xref: /openbmc/qemu/hw/i386/x86-common.c (revision b17a26bc)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019, 2024 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/cutils.h"
26 #include "qemu/units.h"
27 #include "qemu/datadir.h"
28 #include "qapi/error.h"
29 #include "sysemu/numa.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/xen.h"
32 #include "trace.h"
33 
34 #include "hw/i386/x86.h"
35 #include "target/i386/cpu.h"
36 #include "hw/rtc/mc146818rtc.h"
37 #include "target/i386/sev.h"
38 
39 #include "hw/acpi/cpu_hotplug.h"
40 #include "hw/irq.h"
41 #include "hw/loader.h"
42 #include "multiboot.h"
43 #include "elf.h"
44 #include "standard-headers/asm-x86/bootparam.h"
45 #include CONFIG_DEVICES
46 #include "kvm/kvm_i386.h"
47 
48 #ifdef CONFIG_XEN_EMU
49 #include "hw/xen/xen.h"
50 #include "hw/i386/kvm/xen_evtchn.h"
51 #endif
52 
53 /* Physical Address of PVH entry point read from kernel ELF NOTE */
54 static size_t pvh_start_addr;
55 
56 static void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
57 {
58     Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
59 
60     if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
61         goto out;
62     }
63     qdev_realize(DEVICE(cpu), NULL, errp);
64 
65 out:
66     object_unref(cpu);
67 }
68 
69 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
70 {
71     int i;
72     const CPUArchIdList *possible_cpus;
73     MachineState *ms = MACHINE(x86ms);
74     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
75 
76     x86_cpu_set_default_version(default_cpu_version);
77 
78     /*
79      * Calculates the limit to CPU APIC ID values
80      *
81      * Limit for the APIC ID value, so that all
82      * CPU APIC IDs are < x86ms->apic_id_limit.
83      *
84      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
85      */
86     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
87                                                       ms->smp.max_cpus - 1) + 1;
88 
89     /*
90      * Can we support APIC ID 255 or higher?  With KVM, that requires
91      * both in-kernel lapic and X2APIC userspace API.
92      *
93      * kvm_enabled() must go first to ensure that kvm_* references are
94      * not emitted for the linker to consume (kvm_enabled() is
95      * a literal `0` in configurations where kvm_* aren't defined)
96      */
97     if (kvm_enabled() && x86ms->apic_id_limit > 255 &&
98         kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) {
99         error_report("current -smp configuration requires kernel "
100                      "irqchip and X2APIC API support.");
101         exit(EXIT_FAILURE);
102     }
103 
104     if (kvm_enabled()) {
105         kvm_set_max_apic_id(x86ms->apic_id_limit);
106     }
107 
108     if (!kvm_irqchip_in_kernel()) {
109         apic_set_max_apic_id(x86ms->apic_id_limit);
110     }
111 
112     possible_cpus = mc->possible_cpu_arch_ids(ms);
113     for (i = 0; i < ms->smp.cpus; i++) {
114         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
115     }
116 }
117 
118 void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count)
119 {
120     MC146818RtcState *rtc = MC146818_RTC(s);
121 
122     if (cpus_count > 0xff) {
123         /*
124          * If the number of CPUs can't be represented in 8 bits, the
125          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
126          * to make old BIOSes fail more predictably.
127          */
128         mc146818rtc_set_cmos_data(rtc, 0x5f, 0);
129     } else {
130         mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1);
131     }
132 }
133 
134 static int x86_apic_cmp(const void *a, const void *b)
135 {
136    CPUArchId *apic_a = (CPUArchId *)a;
137    CPUArchId *apic_b = (CPUArchId *)b;
138 
139    return apic_a->arch_id - apic_b->arch_id;
140 }
141 
142 /*
143  * returns pointer to CPUArchId descriptor that matches CPU's apic_id
144  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
145  * entry corresponding to CPU's apic_id returns NULL.
