1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019, 2024 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/cutils.h" 26 #include "qemu/units.h" 27 #include "qemu/datadir.h" 28 #include "qapi/error.h" 29 #include "system/numa.h" 30 #include "system/system.h" 31 #include "system/xen.h" 32 #include "trace.h" 33 34 #include "hw/i386/x86.h" 35 #include "target/i386/cpu.h" 36 #include "hw/rtc/mc146818rtc.h" 37 #include "target/i386/sev.h" 38 39 #include "hw/acpi/cpu_hotplug.h" 40 #include "hw/irq.h" 41 #include "hw/loader.h" 42 #include "multiboot.h" 43 #include "elf.h" 44 #include "standard-headers/asm-x86/bootparam.h" 45 #include CONFIG_DEVICES 46 #include "kvm/kvm_i386.h" 47 #include "kvm/tdx.h" 48 49 #ifdef CONFIG_XEN_EMU 50 #include "hw/xen/xen.h" 51 #include "hw/i386/kvm/xen_evtchn.h" 52 #endif 53 54 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 55 static size_t pvh_start_addr; 56 57 static void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 58 { 59 Object *cpu = object_new(MACHINE(x86ms)->cpu_type); 60 61 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { 62 goto out; 63 } 64 qdev_realize(DEVICE(cpu), NULL, errp); 65 66 out: 67 object_unref(cpu); 68 } 69 70 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 71 { 72 int i; 73 const CPUArchIdList *possible_cpus; 74 MachineState *ms = MACHINE(x86ms); 75 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 76 77 x86_cpu_set_default_version(default_cpu_version); 78 79 /* 80 * Calculates the limit to CPU APIC ID values 81 * 82 * Limit for the APIC ID value, so that all 83 * CPU APIC IDs are < x86ms->apic_id_limit. 84 * 85 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 86 */ 87 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 88 ms->smp.max_cpus - 1) + 1; 89 90 /* 91 * Can we support APIC ID 255 or higher? With KVM, that requires 92 * both in-kernel lapic and X2APIC userspace API. 93 * 94 * kvm_enabled() must go first to ensure that kvm_* references are 95 * not emitted for the linker to consume (kvm_enabled() is 96 * a literal `0` in configurations where kvm_* aren't defined) 97 */ 98 if (kvm_enabled() && x86ms->apic_id_limit > 255 && 99 kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) { 100 error_report("current -smp configuration requires kernel " 101 "irqchip and X2APIC API support."); 102 exit(EXIT_FAILURE); 103 } 104 105 if (kvm_enabled()) { 106 kvm_set_max_apic_id(x86ms->apic_id_limit); 107 } 108 109 if (!kvm_irqchip_in_kernel()) { 110 apic_set_max_apic_id(x86ms->apic_id_limit); 111 } 112 113 possible_cpus = mc->possible_cpu_arch_ids(ms); 114 for (i = 0; i < ms->smp.cpus; i++) { 115 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 116 } 117 } 118 119 void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count) 120 { 121 MC146818RtcState *rtc = MC146818_RTC(s); 122 123 if (cpus_count > 0xff) { 124 /* 125 * If the number of CPUs can't be represented in 8 bits, the 126 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 127 * to make old BIOSes fail more predictably. 128 */ 129 mc146818rtc_set_cmos_data(rtc, 0x5f, 0); 130 } else { 131 mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1); 132 } 133 } 134 135 static int x86_apic_cmp(const void *a, const void *b) 136 { 137 CPUArchId *apic_a = (CPUArchId *)a; 138 CPUArchId *apic_b = (CPUArchId *)b; 139 140 return apic_a->arch_id - apic_b->arch_id; 141 } 142 143 /* 144 * returns pointer to CPUArchId descriptor that matches CPU's apic_id 145 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 146 * entry corresponding to CPU's apic_id returns NULL. 147 */ 148 static CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 149 { 150 CPUArchId apic_id, *found_cpu; 151 152 apic_id.arch_id = id; 153 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 154 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 155 x86_apic_cmp); 156 if (found_cpu && idx) { 157 *idx = found_cpu - ms->possible_cpus->cpus; 158 } 159 return found_cpu; 160 } 161 162 void x86_cpu_plug(HotplugHandler *hotplug_dev, 163 DeviceState *dev, Error **errp) 164 { 165 CPUArchId *found_cpu; 166 Error *local_err = NULL; 167 X86CPU *cpu = X86_CPU(dev); 168 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 169 170 if (x86ms->acpi_dev) { 171 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); 172 if (local_err) { 173 goto out; 174 } 175 } 176 177 /* increment the number of CPUs */ 178 x86ms->boot_cpus++; 179 if (x86ms->rtc) { 180 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 181 } 182 if (x86ms->fw_cfg) { 183 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 184 } 185 186 /* 187 * Non-hotplugged CPUs get their SMM cpu address space initialized in 188 * machine init done notifier: register_smram_listener(). 