlen(kernel_cmdline) + 1); 698 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 699 700 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 701 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 702 header, sizeof(header)); 703 704 /* load initrd */ 705 if (initrd_filename) { 706 GMappedFile *mapped_file; 707 gsize initrd_size; 708 gchar *initrd_data; 709 GError *gerr = NULL; 710 711 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 712 if (!mapped_file) { 713 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 714 initrd_filename, gerr->message); 715 exit(1); 716 } 717 x86ms->initrd_mapped_file = mapped_file; 718 719 initrd_data = g_mapped_file_get_contents(mapped_file); 720 initrd_size = g_mapped_file_get_length(mapped_file); 721 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 722 if (initrd_size >= initrd_max) { 723 fprintf(stderr, "qemu: initrd is too large, cannot support." 724 "(max: %"PRIu32", need %"PRId64")\n", 725 initrd_max, (uint64_t)initrd_size); 726 exit(1); 727 } 728 729 initrd_addr = (initrd_max - initrd_size) & ~4095; 730 731 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 732 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 733 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 734 initrd_size); 735 } 736 737 option_rom[nb_option_roms].bootindex = 0; 738 option_rom[nb_option_roms].name = "pvh.bin"; 739 nb_option_roms++; 740 741 return; 742 } 743 protocol = 0; 744 } 745 746 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 747 /* Low kernel */ 748 real_addr = 0x90000; 749 cmdline_addr = 0x9a000 - cmdline_size; 750 prot_addr = 0x10000; 751 } else if (protocol < 0x202) { 752 /* High but ancient kernel */ 753 real_addr = 0x90000; 754 cmdline_addr = 0x9a000 - cmdline_size; 755 prot_addr = 0x100000; 756 } else { 757 /* High and recent kernel */ 758 real_addr = 0x10000; 759 cmdline_addr = 0x20000; 760 prot_addr = 0x100000; 761 } 762 763 /* highest address for loading the initrd */ 764 if (protocol >= 0x20c && 765 lduw_le_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 766 /* 767 * Linux has supported initrd up to 4 GB for a very long time (2007, 768 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 769 * though it only sets initrd_max to 2 GB to "work around bootloader 770 * bugs". Luckily, QEMU firmware(which does something like bootloader) 771 * has supported this. 772 * 773 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 774 * be loaded into any address. 775 * 776 * In addition, initrd_max is uint32_t simply because QEMU doesn't 777 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 778 * field). 779 * 780 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 781 */ 782 initrd_max = UINT32_MAX; 783 } else if (protocol >= 0x203) { 784 initrd_max = ldl_le_p(header + 0x22c); 785 } else { 786 initrd_max = 0x37ffffff; 787 } 788 789 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 790 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 791 } 792 793 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 794 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 795 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 796 sev_load_ctx.cmdline_data = (char *)kernel_cmdline; 797 sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1; 798 799 if (protocol >= 0x202) { 800 stl_le_p(header + 0x228, cmdline_addr); 801 } else { 802 stw_le_p(header + 0x20, 0xA33F); 803 stw_le_p(header + 0x22, cmdline_addr - real_addr); 804 } 805 806 /* handle vga= parameter */ 807 vmode = strstr(kernel_cmdline, "vga="); 808 if (vmode) { 809 unsigned int video_mode; 810 const char *end; 811 int ret; 812 /* skip "vga=" */ 813 vmode += 4; 814 if (!strncmp(vmode, "normal", 6)) { 815 video_mode = 0xffff; 816 } else if (!strncmp(vmode, "ext", 3)) { 817 video_mode = 0xfffe; 818 } else if (!strncmp(vmode, "ask", 3)) { 819 video_mode = 0xfffd; 820 } else { 821 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 822 if (ret != 0 || (*end && *end != ' ')) { 823 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 824 exit(1); 825 } 826 } 827 stw_le_p(header + 0x1fa, video_mode); 828 } 829 830 /* loader type */ 831 /* 832 * High nybble = B reserved for QEMU; low nybble is revision number. 833 * If this code is substantially changed, you may want to consider 834 * incrementing the revision. 835 */ 836 if (protocol >= 0x200) { 837 header[0x210] = 0xB0; 838 } 839 /* heap */ 840 if (protocol >= 0x201) { 841 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 842 stw_le_p(header + 0x224, cmdline_addr - real_addr - 0x200); 843 } 844 845 /* load initrd */ 846 if (initrd_filename) { 847 GMappedFile *mapped_file; 848 gsize initrd_size; 849 gchar *initrd_data; 850 GError *gerr = NULL; 851 852 if (protocol < 0x200) { 853 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 854 exit(1); 855 } 856 857 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 858 if (!mapped_file) { 859 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 860 initrd_filename, gerr->message); 861 exit(1); 862 } 863 x86ms->initrd_mapped_file = mapped_file; 864 865 initrd_data = g_mapped_file_get_contents(mapped_file); 866 initrd_size = g_mapped_file_get_length(mapped_file); 867 if (initrd_size >= initrd_max) { 868 fprintf(stderr, "qemu: initrd is too large, cannot support." 