146  */
147 static CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
148 {
149     CPUArchId apic_id, *found_cpu;
150 
151     apic_id.arch_id = id;
152     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
153         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
154         x86_apic_cmp);
155     if (found_cpu && idx) {
156         *idx = found_cpu - ms->possible_cpus->cpus;
157     }
158     return found_cpu;
159 }
160 
161 void x86_cpu_plug(HotplugHandler *hotplug_dev,
162                   DeviceState *dev, Error **errp)
163 {
164     CPUArchId *found_cpu;
165     Error *local_err = NULL;
166     X86CPU *cpu = X86_CPU(dev);
167     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
168 
169     if (x86ms->acpi_dev) {
170         hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
171         if (local_err) {
172             goto out;
173         }
174     }
175 
176     /* increment the number of CPUs */
177     x86ms->boot_cpus++;
178     if (x86ms->rtc) {
179         x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
180     }
181     if (x86ms->fw_cfg) {
182         fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
183     }
184 
185     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
186     found_cpu->cpu = CPU(dev);
187 out:
188     error_propagate(errp, local_err);
189 }
190 
191 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
192                                DeviceState *dev, Error **errp)
193 {
194     int idx = -1;
195     X86CPU *cpu = X86_CPU(dev);
196     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
197 
198     if (!x86ms->acpi_dev) {
199         error_setg(errp, "CPU hot unplug not supported without ACPI");
200         return;
201     }
202 
203     x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
204     assert(idx != -1);
205     if (idx == 0) {
206         error_setg(errp, "Boot CPU is unpluggable");
207         return;
208     }
209 
210     hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
211                                    errp);
212 }
213 
214 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
215                        DeviceState *dev, Error **errp)
216 {
217     CPUArchId *found_cpu;
218     Error *local_err = NULL;
219     X86CPU *cpu = X86_CPU(dev);
220     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
221 
222     hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
223     if (local_err) {
224         goto out;
225     }
226 
227     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
228     found_cpu->cpu = NULL;
229     qdev_unrealize(dev);
230 
231     /* decrement the number of CPUs */
232     x86ms->boot_cpus--;
233     /* Update the number of CPUs in CMOS */
234     x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
235     fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
236  out:
237     error_propagate(errp, local_err);
238 }
239 
240 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
241                       DeviceState *dev, Error **errp)
242 {
243     int idx;
244     CPUState *cs;
245     CPUArchId *cpu_slot;
246     X86CPUTopoIDs topo_ids;
247     X86CPU *cpu = X86_CPU(dev);
248     CPUX86State *env = &cpu->env;
249     MachineState *ms = MACHINE(hotplug_dev);
250     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
251     unsigned int smp_cores = ms->smp.cores;
252     unsigned int smp_threads = ms->smp.threads;
253     X86CPUTopoInfo topo_info;
254 
255     if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
256         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
257                    ms->cpu_type);
258         return;
259     }
260 
261     if (x86ms->acpi_dev) {
262         Error *local_err = NULL;
263 
264         hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
265                                  &local_err);
266         if (local_err) {
267             error_propagate(errp, local_err);
268             return;
269         }
270     }
271 
272     init_topo_info(&topo_info, x86ms);
273 
274     if (ms->smp.modules > 1) {
275         env->nr_modules = ms->smp.modules;
276         set_bit(CPU_TOPO_LEVEL_MODULE, env->avail_cpu_topo);
277     }
278 
279     if (ms->smp.dies > 1) {
280         env->nr_dies = ms->smp.dies;
281         set_bit(CPU_TOPO_LEVEL_DIE, env->avail_cpu_topo);
282     }
283 
284     /*
285      * If APIC ID is not set,
286      * set it based on socket/die/module/core/thread properties.
287      */
288     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
289         /*
290          * die-id was optional in QEMU 4.0 and older, so keep it optional
291          * if there's only one die per socket.