189 * 190 * We need initialize the SMM cpu address space for the hotplugged CPU 191 * specifically. 192 */ 193 if (kvm_enabled() && dev->hotplugged && x86_machine_is_smm_enabled(x86ms)) { 194 kvm_smm_cpu_address_space_init(cpu); 195 } 196 197 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 198 found_cpu->cpu = CPU(dev); 199 out: 200 error_propagate(errp, local_err); 201 } 202 203 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 204 DeviceState *dev, Error **errp) 205 { 206 int idx = -1; 207 X86CPU *cpu = X86_CPU(dev); 208 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 209 210 if (!x86ms->acpi_dev) { 211 error_setg(errp, "CPU hot unplug not supported without ACPI"); 212 return; 213 } 214 215 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 216 assert(idx != -1); 217 if (idx == 0) { 218 error_setg(errp, "Boot CPU is unpluggable"); 219 return; 220 } 221 222 hotplug_handler_unplug_request(x86ms->acpi_dev, dev, 223 errp); 224 } 225 226 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, 227 DeviceState *dev, Error **errp) 228 { 229 CPUArchId *found_cpu; 230 Error *local_err = NULL; 231 X86CPU *cpu = X86_CPU(dev); 232 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 233 234 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); 235 if (local_err) { 236 goto out; 237 } 238 239 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 240 found_cpu->cpu = NULL; 241 qdev_unrealize(dev); 242 243 /* decrement the number of CPUs */ 244 x86ms->boot_cpus--; 245 /* Update the number of CPUs in CMOS */ 246 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 247 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 248 out: 249 error_propagate(errp, local_err); 250 } 251 252 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, 253 DeviceState *dev, Error **errp) 254 { 255 int idx; 256 CPUState *cs; 257 CPUArchId *cpu_slot; 258 X86CPUTopoIDs topo_ids; 259 X86CPU *cpu = X86_CPU(dev); 260 CPUX86State *env = &cpu->env; 261 MachineState *ms = MACHINE(hotplug_dev); 262 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 263 X86CPUTopoInfo *topo_info = &env->topo_info; 264 265 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 266 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 267 ms->cpu_type); 268 return; 269 } 270 271 if (x86ms->acpi_dev) { 272 Error *local_err = NULL; 273 274 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, 275 &local_err); 276 if (local_err) { 277 error_propagate(errp, local_err); 278 return; 279 } 280 } 281 282 init_topo_info(topo_info, x86ms); 283 284 if (ms->smp.modules > 1) { 285 set_bit(CPU_TOPOLOGY_LEVEL_MODULE, env->avail_cpu_topo); 286 } 287 288 if (ms->smp.dies > 1) { 289 set_bit(CPU_TOPOLOGY_LEVEL_DIE, env->avail_cpu_topo); 290 } 291 292 /* 293 * If APIC ID is not set, 294 * set it based on socket/die/module/core/thread properties. 295 */ 296 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 297 /* 298 * die-id was optional in QEMU 4.0 and older, so keep it optional 299 * if there's only one die per socket. 