869 "(max: %"PRIu32", need %"PRId64")\n", 870 initrd_max, (uint64_t)initrd_size); 871 exit(1); 872 } 873 874 initrd_addr = (initrd_max - initrd_size) & ~4095; 875 876 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 877 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 878 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 879 sev_load_ctx.initrd_data = initrd_data; 880 sev_load_ctx.initrd_size = initrd_size; 881 882 stl_le_p(header + 0x218, initrd_addr); 883 stl_le_p(header + 0x21c, initrd_size); 884 } 885 886 /* load kernel and setup */ 887 setup_size = header[0x1f1]; 888 if (setup_size == 0) { 889 setup_size = 4; 890 } 891 setup_size = (setup_size + 1) * 512; 892 if (setup_size > kernel_size) { 893 fprintf(stderr, "qemu: invalid kernel header\n"); 894 exit(1); 895 } 896 kernel_size -= setup_size; 897 898 setup = g_malloc(setup_size); 899 kernel = g_malloc(kernel_size); 900 fseek(f, 0, SEEK_SET); 901 if (fread(setup, 1, setup_size, f) != setup_size) { 902 fprintf(stderr, "fread() failed\n"); 903 exit(1); 904 } 905 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 906 fprintf(stderr, "fread() failed\n"); 907 exit(1); 908 } 909 fclose(f); 910 911 /* append dtb to kernel */ 912 if (dtb_filename) { 913 if (protocol < 0x209) { 914 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 915 exit(1); 916 } 917 918 dtb_size = get_image_size(dtb_filename); 919 if (dtb_size <= 0) { 920 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 921 dtb_filename, strerror(errno)); 922 exit(1); 923 } 924 925 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 926 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 927 kernel = g_realloc(kernel, kernel_size); 928 929 stq_le_p(header + 0x250, prot_addr + setup_data_offset); 930 931 setup_data = (struct setup_data *)(kernel + setup_data_offset); 932 setup_data->next = 0; 933 setup_data->type = cpu_to_le32(SETUP_DTB); 934 setup_data->len = cpu_to_le32(dtb_size); 935 936 load_image_size(dtb_filename, setup_data->data, dtb_size); 937 } 938 939 /* 940 * If we're starting an encrypted VM, it will be OVMF based, which uses the 941 * efi stub for booting and doesn't require any values to be placed in the 942 * kernel header. We therefore don't update the header so the hash of the 943 * kernel on the other side of the fw_cfg interface matches the hash of the 944 * file the user passed in. 945 */ 946 if (!sev_enabled()) { 947 memcpy(setup, header, MIN(sizeof(header), setup_size)); 948 } 949 950 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 951 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 952 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 953 sev_load_ctx.kernel_data = (char *)kernel; 954 sev_load_ctx.kernel_size = kernel_size; 955 956 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 957 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 958 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 959 sev_load_ctx.setup_data = (char *)setup; 960 sev_load_ctx.setup_size = setup_size; 961 962 if (sev_enabled()) { 963 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal); 964 } 965 966 option_rom[nb_option_roms].bootindex = 0; 967 option_rom[nb_option_roms].name = "linuxboot.bin"; 968 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 969 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 970 } 971 nb_option_roms++; 972 } 973 974 void x86_isa_bios_init(MemoryRegion *isa_bios, MemoryRegion *isa_memory, 975 MemoryRegion *bios, bool read_only) 976 { 977 uint64_t bios_size = memory_region_size(bios); 978 uint64_t isa_bios_size = MIN(bios_size, 128 * KiB); 979 980 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 981 bios_size - isa_bios_size, isa_bios_size); 982 memory_region_add_subregion_overlap(isa_memory, 1 * MiB - isa_bios_size, 983 isa_bios, 1); 984 memory_region_set_readonly(isa_bios, read_only); 985 } 986 987 void x86_bios_rom_init(X86MachineState *x86ms, const char *default_firmware, 988 MemoryRegion *rom_memory, bool isapc_ram_fw) 989 { 990 const char *bios_name; 991 char *filename; 992 int bios_size; 993 ssize_t ret; 994 995 /* BIOS load */ 996 bios_name = MACHINE(x86ms)->firmware ?: default_firmware; 997 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 998 if (filename) { 999 bios_size = get_image_size(filename); 1000 } else { 1001 bios_size = -1; 1002 } 1003 if (bios_size <= 0 || 1004 (bios_size % 65536) != 0) { 1005 goto bios_error; 1006 } 1007 if (machine_require_guest_memfd(MACHINE(x86ms))) { 1008 memory_region_init_ram_guest_memfd(&x86ms->bios, NULL, "pc.bios", 1009 bios_size, &error_fatal); 1010 } else { 1011 memory_region_init_ram(&x86ms->bios, NULL, "pc.bios", 1012 bios_size, &error_fatal); 1013 } 1014 if (sev_enabled()) { 1015 /* 1016 * The concept of a "reset" simply doesn't exist for 1017 * confidential computing guests, we have to destroy and 1018 * re-launch them instead. So there is no need to register 1019 * the firmware as rom to properly re-initialize on reset. 1020 * Just go for a straight file load instead. 1021 */ 1022 void *ptr = memory_region_get_ram_ptr(&x86ms->bios); 1023 load_image_size(filename, ptr, bios_size); 1024 x86_firmware_configure(0x100000000ULL - bios_size, ptr, bios_size); 1025 } else { 1026 memory_region_set_readonly(&x86ms->bios, !isapc_ram_fw); 1027 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 1028 if (ret != 0) { 1029 goto bios_error; 1030 } 1031 } 1032 g_free(filename); 1033 1034 if (!machine_require_guest_memfd(MACHINE(x86ms))) { 1035 /* map the last 128KB of the BIOS in ISA space */ 1036 x86_isa_bios_init(&x86ms->isa_bios, rom_memory, &x86ms->bios, 1037 !isapc_ram_fw); 1038 } 1039 1040 /* map all the bios at the top of memory */ 1041 memory_region_add_subregion(rom_memory, 1042 (uint32_t)(-bios_size), 1043 &x86ms->bios); 1044 return; 1045 1046 bios_error: 1047 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 1048 exit(1); 1049 } 1050