1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019, 2024 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/cutils.h" 26 #include "qemu/units.h" 27 #include "qemu/datadir.h" 28 #include "qapi/error.h" 29 #include "sysemu/numa.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/xen.h" 32 #include "trace.h" 33 34 #include "hw/i386/x86.h" 35 #include "target/i386/cpu.h" 36 #include "hw/rtc/mc146818rtc.h" 37 #include "target/i386/sev.h" 38 39 #include "hw/acpi/cpu_hotplug.h" 40 #include "hw/irq.h" 41 #include "hw/loader.h" 42 #include "multiboot.h" 43 #include "elf.h" 44 #include "standard-headers/asm-x86/bootparam.h" 45 #include CONFIG_DEVICES 46 #include "kvm/kvm_i386.h" 47 48 #ifdef CONFIG_XEN_EMU 49 #include "hw/xen/xen.h" 50 #include "hw/i386/kvm/xen_evtchn.h" 51 #endif 52 53 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 54 static size_t pvh_start_addr; 55 56 static void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 57 { 58 Object *cpu = object_new(MACHINE(x86ms)->cpu_type); 59 60 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { 61 goto out; 62 } 63 qdev_realize(DEVICE(cpu), NULL, errp); 64 65 out: 66 object_unref(cpu); 67 } 68 69 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 70 { 71 int i; 72 const CPUArchIdList *possible_cpus; 73 MachineState *ms = MACHINE(x86ms); 74 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 75 76 x86_cpu_set_default_version(default_cpu_version); 77 78 /* 79 * Calculates the limit to CPU APIC ID values 80 * 81 * Limit for the APIC ID value, so that all 82 * CPU APIC IDs are < x86ms->apic_id_limit. 83 * 84 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 85 */ 86 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 87 ms->smp.max_cpus - 1) + 1; 88 89 /* 90 * Can we support APIC ID 255 or higher? With KVM, that requires 91 * both in-kernel lapic and X2APIC userspace API. 92 * 93 * kvm_enabled() must go first to ensure that kvm_* references are 94 * not emitted for the linker to consume (kvm_enabled() is 95 * a literal `0` in configurations where kvm_* aren't defined) 96 */ 97 if (kvm_enabled() && x86ms->apic_id_limit > 255 && 98 kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) { 99 error_report("current -smp configuration requires kernel " 100 "irqchip and X2APIC API support."); 101 exit(EXIT_FAILURE); 102 } 103 104 if (kvm_enabled()) { 105 kvm_set_max_apic_id(x86ms->apic_id_limit); 106 } 107 108 if (!kvm_irqchip_in_kernel()) { 109 apic_set_max_apic_id(x86ms->apic_id_limit); 110 } 111 112 possible_cpus = mc->possible_cpu_arch_ids(ms); 113 for (i = 0; i < ms->smp.cpus; i++) { 114 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 115 } 116 } 117 118 void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count) 119 { 120 MC146818RtcState *rtc = MC146818_RTC(s); 121 122 if (cpus_count > 0xff) { 123 /* 124 * If the number of CPUs can't be represented in 8 bits, the 125 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 126 * to make old BIOSes fail more predictably. 127 */ 128 mc146818rtc_set_cmos_data(rtc, 0x5f, 0); 129 } else { 130 mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1); 131 } 132 } 133 134 static int x86_apic_cmp(const void *a, const void *b) 135 { 136 CPUArchId *apic_a = (CPUArchId *)a; 137 CPUArchId *apic_b = (CPUArchId *)b; 138 139 return apic_a->arch_id - apic_b->arch_id; 140 } 141 142 /* 143 * returns pointer to CPUArchId descriptor that matches CPU's apic_id 144 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 145 * entry corresponding to CPU's apic_id returns NULL. 146 */ 147 static CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 148 { 149 CPUArchId apic_id, *found_cpu; 150 151 apic_id.arch_id = id; 152 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 153 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 154 x86_apic_cmp); 155 if (found_cpu && idx) { 156 *idx = found_cpu - ms->possible_cpus->cpus; 157 } 158 return found_cpu; 159 } 160 161 void x86_cpu_plug(HotplugHandler *hotplug_dev, 162 DeviceState *dev, Error **errp) 163 { 164 CPUArchId *found_cpu; 165 Error *local_err = NULL; 166 X86CPU *cpu = X86_CPU(dev); 167 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 168 169 if (x86ms->acpi_dev) { 170 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); 171 