300 */ 301 if (cpu->die_id < 0 && ms->smp.dies == 1) { 302 cpu->die_id = 0; 303 } 304 305 /* 306 * module-id was optional in QEMU 9.0 and older, so keep it optional 307 * if there's only one module per die. 308 */ 309 if (cpu->module_id < 0 && ms->smp.modules == 1) { 310 cpu->module_id = 0; 311 } 312 313 if (cpu->socket_id < 0) { 314 error_setg(errp, "CPU socket-id is not set"); 315 return; 316 } else if (cpu->socket_id > ms->smp.sockets - 1) { 317 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 318 cpu->socket_id, ms->smp.sockets - 1); 319 return; 320 } 321 if (cpu->die_id < 0) { 322 error_setg(errp, "CPU die-id is not set"); 323 return; 324 } else if (cpu->die_id > ms->smp.dies - 1) { 325 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", 326 cpu->die_id, ms->smp.dies - 1); 327 return; 328 } 329 if (cpu->module_id < 0) { 330 error_setg(errp, "CPU module-id is not set"); 331 return; 332 } else if (cpu->module_id > ms->smp.modules - 1) { 333 error_setg(errp, "Invalid CPU module-id: %u must be in range 0:%u", 334 cpu->module_id, ms->smp.modules - 1); 335 return; 336 } 337 if (cpu->core_id < 0) { 338 error_setg(errp, "CPU core-id is not set"); 339 return; 340 } else if (cpu->core_id > (ms->smp.cores - 1)) { 341 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 342 cpu->core_id, ms->smp.cores - 1); 343 return; 344 } 345 if (cpu->thread_id < 0) { 346 error_setg(errp, "CPU thread-id is not set"); 347 return; 348 } else if (cpu->thread_id > (ms->smp.threads - 1)) { 349 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 350 cpu->thread_id, ms->smp.threads - 1); 351 return; 352 } 353 354 topo_ids.pkg_id = cpu->socket_id; 355 topo_ids.die_id = cpu->die_id; 356 topo_ids.module_id = cpu->module_id; 357 topo_ids.core_id = cpu->core_id; 358 topo_ids.smt_id = cpu->thread_id; 359 cpu->apic_id = x86_apicid_from_topo_ids(topo_info, &topo_ids); 360 } 361 362 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 363 if (!cpu_slot) { 364 x86_topo_ids_from_apicid(cpu->apic_id, topo_info, &topo_ids); 365 366 error_setg(errp, 367 "Invalid CPU [socket: %u, die: %u, module: %u, core: %u, thread: %u]" 368 " with APIC ID %" PRIu32 ", valid index range 0:%d", 369 topo_ids.pkg_id, topo_ids.die_id, topo_ids.module_id, 370 topo_ids.core_id, topo_ids.smt_id, cpu->apic_id, 371 ms->possible_cpus->len - 1); 372 return; 373 } 374 375 if (cpu_slot->cpu) { 376 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 377 idx, cpu->apic_id); 378 return; 379 } 380 381 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 382 * so that machine_query_hotpluggable_cpus would show correct values 383 */ 384 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 385 * once -smp refactoring is complete and there will be CPU private 386 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 387 x86_topo_ids_from_apicid(cpu->apic_id, topo_info, &topo_ids); 388 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { 389 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 390 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, 391 topo_ids.pkg_id); 392 return; 393 } 394 cpu->socket_id = topo_ids.pkg_id; 395 396 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { 397 error_setg(errp, "property die-id: %u doesn't match set apic-id:" 398 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); 399 return; 400 } 401 cpu->die_id = topo_ids.die_id; 402 403 if (cpu->module_id != -1 && cpu->module_id != topo_ids.module_id) { 404 error_setg(errp, "property module-id: %u doesn't match set apic-id:" 405 " 0x%x (module-id: %u)", cpu->module_id, cpu->apic_id, 406 topo_ids.module_id); 407 return; 408 } 409 cpu->module_id = topo_ids.module_id; 410 411 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { 412 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 413 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, 414 topo_ids.core_id); 415 return; 416 } 417 cpu->core_id = topo_ids.core_id; 418 419 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { 420 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 421 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, 422 topo_ids.smt_id); 423 return; 424 } 425 cpu->thread_id = topo_ids.smt_id; 426 427 /* 428 * kvm_enabled() must go first to ensure that kvm_* references are 429 * not emitted for the linker to consume (kvm_enabled() is 430 * a literal `0` in configurations where kvm_* aren't defined) 431 */ 432 if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && 433 !kvm_hv_vpindex_settable()) { 434 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 435 return; 436 } 437 438 cs = CPU(cpu); 439 cs->cpu_index = idx; 440 441 numa_cpu_pre_plug(cpu_slot, dev, errp); 442 } 443 444 static long get_file_size(FILE *f) 445 { 446 long where, size; 447 448 /* XXX: on Unix systems, using fstat() probably makes more sense */ 449 450 where = ftell(f); 451 fseek(f, 0, SEEK_END); 452 size = ftell(f); 453 fseek(f, where, SEEK_SET); 454 455 return size; 456 } 457 458 void gsi_handler(void *opaque, int n, int level) 459 { 460 GSIState *s = opaque; 461 bool bypass_ioapic = false; 462 463 trace_x86_gsi_interrupt(n, level); 464 465 #ifdef CONFIG_XEN_EMU 466 /* 467 * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC 468 * routing actually works properly under Xen). And then to 469 * *either* the PIRQ handling or the I/OAPIC depending on whether 470 * the former wants it. 471 * 472 * Additionally, this hook allows the Xen event channel GSI to 473 * work around QEMU's lack of support for shared level interrupts, 474 * by keeping track of the externally driven state of the pin and 475 * implementing a logical OR with the state of the evtchn GSI. 476 */ 477 if (xen_mode == XEN_EMULATE) { 478 bypass_ioapic = xen_evtchn_set_gsi(n, &level); 479 } 480 #endif 481 482 switch (n) { 483 case 0 ... ISA_NUM_IRQS - 1: 484 if (s->i8259_irq[n]) { 485 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 486 qemu_set_irq(s->i8259_irq[n], level); 487 } 488 /* fall through */ 489 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1: 490 if (!bypass_ioapic) { 491 qemu_set_irq(s->ioapic_irq[n], level); 492 } 493 break; 494 case IO_APIC_SECONDARY_IRQBASE 495 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1: 496 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level); 497 break; 498 } 499 } 500 501 void ioapic_init_gsi(GSIState *gsi_state, Object *parent) 502 { 503 DeviceState *dev; 504 SysBusDevice *d; 505 unsigned int i; 506 507 assert(parent); 508 if (kvm_ioapic_in_kernel()) { 509 dev = qdev_new(TYPE_KVM_IOAPIC); 510 } else { 511 dev = qdev_new(TYPE_IOAPIC); 512 } 513 object_property_add_child(parent, "ioapic", OBJECT(dev)); 514 d = SYS_BUS_DEVICE(dev); 515 sysbus_realize_and_unref(d, &error_fatal); 516 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 517 518 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 519 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 520 } 521 } 522 523 DeviceState *ioapic_init_secondary(GSIState *gsi_state) 524 { 525 DeviceState *dev; 526 SysBusDevice *d; 527 unsigned int i; 528 529 dev = qdev_new(TYPE_IOAPIC); 530 d = SYS_BUS_DEVICE(dev); 531 sysbus_realize_and_unref(d, &error_fatal); 532 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS); 533 534 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 535 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i); 536 } 537 return dev; 538 } 539 540 /* 541 * The entry point into the kernel for PVH boot is different from 542 * the native entry point. The PVH entry is defined by the x86/HVM 543 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 544 * 545 * This function is passed to load_elf() when it is called from 546 * load_elfboot() which then additionally checks for an ELF Note of 547 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 548 * parse the PVH entry address from the ELF Note. 549 * 550 * Due to trickery in elf_opts.h, load_elf() is actually available as 551 * load_elf32() or load_elf64() and this routine needs to be able 552 * to deal with being called as 32 or 64 bit. 553 * 554 * The address of the PVH entry point is saved to the 'pvh_start_addr' 555 * global variable. (although the entry point is 32-bit, the kernel 556 * binary can be either 32-bit or 64-bit). 