292          */
293         if (cpu->die_id < 0 && ms->smp.dies == 1) {
294             cpu->die_id = 0;
295         }
296 
297         if (cpu->socket_id < 0) {
298             error_setg(errp, "CPU socket-id is not set");
299             return;
300         } else if (cpu->socket_id > ms->smp.sockets - 1) {
301             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
302                        cpu->socket_id, ms->smp.sockets - 1);
303             return;
304         }
305         if (cpu->die_id < 0) {
306             error_setg(errp, "CPU die-id is not set");
307             return;
308         } else if (cpu->die_id > ms->smp.dies - 1) {
309             error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
310                        cpu->die_id, ms->smp.dies - 1);
311             return;
312         }
313         if (cpu->core_id < 0) {
314             error_setg(errp, "CPU core-id is not set");
315             return;
316         } else if (cpu->core_id > (smp_cores - 1)) {
317             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
318                        cpu->core_id, smp_cores - 1);
319             return;
320         }
321         if (cpu->thread_id < 0) {
322             error_setg(errp, "CPU thread-id is not set");
323             return;
324         } else if (cpu->thread_id > (smp_threads - 1)) {
325             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
326                        cpu->thread_id, smp_threads - 1);
327             return;
328         }
329 
330         topo_ids.pkg_id = cpu->socket_id;
331         topo_ids.die_id = cpu->die_id;
332         topo_ids.core_id = cpu->core_id;
333         topo_ids.smt_id = cpu->thread_id;
334 
335         /*
336          * TODO: This is the temporary initialization for topo_ids.module_id to
337          * avoid "maybe-uninitialized" compilation errors. Will remove when
338          * X86CPU supports module_id.
339          */
340         topo_ids.module_id = 0;
341 
342         cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
343     }
344 
345     cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
346     if (!cpu_slot) {
347         x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
348 
349         error_setg(errp,
350             "Invalid CPU [socket: %u, die: %u, module: %u, core: %u, thread: %u]"
351             " with APIC ID %" PRIu32 ", valid index range 0:%d",
352             topo_ids.pkg_id, topo_ids.die_id, topo_ids.module_id,
353             topo_ids.core_id, topo_ids.smt_id, cpu->apic_id,
354             ms->possible_cpus->len - 1);
355         return;
356     }
357 
358     if (cpu_slot->cpu) {
359         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
360                    idx, cpu->apic_id);
361         return;
362     }
363 
364     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
365      * so that machine_query_hotpluggable_cpus would show correct values
366      */
367     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
368      * once -smp refactoring is complete and there will be CPU private
369      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
370     x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
371     if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
372         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
373             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
374             topo_ids.pkg_id);
375         return;
376     }
377     cpu->socket_id = topo_ids.pkg_id;
378 
379     if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
380         error_setg(errp, "property die-id: %u doesn't match set apic-id:"
381             " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
382         return;
383     }
384     cpu->die_id = topo_ids.die_id;
385 
386     if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
387         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
388             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
389             topo_ids.core_id);
390         return;
391     }
392     cpu->core_id = topo_ids.core_id;
393 
394     if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
395         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
396             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
397             topo_ids.smt_id);
398         return;
399     }
400     cpu->thread_id = topo_ids.smt_id;
401 
402     /*
403     * kvm_enabled() must go first to ensure that kvm_* references are
404     * not emitted for the linker to consume (kvm_enabled() is
405     * a literal `0` in configurations where kvm_* aren't defined)
406     */
407     if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
408         !kvm_hv_vpindex_settable()) {
409         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
410         return;
411     }
412 
413     cs = CPU(cpu);
414     cs->cpu_index = idx;
415 
416     numa_cpu_pre_plug(cpu_slot, dev, errp);
417 }
418 
419 static long get_file_size(FILE *f)
420 {
421     long where, size;
422 
423     /* XXX: on Unix systems, using fstat() probably makes more sense */
424 
425     where = ftell(f);
426     fseek(f, 0, SEEK_END);
427     size = ftell(f);
428     fseek(f, where, SEEK_SET);
429 
430     return size;
431 }
432 
433 void gsi_handler(void *opaque, int n, int level)
434 {
435     GSIState *s = opaque;
436 
437     trace_x86_gsi_interrupt(n, level);
438     switch (n) {
439     case 0 ... ISA_NUM_IRQS - 1:
440         if (s->i8259_irq[n]) {
441             /* Under KVM, Kernel will forward to both PIC and IOAPIC */
442             qemu_set_irq(s->i8259_irq[n], level);
443         }
444         /* fall through */
445     case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
446 #ifdef CONFIG_XEN_EMU
447         /*
448          * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC
449          * routing actually works properly under Xen). And then to
450          * *either* the PIRQ handling or the I/OAPIC depending on
451          * whether the former wants it.