if (local_err) { 172 goto out; 173 } 174 } 175 176 /* increment the number of CPUs */ 177 x86ms->boot_cpus++; 178 if (x86ms->rtc) { 179 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 180 } 181 if (x86ms->fw_cfg) { 182 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 183 } 184 185 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 186 found_cpu->cpu = CPU(dev); 187 out: 188 error_propagate(errp, local_err); 189 } 190 191 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 192 DeviceState *dev, Error **errp) 193 { 194 int idx = -1; 195 X86CPU *cpu = X86_CPU(dev); 196 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 197 198 if (!x86ms->acpi_dev) { 199 error_setg(errp, "CPU hot unplug not supported without ACPI"); 200 return; 201 } 202 203 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 204 assert(idx != -1); 205 if (idx == 0) { 206 error_setg(errp, "Boot CPU is unpluggable"); 207 return; 208 } 209 210 hotplug_handler_unplug_request(x86ms->acpi_dev, dev, 211 errp); 212 } 213 214 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, 215 DeviceState *dev, Error **errp) 216 { 217 CPUArchId *found_cpu; 218 Error *local_err = NULL; 219 X86CPU *cpu = X86_CPU(dev); 220 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 221 222 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); 223 if (local_err) { 224 goto out; 225 } 226 227 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 228 found_cpu->cpu = NULL; 229 qdev_unrealize(dev); 230 231 /* decrement the number of CPUs */ 232 x86ms->boot_cpus--; 233 /* Update the number of CPUs in CMOS */ 234 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 235 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 236 out: 237 error_propagate(errp, local_err); 238 } 239 240 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, 241 DeviceState *dev, Error **errp) 242 { 243 int idx; 244 CPUState *cs; 245 CPUArchId *cpu_slot; 246 X86CPUTopoIDs topo_ids; 247 X86CPU *cpu = X86_CPU(dev); 248 CPUX86State *env = &cpu->env; 249 MachineState *ms = MACHINE(hotplug_dev); 250 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 251 unsigned int smp_cores = ms->smp.cores; 252 unsigned int smp_threads = ms->smp.threads; 253 X86CPUTopoInfo topo_info; 254 255 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 256 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 257 ms->cpu_type); 258 return; 259 } 260 261 if (x86ms->acpi_dev) { 262 Error *local_err = NULL; 263 264 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, 265 &local_err); 266 if (local_err) { 267 error_propagate(errp, local_err); 268 return; 269 } 270 } 271 272 init_topo_info(&topo_info, x86ms); 273 274 env->nr_dies = ms->smp.dies; 275 276 /* 277 * If APIC ID is not set, 278 * set it based on socket/die/core/thread properties. 279 */ 280 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 281 int max_socket = (ms->smp.max_cpus - 1) / 282 smp_threads / smp_cores / ms->smp.dies; 283 284 /* 285 * die-id was optional in QEMU 4.0 and older, so keep it optional 286 * if there's only one die per socket. 287 */ 288 if (cpu->die_id < 0 && ms->smp.dies == 1) { 289 cpu->die_id = 0; 290 } 291 292 if (cpu->socket_id < 0) { 293 error_setg(errp, "CPU socket-id is not set"); 294 return; 295 } else if (cpu->socket_id > max_socket) { 296 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 297 cpu->socket_id, max_socket); 298 return; 299 } 300 if (cpu->die_id < 0) { 301 error_setg(errp, "CPU die-id is not set"); 302 return; 303 } else if (cpu->die_id > ms->smp.dies - 1) { 304 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", 305 cpu->die_id, ms->smp.dies - 1); 306 return; 307 } 308 if (cpu->core_id < 0) { 309 error_setg(errp, "CPU core-id is not set"); 310 return; 311 } else if (cpu->core_id > (smp_cores - 1)) { 312 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 313 cpu->core_id, smp_cores - 1); 314 return; 315 } 316 if (cpu->thread_id < 0) { 317 error_setg(errp, "CPU thread-id is not set"); 318 return; 319 } else if (cpu->thread_id > (smp_threads - 1)) { 320 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 321 cpu->thread_id, smp_threads - 1); 322 return; 323 } 324 325 topo_ids.pkg_id = cpu->socket_id; 326 topo_ids.die_id = cpu->die_id; 327 topo_ids.core_id = cpu->core_id; 328 