557 */ 558 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 559 { 560 size_t *elf_note_data_addr; 561 562 /* Check if ELF Note header passed in is valid */ 563 if (arg1 == NULL) { 564 return 0; 565 } 566 567 if (is64) { 568 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 569 uint64_t nhdr_size64 = sizeof(struct elf64_note); 570 uint64_t phdr_align = *(uint64_t *)arg2; 571 uint64_t nhdr_namesz = nhdr64->n_namesz; 572 573 elf_note_data_addr = 574 ((void *)nhdr64) + nhdr_size64 + 575 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 576 577 pvh_start_addr = *elf_note_data_addr; 578 } else { 579 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 580 uint32_t nhdr_size32 = sizeof(struct elf32_note); 581 uint32_t phdr_align = *(uint32_t *)arg2; 582 uint32_t nhdr_namesz = nhdr32->n_namesz; 583 584 elf_note_data_addr = 585 ((void *)nhdr32) + nhdr_size32 + 586 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 587 588 pvh_start_addr = *(uint32_t *)elf_note_data_addr; 589 } 590 591 return pvh_start_addr; 592 } 593 594 static bool load_elfboot(const char *kernel_filename, 595 int kernel_file_size, 596 uint8_t *header, 597 size_t pvh_xen_start_addr, 598 FWCfgState *fw_cfg) 599 { 600 uint32_t flags = 0; 601 uint32_t mh_load_addr = 0; 602 uint32_t elf_kernel_size = 0; 603 uint64_t elf_entry; 604 uint64_t elf_low, elf_high; 605 int kernel_size; 606 607 if (ldl_le_p(header) != 0x464c457f) { 608 return false; /* no elfboot */ 609 } 610 611 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 612 flags = elf_is64 ? 613 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 614 615 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 616 error_report("elfboot unsupported flags = %x", flags); 617 exit(1); 618 } 619 620 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 621 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 622 NULL, &elf_note_type, &elf_entry, 623 &elf_low, &elf_high, NULL, 624 ELFDATA2LSB, I386_ELF_MACHINE, 0, 0); 625 626 if (kernel_size < 0) { 627 error_report("Error while loading elf kernel"); 628 exit(1); 629 } 630 mh_load_addr = elf_low; 631 elf_kernel_size = elf_high - elf_low; 632 633 if (pvh_start_addr == 0) { 634 error_report("Error loading uncompressed kernel without PVH ELF Note"); 635 exit(1); 636 } 637 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 638 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 639 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 640 641 return true; 642 } 643 644 void x86_load_linux(X86MachineState *x86ms, 645 FWCfgState *fw_cfg, 646 int acpi_data_size, 647 bool pvh_enabled) 648 { 649 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled; 650 uint16_t protocol; 651 int setup_size, kernel_size, cmdline_size; 652 int dtb_size, setup_data_offset; 653 uint32_t initrd_max; 654 uint8_t header[8192], *setup, *kernel; 655 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 656 FILE *f; 657 char *vmode; 658 MachineState *machine = MACHINE(x86ms); 659 struct setup_data *setup_data; 660 const char *kernel_filename = machine->kernel_filename; 661 const char *initrd_filename = machine->initrd_filename; 662 const char *dtb_filename = machine->dtb; 663 const char *kernel_cmdline = machine->kernel_cmdline; 664 SevKernelLoaderContext sev_load_ctx = {}; 665 666 /* Align to 16 bytes as a paranoia measure */ 667 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 668 669 /* load the kernel header */ 670 f = fopen(kernel_filename, "rb"); 671 if (!f) { 672 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 673 kernel_filename, strerror(errno)); 674 exit(1); 675 } 676 677 kernel_size = get_file_size(f); 678 if (!kernel_size || 679 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 680 MIN(ARRAY_SIZE(header), kernel_size)) { 681 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 682 kernel_filename, strerror(errno)); 683 exit(1); 684 } 685 686 /* 687 * kernel protocol version. 688 * Please see https://www.kernel.org/doc/Documentation/x86/boot.txt 689 */ 690 if (ldl_le_p(header + 0x202) == 0x53726448) /* Magic signature "HdrS" */ { 691 protocol = lduw_le_p(header + 0x206); 692 } else { 693 /* 694 * This could be a multiboot kernel. If it is, let's stop treating it 695 * like a Linux kernel. 