452          */
453         if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) {
454             break;
455         }
456 #endif
457         qemu_set_irq(s->ioapic_irq[n], level);
458         break;
459     case IO_APIC_SECONDARY_IRQBASE
460         ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
461         qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
462         break;
463     }
464 }
465 
466 void ioapic_init_gsi(GSIState *gsi_state, Object *parent)
467 {
468     DeviceState *dev;
469     SysBusDevice *d;
470     unsigned int i;
471 
472     assert(parent);
473     if (kvm_ioapic_in_kernel()) {
474         dev = qdev_new(TYPE_KVM_IOAPIC);
475     } else {
476         dev = qdev_new(TYPE_IOAPIC);
477     }
478     object_property_add_child(parent, "ioapic", OBJECT(dev));
479     d = SYS_BUS_DEVICE(dev);
480     sysbus_realize_and_unref(d, &error_fatal);
481     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
482 
483     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
484         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
485     }
486 }
487 
488 DeviceState *ioapic_init_secondary(GSIState *gsi_state)
489 {
490     DeviceState *dev;
491     SysBusDevice *d;
492     unsigned int i;
493 
494     dev = qdev_new(TYPE_IOAPIC);
495     d = SYS_BUS_DEVICE(dev);
496     sysbus_realize_and_unref(d, &error_fatal);
497     sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
498 
499     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
500         gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
501     }
502     return dev;
503 }
504 
505 /*
506  * The entry point into the kernel for PVH boot is different from
507  * the native entry point.  The PVH entry is defined by the x86/HVM
508  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
509  *
510  * This function is passed to load_elf() when it is called from
511  * load_elfboot() which then additionally checks for an ELF Note of
512  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
513  * parse the PVH entry address from the ELF Note.
514  *
515  * Due to trickery in elf_opts.h, load_elf() is actually available as
516  * load_elf32() or load_elf64() and this routine needs to be able
517  * to deal with being called as 32 or 64 bit.
518  *
519  * The address of the PVH entry point is saved to the 'pvh_start_addr'
520  * global variable.  (although the entry point is 32-bit, the kernel
521  * binary can be either 32-bit or 64-bit).
522  */
523 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
524 {
525     size_t *elf_note_data_addr;
526 
527     /* Check if ELF Note header passed in is valid */
528     if (arg1 == NULL) {
529         return 0;
530     }
531 
532     if (is64) {
533         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
534         uint64_t nhdr_size64 = sizeof(struct elf64_note);
535         uint64_t phdr_align = *(uint64_t *)arg2;
536         uint64_t nhdr_namesz = nhdr64->n_namesz;
537 
538         elf_note_data_addr =
539             ((void *)nhdr64) + nhdr_size64 +
540             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
541 
542         pvh_start_addr = *elf_note_data_addr;
543     } else {
544         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
545         uint32_t nhdr_size32 = sizeof(struct elf32_note);
546         uint32_t phdr_align = *(uint32_t *)arg2;
547         uint32_t nhdr_namesz = nhdr32->n_namesz;
548 
549         elf_note_data_addr =
550             ((void *)nhdr32) + nhdr_size32 +
551             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
552 
553         pvh_start_addr = *(uint32_t *)elf_note_data_addr;
554     }
555 
556     return pvh_start_addr;
557 }
558 
559 static bool load_elfboot(const char *kernel_filename,
560                          int kernel_file_size,
561                          uint8_t *header,
562                          size_t pvh_xen_start_addr,
563                          FWCfgState *fw_cfg)
564 {
565     uint32_t flags = 0;
566     uint32_t mh_load_addr = 0;
567     uint32_t elf_kernel_size = 0;
568     uint64_t elf_entry;
569     uint64_t elf_low, elf_high;
570     int kernel_size;
571 
572     if (ldl_p(header) != 0x464c457f) {
573         return false; /* no elfboot */
574     }
575 
576     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
577     flags = elf_is64 ?