topo_ids.smt_id = cpu->thread_id; 329 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids); 330 } 331 332 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 333 if (!cpu_slot) { 334 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 335 error_setg(errp, 336 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with" 337 " APIC ID %" PRIu32 ", valid index range 0:%d", 338 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id, 339 cpu->apic_id, ms->possible_cpus->len - 1); 340 return; 341 } 342 343 if (cpu_slot->cpu) { 344 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 345 idx, cpu->apic_id); 346 return; 347 } 348 349 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 350 * so that machine_query_hotpluggable_cpus would show correct values 351 */ 352 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 353 * once -smp refactoring is complete and there will be CPU private 354 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 355 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 356 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { 357 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 358 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, 359 topo_ids.pkg_id); 360 return; 361 } 362 cpu->socket_id = topo_ids.pkg_id; 363 364 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { 365 error_setg(errp, "property die-id: %u doesn't match set apic-id:" 366 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); 367 return; 368 } 369 cpu->die_id = topo_ids.die_id; 370 371 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { 372 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 373 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, 374 topo_ids.core_id); 375 return; 376 } 377 cpu->core_id = topo_ids.core_id; 378 379 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { 380 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 381 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, 382 topo_ids.smt_id); 383 return; 384 } 385 cpu->thread_id = topo_ids.smt_id; 386 387 /* 388 * kvm_enabled() must go first to ensure that kvm_* references are 389 * not emitted for the linker to consume (kvm_enabled() is 390 * a literal `0` in configurations where kvm_* aren't defined) 391 */ 392 if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && 393 !kvm_hv_vpindex_settable()) { 394 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 395 return; 396 } 397 398 cs = CPU(cpu); 399 cs->cpu_index = idx; 400 401 numa_cpu_pre_plug(cpu_slot, dev, errp); 402 } 403 404 static long get_file_size(FILE *f) 405 { 406 long where, size; 407 408 /* XXX: on Unix systems, using fstat() probably makes more sense */ 409 410 where = ftell(f); 411 fseek(f, 0, SEEK_END); 412 size = ftell(f); 413 fseek(f, where, SEEK_SET); 414 415 return size; 416 } 417 418 void gsi_handler(void *opaque, int n, int level) 419 { 420 GSIState *s = opaque; 421 422 trace_x86_gsi_interrupt(n, level); 423 switch (n) { 424 case 0 ... ISA_NUM_IRQS - 1: 425 if (s->i8259_irq[n]) { 426 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 427 qemu_set_irq(s->i8259_irq[n], level); 428 } 429 /* fall through */ 430 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1: 431 #ifdef CONFIG_XEN_EMU 432 /* 433 * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC 434 * routing actually works properly under Xen). And then to 435 * *either* the PIRQ handling or the I/OAPIC depending on 436 * whether the former wants it. 437 */ 438 if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) { 439 break; 440 } 441 #endif 442 qemu_set_irq(s->ioapic_irq[n], level); 443 break; 444 case IO_APIC_SECONDARY_IRQBASE 445 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1: 446 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level); 447 break; 448 } 449 } 450 451 void ioapic_init_gsi(GSIState *gsi_state, Object *parent) 452 { 453 DeviceState *dev; 454 SysBusDevice *d; 455 unsigned int i; 456 457 assert(parent); 458 if (kvm_ioapic_in_kernel()) { 459 dev = qdev_new(TYPE_KVM_IOAPIC); 460 } else { 461 dev = qdev_new(TYPE_IOAPIC); 462 } 463 object_property_add_child(parent, "ioapic", OBJECT(dev)); 464 d = SYS_BUS_DEVICE(dev); 465 sysbus_realize_and_unref(d, &error_fatal); 466 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 467 468 