696 * Note: some multiboot images could be in the ELF format (the same of 697 * PVH), so we try multiboot first since we check the multiboot magic 698 * header before to load it. 699 */ 700 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename, 701 kernel_cmdline, kernel_size, header)) { 702 return; 703 } 704 /* 705 * Check if the file is an uncompressed kernel file (ELF) and load it, 706 * saving the PVH entry point used by the x86/HVM direct boot ABI. 707 * If load_elfboot() is successful, populate the fw_cfg info. 708 */ 709 if (pvh_enabled && 710 load_elfboot(kernel_filename, kernel_size, 711 header, pvh_start_addr, fw_cfg)) { 712 fclose(f); 713 714 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 715 strlen(kernel_cmdline) + 1); 716 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 717 718 setup = g_memdup2(header, sizeof(header)); 719 720 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 721 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 722 setup, sizeof(header)); 723 724 /* load initrd */ 725 if (initrd_filename) { 726 GMappedFile *mapped_file; 727 gsize initrd_size; 728 gchar *initrd_data; 729 GError *gerr = NULL; 730 731 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 732 if (!mapped_file) { 733 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 734 initrd_filename, gerr->message); 735 exit(1); 736 } 737 x86ms->initrd_mapped_file = mapped_file; 738 739 initrd_data = g_mapped_file_get_contents(mapped_file); 740 initrd_size = g_mapped_file_get_length(mapped_file); 741 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 742 if (initrd_size >= initrd_max) { 743 fprintf(stderr, "qemu: initrd is too large, cannot support." 744 "(max: %"PRIu32", need %"PRId64")\n", 745 initrd_max, (uint64_t)initrd_size); 746 exit(1); 747 } 748 749 initrd_addr = (initrd_max - initrd_size) & ~4095; 750 751 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 752 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 753 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 754 initrd_size); 755 } 756 757 option_rom[nb_option_roms].bootindex = 0; 758 option_rom[nb_option_roms].name = "pvh.bin"; 759 nb_option_roms++; 760 761 return; 762 } 763 protocol = 0; 764 } 765 766 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 767 /* Low kernel */ 768 real_addr = 0x90000; 769 cmdline_addr = 0x9a000 - cmdline_size; 770 prot_addr = 0x10000; 771 } else if (protocol < 0x202) { 772 /* High but ancient kernel */ 773 real_addr = 0x90000; 774 cmdline_addr = 0x9a000 - cmdline_size; 775 prot_addr = 0x100000; 776 } else { 777 /* High and recent kernel */ 778 real_addr = 0x10000; 779 cmdline_addr = 0x20000; 780 prot_addr = 0x100000; 781 } 782 783 /* highest address for loading the initrd */ 784 if (protocol >= 0x20c && 785 lduw_le_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 786 /* 787 * Linux has supported initrd up to 4 GB for a very long time (2007, 788 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 789 * though it only sets initrd_max to 2 GB to "work around bootloader 790 * bugs". Luckily, QEMU firmware(which does something like bootloader) 791 * has supported this. 792 * 793 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 794 * be loaded into any address. 795 * 796 * In addition, initrd_max is uint32_t simply because QEMU doesn't 797 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 798 * field). 799 * 800 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 801 */ 802 initrd_max = UINT32_MAX; 803 } else if (protocol >= 0x203) { 804 initrd_max = ldl_le_p(header + 0x22c); 805 } else { 806 initrd_max = 0x37ffffff; 807 } 808 809 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 810 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 811 } 812 813 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 814 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 815 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 816 sev_load_ctx.cmdline_data = (char *)kernel_cmdline; 817 sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1; 818 819 if (protocol >= 0x202) { 820 stl_le_p(header + 0x228, cmdline_addr); 821 } else { 822 stw_le_p(header + 0x20, 0xA33F); 823 stw_le_p(header + 0x22, cmdline_addr - real_addr); 824 } 825 826 /* handle vga= parameter */ 827 vmode = strstr(kernel_cmdline, "vga="); 828 if (vmode) { 829 unsigned int video_mode; 830 const char *end; 831 int ret; 832 /* skip "vga=" */ 833 vmode += 4; 834 if (!strncmp(vmode, "normal", 6)) { 835 video_mode = 0xffff; 836 } else if (!strncmp(vmode, "ext", 3)) { 837 video_mode = 0xfffe; 838 } else if (!strncmp(vmode, "ask", 3)) { 839 video_mode = 0xfffd; 840 } else { 841 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 842 if (ret != 0 || (*end && *end != ' ')) { 843 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 844 exit(1); 845 } 846 } 847 stw_le_p(header + 0x1fa, video_mode); 848 } 849 850 /* loader type */ 851 /* 852 * High nybble = B reserved for QEMU; low nybble is revision number. 