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 469 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 470 } 471 } 472 473 DeviceState *ioapic_init_secondary(GSIState *gsi_state) 474 { 475 DeviceState *dev; 476 SysBusDevice *d; 477 unsigned int i; 478 479 dev = qdev_new(TYPE_IOAPIC); 480 d = SYS_BUS_DEVICE(dev); 481 sysbus_realize_and_unref(d, &error_fatal); 482 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS); 483 484 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 485 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i); 486 } 487 return dev; 488 } 489 490 /* 491 * The entry point into the kernel for PVH boot is different from 492 * the native entry point. The PVH entry is defined by the x86/HVM 493 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 494 * 495 * This function is passed to load_elf() when it is called from 496 * load_elfboot() which then additionally checks for an ELF Note of 497 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 498 * parse the PVH entry address from the ELF Note. 499 * 500 * Due to trickery in elf_opts.h, load_elf() is actually available as 501 * load_elf32() or load_elf64() and this routine needs to be able 502 * to deal with being called as 32 or 64 bit. 503 * 504 * The address of the PVH entry point is saved to the 'pvh_start_addr' 505 * global variable. (although the entry point is 32-bit, the kernel 506 * binary can be either 32-bit or 64-bit). 507 */ 508 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 509 { 510 size_t *elf_note_data_addr; 511 512 /* Check if ELF Note header passed in is valid */ 513 if (arg1 == NULL) { 514 return 0; 515 } 516 517 if (is64) { 518 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 519 uint64_t nhdr_size64 = sizeof(struct elf64_note); 520 uint64_t phdr_align = *(uint64_t *)arg2; 521 uint64_t nhdr_namesz = nhdr64->n_namesz; 522 523 elf_note_data_addr = 524 ((void *)nhdr64) + nhdr_size64 + 525 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 526 527 pvh_start_addr = *elf_note_data_addr; 528 } else { 529 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 530 uint32_t nhdr_size32 = sizeof(struct elf32_note); 531 uint32_t phdr_align = *(uint32_t *)arg2; 532 uint32_t nhdr_namesz = nhdr32->n_namesz; 533 534 elf_note_data_addr = 535 ((void *)nhdr32) + nhdr_size32 + 536 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 537 538 pvh_start_addr = *(uint32_t *)elf_note_data_addr; 539 } 540 541 return pvh_start_addr; 542 } 543 544 static bool load_elfboot(const char *kernel_filename, 545 int kernel_file_size, 546 uint8_t *header, 547 size_t pvh_xen_start_addr, 548 FWCfgState *fw_cfg) 549 { 550 uint32_t flags = 0; 551 uint32_t mh_load_addr = 0; 552 uint32_t elf_kernel_size = 0; 553 uint64_t elf_entry; 554 uint64_t elf_low, elf_high; 555 int kernel_size; 556 557 if (ldl_p(header) != 0x464c457f) { 558 return false; /* no elfboot */ 559 } 560 561 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 562 flags = elf_is64 ? 563 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 564 565 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 566 error_report("elfboot unsupported flags = %x", flags); 567 exit(1); 568 } 569 570 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 571 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 572 NULL, &elf_note_type, &elf_entry, 573 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 574 0, 0); 575 576 if (kernel_size < 0) { 577 error_report("Error while loading elf kernel"); 578 exit(1); 579 } 580 mh_load_addr = elf_low; 581 elf_kernel_size = elf_high - elf_low; 582 583 if (pvh_start_addr == 0) { 584 error_report("Error loading uncompressed kernel without PVH ELF Note"); 585 exit(1); 586 } 587 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 588 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 589 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 590 591 return true; 592 } 593 594 void x86_load_linux(X86MachineState *x86ms, 595 FWCfgState *fw_cfg, 596 int acpi_data_size, 597 bool pvh_enabled) 598 { 599 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled; 600 uint16_t protocol; 601 int setup_size, kernel_size, cmdline_size; 602 int dtb_size, setup_data_offset; 603 uint32_t initrd_max; 604 uint8_t header[8192], *setup, *kernel; 605 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 606 FILE *f; 607 char *vmode; 608 MachineState *machine = MACHINE(x86ms); 609 struct setup_data *setup_data; 610 const char *kernel_filename = machine->kernel_filename; 611 const char *initrd_filename = machine->initrd_filename; 612 const char *dtb_filename = machine->dtb; 613 const char *kernel_cmdline = machine->kernel_cmdline; 614 SevKernelLoaderContext sev_load_ctx = {}; 615 616 /* Align to 16 bytes as a paranoia measure */ 617 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 618 619 /* load the kernel header */ 620 f = fopen(kernel_filename, "rb"); 621 if (!f) { 622 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 623 kernel_filename, strerror(errno)); 624 exit(1); 625 } 626 627 kernel_size = get_file_size(f); 628 if (!kernel_size || 629 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 630 MIN(ARRAY_SIZE(header), kernel_size)) { 631 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 632 kernel_filename, strerror(errno)); 633 exit(1); 634 } 635 636 /* kernel protocol version */ 637 if (ldl_p(header + 0x202) == 0x53726448) { 638 protocol = lduw_p(header + 0x206); 639 } else { 640 /* 641 * This could be a multiboot kernel. If it is, let's stop treating it 642 * like a Linux kernel. 643 * Note: some multiboot images could be in the ELF format (the same of 644 * PVH), so we try multiboot first since we check the multiboot magic 645 * header before to load it. 646 */ 647 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename, 648 kernel_cmdline, kernel_size, header)) { 649 return; 650 } 651 /* 652 * Check if the file is an uncompressed kernel file (ELF) and load it, 653 * saving the PVH entry point used by the x86/HVM direct boot ABI. 654 * If load_elfboot() is successful, populate the fw_cfg info. 655 */ 656 if (pvh_enabled && 657 load_elfboot(kernel_filename, kernel_size, 658 header, pvh_start_addr, fw_cfg)) { 659 fclose(f); 660 661 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 662 strlen(kernel_cmdline) + 1); 663 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 664 665 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 666 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 667 header, sizeof(header)); 668 669 /* load initrd */ 670 if (initrd_filename) { 671 GMappedFile *mapped_file; 672 gsize initrd_size; 673 gchar *initrd_data; 674 GError *gerr = NULL; 675 676 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 677 if (!mapped_file) { 678 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 679 initrd_filename, gerr->message); 680 exit(1); 681 } 682 x86ms->initrd_mapped_file = mapped_file; 683 684 initrd_data = g_mapped_file_get_contents(mapped_file); 685 initrd_size = g_mapped_file_get_length(mapped_file); 686 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 687 if (initrd_size >= initrd_max) { 688 fprintf(stderr, "qemu: initrd is too large, cannot support." 689 "(max: %"PRIu32", need %"PRId64")\n", 690 initrd_max, (uint64_t)initrd_size); 691 exit(1); 692 } 693 694 initrd_addr = (initrd_max - initrd_size) & ~4095; 695 696 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 697 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 698 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 699 initrd_size); 700 } 701 702 option_rom[nb_option_roms].bootindex = 0; 703 option_rom[nb_option_roms].name = "pvh.bin"; 704 nb_option_roms++; 705 706 return; 707 } 708 protocol = 0; 709 } 710 711 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 712 /* Low kernel */ 713 real_addr = 0x90000; 714 cmdline_addr = 0x9a000 - cmdline_size; 715 prot_addr = 0x10000; 716 } else if (protocol < 0x202) { 717 /* High but ancient kernel */ 718 real_addr = 0x90000; 719 cmdline_addr = 0x9a000 - cmdline_size; 720 prot_addr = 0x100000; 721 } else { 722 /* High and recent kernel */ 723 real_addr = 0x10000; 724 cmdline_addr = 0x20000; 725 prot_addr = 0x100000; 726 } 727 728 /* highest address for loading the initrd */ 729 if (protocol >= 0x20c && 730 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 731 /* 732 * Linux has supported initrd up to 4 GB for a very long time (2007, 733 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 734 * though it only sets initrd_max to 2 GB to "work around bootloader 735 * bugs". Luckily, QEMU firmware(which does something like bootloader) 736 * has supported this. 737 * 738 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 739 * be loaded into any address. 