853 * If this code is substantially changed, you may want to consider 854 * incrementing the revision. 855 */ 856 if (protocol >= 0x200) { 857 header[0x210] = 0xB0; 858 } 859 /* heap */ 860 if (protocol >= 0x201) { 861 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 862 stw_le_p(header + 0x224, cmdline_addr - real_addr - 0x200); 863 } 864 865 /* load initrd */ 866 if (initrd_filename) { 867 GMappedFile *mapped_file; 868 gsize initrd_size; 869 gchar *initrd_data; 870 GError *gerr = NULL; 871 872 if (protocol < 0x200) { 873 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 874 exit(1); 875 } 876 877 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 878 if (!mapped_file) { 879 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 880 initrd_filename, gerr->message); 881 exit(1); 882 } 883 x86ms->initrd_mapped_file = mapped_file; 884 885 initrd_data = g_mapped_file_get_contents(mapped_file); 886 initrd_size = g_mapped_file_get_length(mapped_file); 887 if (initrd_size >= initrd_max) { 888 fprintf(stderr, "qemu: initrd is too large, cannot support." 889 "(max: %"PRIu32", need %"PRId64")\n", 890 initrd_max, (uint64_t)initrd_size); 891 exit(1); 892 } 893 894 initrd_addr = (initrd_max - initrd_size) & ~4095; 895 896 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 897 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 898 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 899 sev_load_ctx.initrd_data = initrd_data; 900 sev_load_ctx.initrd_size = initrd_size; 901 902 stl_le_p(header + 0x218, initrd_addr); 903 stl_le_p(header + 0x21c, initrd_size); 904 } 905 906 /* load kernel and setup */ 907 setup_size = header[0x1f1]; 908 if (setup_size == 0) { 909 setup_size = 4; 910 } 911 setup_size = (setup_size + 1) * 512; 912 if (setup_size > kernel_size) { 913 fprintf(stderr, "qemu: invalid kernel header\n"); 914 exit(1); 915 } 916 917 setup = g_malloc(setup_size); 918 kernel = g_malloc(kernel_size); 919 fseek(f, 0, SEEK_SET); 920 if (fread(setup, 1, setup_size, f) != setup_size) { 921 fprintf(stderr, "fread() failed\n"); 922 exit(1); 923 } 924 fseek(f, 0, SEEK_SET); 925 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 926 fprintf(stderr, "fread() failed\n"); 927 exit(1); 928 } 929 fclose(f); 930 931 /* append dtb to kernel */ 932 if (dtb_filename) { 933 if (protocol < 0x209) { 934 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 935 exit(1); 936 } 937 938 dtb_size = get_image_size(dtb_filename); 939 if (dtb_size <= 0) { 940 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 941 dtb_filename, strerror(errno)); 942 exit(1); 943 } 944 945 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 946 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 947 kernel = g_realloc(kernel, kernel_size); 948 949 stq_le_p(header + 0x250, prot_addr + setup_data_offset); 950 951 setup_data = (struct setup_data *)(kernel + setup_data_offset); 952 setup_data->next = 0; 953 setup_data->type = cpu_to_le32(SETUP_DTB); 954 setup_data->len = cpu_to_le32(dtb_size); 955 956 load_image_size(dtb_filename, setup_data->data, dtb_size); 957 } 958 959 /* 960 * If we're starting an encrypted VM, it will be OVMF based, which uses the 961 * efi stub for booting and doesn't require any values to be placed in the 962 * kernel header. We therefore don't update the header so the hash of the 963 * kernel on the other side of the fw_cfg interface matches the hash of the 964 * file the user passed in. 965 */ 966 if (!sev_enabled() && protocol > 0) { 967 memcpy(setup, header, MIN(sizeof(header), setup_size)); 968 } 969 970 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 971 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size - setup_size); 972 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, 973 kernel + setup_size, kernel_size - setup_size); 974 sev_load_ctx.kernel_data = (char *)kernel + setup_size; 975 sev_load_ctx.kernel_size = kernel_size - setup_size; 976 977 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 978 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 979 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 980 sev_load_ctx.setup_data = (char *)setup; 981 sev_load_ctx.setup_size = setup_size; 982 983 /* kernel without setup header patches */ 984 fw_cfg_add_file(fw_cfg, "etc/boot/kernel", kernel, kernel_size); 985 986 if (machine->shim_filename) { 987 GMappedFile *mapped_file; 988 GError *gerr = NULL; 989 990 mapped_file = g_mapped_file_new(machine->shim_filename, false, &gerr); 991 if (!mapped_file) { 992 fprintf(stderr, "qemu: error reading shim %s: %s\n", 993 machine->shim_filename, gerr->message); 994 exit(1); 995 } 996 997 fw_cfg_add_file(fw_cfg, "etc/boot/shim", 998 g_mapped_file_get_contents(mapped_file), 999 g_mapped_file_get_length(mapped_file)); 1000 } 1001 1002 if (sev_enabled()) { 1003 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal); 1004 } 1005 1006 option_rom[nb_option_roms].bootindex = 0; 1007 option_rom[nb_option_roms].name = "linuxboot.bin"; 1008 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1009 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1010 } 1011 nb_option_roms++; 1012 } 1013 1014 void x86_isa_bios_init(MemoryRegion *isa_bios, MemoryRegion *isa_memory, 1015 MemoryRegion *bios, bool read_only) 1016 { 1017 uint64_t bios_size = memory_region_size(bios); 1018 uint64_t isa_bios_size = MIN(bios_size, 128 * KiB); 1019 1020 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 1021 bios_size - isa_bios_size, isa_bios_size); 1022 memory_region_add_subregion_overlap(isa_memory, 1 * MiB - isa_bios_size, 1023 isa_bios, 1); 1024 memory_region_set_readonly(isa_bios, read_only); 1025 } 1026 1027 void x86_bios_rom_init(X86MachineState *x86ms, const char *default_firmware, 1028 MemoryRegion *rom_memory, bool isapc_ram_fw) 1029 { 1030 const char *bios_name; 1031 char *filename; 1032 int bios_size; 1033 ssize_t ret; 1034 1035 /* BIOS load */ 1036 bios_name = MACHINE(x86ms)->firmware ?: default_firmware; 1037 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1038 if (filename) { 1039 bios_size = get_image_size(filename); 1040 } else { 1041 bios_size = -1; 1042 } 1043 if (bios_size <= 0 || 1044 (bios_size % 65536) != 0) { 1045 goto bios_error; 1046 } 1047 if (machine_require_guest_memfd(MACHINE(x86ms))) { 1048 memory_region_init_ram_guest_memfd(&x86ms->bios, NULL, "pc.bios", 1049 bios_size, &error_fatal); 1050 if (is_tdx_vm()) { 1051 tdx_set_tdvf_region(&x86ms->bios); 1052 } 1053 } else { 1054 memory_region_init_ram(&x86ms->bios, NULL, "pc.bios", 1055 bios_size, &error_fatal); 1056 } 1057 if (sev_enabled() || is_tdx_vm()) { 1058 /* 1059 * The concept of a "reset" simply doesn't exist for 1060 * confidential computing guests, we have to destroy and 1061 * re-launch them instead. So there is no need to register 1062 * the firmware as rom to properly re-initialize on reset. 1063 * Just go for a straight file load instead. 1064 */ 1065 void *ptr = memory_region_get_ram_ptr(&x86ms->bios); 1066 load_image_size(filename, ptr, bios_size); 1067 x86_firmware_configure(0x100000000ULL - bios_size, ptr, bios_size); 1068 } else { 1069 memory_region_set_readonly(&x86ms->bios, !isapc_ram_fw); 1070 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 1071 if (ret != 0) { 1072 goto bios_error; 1073 } 1074 } 1075 g_free(filename); 1076 1077 if (!machine_require_guest_memfd(MACHINE(x86ms))) { 1078 /* map the last 128KB of the BIOS in ISA space */ 1079 x86_isa_bios_init(&x86ms->isa_bios, rom_memory, &x86ms->bios, 1080 !isapc_ram_fw); 1081 } 1082 1083 /* map all the bios at the top of memory */ 1084 memory_region_add_subregion(rom_memory, 1085 (uint32_t)(-bios_size), 1086 &x86ms->bios); 1087 return; 1088 1089 bios_error: 1090 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 1091 exit(1); 1092 } 1093