740 * 741 * In addition, initrd_max is uint32_t simply because QEMU doesn't 742 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 743 * field). 744 * 745 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 746 */ 747 initrd_max = UINT32_MAX; 748 } else if (protocol >= 0x203) { 749 initrd_max = ldl_p(header + 0x22c); 750 } else { 751 initrd_max = 0x37ffffff; 752 } 753 754 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 755 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 756 } 757 758 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 759 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 760 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 761 sev_load_ctx.cmdline_data = (char *)kernel_cmdline; 762 sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1; 763 764 if (protocol >= 0x202) { 765 stl_p(header + 0x228, cmdline_addr); 766 } else { 767 stw_p(header + 0x20, 0xA33F); 768 stw_p(header + 0x22, cmdline_addr - real_addr); 769 } 770 771 /* handle vga= parameter */ 772 vmode = strstr(kernel_cmdline, "vga="); 773 if (vmode) { 774 unsigned int video_mode; 775 const char *end; 776 int ret; 777 /* skip "vga=" */ 778 vmode += 4; 779 if (!strncmp(vmode, "normal", 6)) { 780 video_mode = 0xffff; 781 } else if (!strncmp(vmode, "ext", 3)) { 782 video_mode = 0xfffe; 783 } else if (!strncmp(vmode, "ask", 3)) { 784 video_mode = 0xfffd; 785 } else { 786 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 787 if (ret != 0 || (*end && *end != ' ')) { 788 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 789 exit(1); 790 } 791 } 792 stw_p(header + 0x1fa, video_mode); 793 } 794 795 /* loader type */ 796 /* 797 * High nybble = B reserved for QEMU; low nybble is revision number. 798 * If this code is substantially changed, you may want to consider 799 * incrementing the revision. 800 */ 801 if (protocol >= 0x200) { 802 header[0x210] = 0xB0; 803 } 804 /* heap */ 805 if (protocol >= 0x201) { 806 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 807 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 808 } 809 810 /* load initrd */ 811 if (initrd_filename) { 812 GMappedFile *mapped_file; 813 gsize initrd_size; 814 gchar *initrd_data; 815 GError *gerr = NULL; 816 817 if (protocol < 0x200) { 818 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 819 exit(1); 820 } 821 822 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 823 if (!mapped_file) { 824 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 825 initrd_filename, gerr->message); 826 exit(1); 827 } 828 x86ms->initrd_mapped_file = mapped_file; 829 830 initrd_data = g_mapped_file_get_contents(mapped_file); 831 initrd_size = g_mapped_file_get_length(mapped_file); 832 if (initrd_size >= initrd_max) { 833 fprintf(stderr, "qemu: initrd is too large, cannot support." 834 "(max: %"PRIu32", need %"PRId64")\n", 835 initrd_max, (uint64_t)initrd_size); 836 exit(1); 837 } 838 839 initrd_addr = (initrd_max - initrd_size) & ~4095; 840 841 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 842 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 843 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 844 sev_load_ctx.initrd_data = initrd_data; 845 sev_load_ctx.initrd_size = initrd_size; 846 847 stl_p(header + 0x218, initrd_addr); 848 stl_p(header + 0x21c, initrd_size); 849 } 850 851 /* load kernel and setup */ 852 setup_size = header[0x1f1]; 853 if (setup_size == 0) { 854 setup_size = 4; 855 } 856 setup_size = (setup_size + 1) * 512; 857 if (setup_size > kernel_size) { 858 fprintf(stderr, "qemu: invalid kernel header\n"); 859 exit(1); 860 } 861 kernel_size -= setup_size; 862 863 setup = g_malloc(setup_size); 864 kernel = g_malloc(kernel_size); 865 fseek(f, 0, SEEK_SET); 866 if (fread(setup, 1, setup_size, f) != setup_size) { 867 fprintf(stderr, "fread() failed\n"); 868 exit(1); 869 } 870 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 871 fprintf(stderr, "fread() failed\n"); 872 exit(1); 873 } 874 fclose(f); 875 876 /* append dtb to kernel */ 877 if (dtb_filename) { 878 if (protocol < 0x209) { 879 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 880 exit(1); 881 } 882 883 dtb_size = get_image_size(dtb_filename); 884 if (dtb_size <= 0) { 885 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 886 dtb_filename, strerror(errno)); 887 exit(1); 888 } 889 890 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 891 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 892 kernel = g_realloc(kernel, kernel_size); 893 894 stq_p(header + 0x250, prot_addr + setup_data_offset); 895 896 setup_data = (struct setup_data *)(kernel + setup_data_offset); 897 setup_data->next = 0; 898 setup_data->type = cpu_to_le32(SETUP_DTB); 899 setup_data->len = cpu_to_le32(dtb_size); 900 901 load_image_size(dtb_filename, setup_data->data, dtb_size); 902 } 903 904 /* 905 * If we're starting an encrypted VM, it will be OVMF based, which uses the 906 * efi stub for booting and doesn't require any values to be placed in the 907 * kernel header. We therefore don't update the header so the hash of the 908 * kernel on the other side of the fw_cfg interface matches the hash of the 909 * file the user passed in. 910 */ 911 if (!sev_enabled()) { 912 memcpy(setup, header, MIN(sizeof(header), setup_size)); 913 } 914 915 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 916 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 917 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 918 sev_load_ctx.kernel_data = (char *)kernel; 919 sev_load_ctx.kernel_size = kernel_size; 920 921 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 922 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 923 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 924 sev_load_ctx.setup_data = (char *)setup; 925 sev_load_ctx.setup_size = setup_size; 926 927 if (sev_enabled()) { 928 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal); 929 } 930 931 option_rom[nb_option_roms].bootindex = 0; 932 option_rom[nb_option_roms].name = "linuxboot.bin"; 933 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 934 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 935 } 936 nb_option_roms++; 937 } 938 939 void x86_isa_bios_init(MemoryRegion *isa_bios, MemoryRegion *isa_memory, 940 MemoryRegion *bios, bool read_only) 941 { 942 uint64_t bios_size = memory_region_size(bios); 943 uint64_t isa_bios_size = MIN(bios_size, 128 * KiB); 944 945 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 946 bios_size - isa_bios_size, isa_bios_size); 947 memory_region_add_subregion_overlap(isa_memory, 1 * MiB - isa_bios_size, 948 isa_bios, 1); 949 memory_region_set_readonly(isa_bios, read_only); 950 } 951 952 void x86_bios_rom_init(X86MachineState *x86ms, const char *default_firmware, 953 MemoryRegion *rom_memory, bool isapc_ram_fw) 954 { 955 const char *bios_name; 956 char *filename; 957 int bios_size; 958 ssize_t ret; 959 960 /* BIOS load */ 961 bios_name = MACHINE(x86ms)->firmware ?: default_firmware; 962 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 963 if (filename) { 964 bios_size = get_image_size(filename); 965 } else { 966 bios_size = -1; 967 } 968 if (bios_size <= 0 || 969 (bios_size % 65536) != 0) { 970 goto bios_error; 971 } 972 memory_region_init_ram(&x86ms->bios, NULL, "pc.bios", bios_size, 973 &error_fatal); 974 if (sev_enabled()) { 975 /* 976 * The concept of a "reset" simply doesn't exist for 977 * confidential computing guests, we have to destroy and 978 * re-launch them instead. So there is no need to register 979 * the firmware as rom to properly re-initialize on reset. 980 * Just go for a straight file load instead. 981 */ 982 void *ptr = memory_region_get_ram_ptr(&x86ms->bios); 983 load_image_size(filename, ptr, bios_size); 984 x86_firmware_configure(ptr, bios_size); 985 } else { 986 memory_region_set_readonly(&x86ms->bios, !isapc_ram_fw); 987 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 988 if (ret != 0) { 989 goto bios_error; 990 } 991 } 992 g_free(filename); 993 994 /* map the last 128KB of the BIOS in ISA space */ 995 x86_isa_bios_init(&x86ms->isa_bios, rom_memory, &x86ms->bios, 996 !isapc_ram_fw); 997 998 /* map all the bios at the top of memory */ 999 memory_region_add_subregion(rom_memory, 1000 (uint32_t)(-bios_size), 1001 &x86ms->bios); 1002 return; 1003 1004 bios_error: 1005 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 1006 exit(1); 1007 } 1008