578         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
579 
580     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
581         error_report("elfboot unsupported flags = %x", flags);
582         exit(1);
583     }
584 
585     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
586     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
587                            NULL, &elf_note_type, &elf_entry,
588                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
589                            0, 0);
590 
591     if (kernel_size < 0) {
592         error_report("Error while loading elf kernel");
593         exit(1);
594     }
595     mh_load_addr = elf_low;
596     elf_kernel_size = elf_high - elf_low;
597 
598     if (pvh_start_addr == 0) {
599         error_report("Error loading uncompressed kernel without PVH ELF Note");
600         exit(1);
601     }
602     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
603     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
604     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
605 
606     return true;
607 }
608 
609 void x86_load_linux(X86MachineState *x86ms,
610                     FWCfgState *fw_cfg,
611                     int acpi_data_size,
612                     bool pvh_enabled)
613 {
614     bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
615     uint16_t protocol;
616     int setup_size, kernel_size, cmdline_size;
617     int dtb_size, setup_data_offset;
618     uint32_t initrd_max;
619     uint8_t header[8192], *setup, *kernel;
620     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
621     FILE *f;
622     char *vmode;
623     MachineState *machine = MACHINE(x86ms);
624     struct setup_data *setup_data;
625     const char *kernel_filename = machine->kernel_filename;
626     const char *initrd_filename = machine->initrd_filename;
627     const char *dtb_filename = machine->dtb;
628     const char *kernel_cmdline = machine->kernel_cmdline;
629     SevKernelLoaderContext sev_load_ctx = {};
630 
631     /* Align to 16 bytes as a paranoia measure */
632     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
633 
634     /* load the kernel header */
635     f = fopen(kernel_filename, "rb");
636     if (!f) {
637         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
638                 kernel_filename, strerror(errno));
639         exit(1);
640     }
641 
642     kernel_size = get_file_size(f);
643     if (!kernel_size ||
644         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
645         MIN(ARRAY_SIZE(header), kernel_size)) {
646         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
647                 kernel_filename, strerror(errno));
648         exit(1);
649     }
650 
651     /* kernel protocol version */
652     if (ldl_p(header + 0x202) == 0x53726448) {
653         protocol = lduw_p(header + 0x206);
654     } else {
655         /*
656          * This could be a multiboot kernel. If it is, let's stop treating it
657          * like a Linux kernel.
658          * Note: some multiboot images could be in the ELF format (the same of
659          * PVH), so we try multiboot first since we check the multiboot magic
660          * header before to load it.
661          */
662         if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
663                            kernel_cmdline, kernel_size, header)) {
664             return;
665         }
666         /*
667          * Check if the file is an uncompressed kernel file (ELF) and load it,
668          * saving the PVH entry point used by the x86/HVM direct boot ABI.
669          * If load_elfboot() is successful, populate the fw_cfg info.
670          */
671         if (pvh_enabled &&
672             load_elfboot(kernel_filename, kernel_size,
673                          header, pvh_start_addr, fw_cfg)) {
674             fclose(f);
675 
676             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
677                 strlen(kernel_cmdline) + 1);
678             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
679 
680             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
681             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
682                              header, sizeof(header));
683 
684             /* load initrd */
685             if (initrd_filename) {
686                 GMappedFile *mapped_file;
687                 gsize initrd_size;
688                 gchar *initrd_data;
689                 GError *gerr = NULL;
690 
691                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
692                 if (!mapped_file) {
693                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
694                             initrd_filename, gerr->message);
695                     exit(1);
696                 }
697                 x86ms->initrd_mapped_file = mapped_file;
698 
699                 initrd_data = g_mapped_file_get_contents(mapped_file);
700                 initrd_size = g_mapped_file_get_length(mapped_file);
701                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
702                 if (initrd_size >= initrd_max) {
703                     fprintf(stderr, "qemu: initrd is too large, cannot support."
704                             "(max: %"PRIu32", need %"PRId64")\n",
705                             initrd_max, (uint64_t)initrd_size);
706                     exit(1);
707                 }
708 
709                 initrd_addr = (initrd_max - initrd_size) & ~4095;
710 
711                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
712                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
713                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
714                                  initrd_size);
715             }
716 
717             option_rom[nb_option_roms].bootindex = 0;
718             option_rom[nb_option_roms].name = "pvh.bin";
719             nb_option_roms++;
720 
721             return;
722         }
723         protocol = 0;
724     }
725 
726     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
727         /* Low kernel */
728         real_addr    = 0x90000;
729         cmdline_addr = 0x9a000 - cmdline_size;
730         prot_addr    = 0x10000;
731     } else if (protocol < 0x202) {
732         /* High but ancient kernel */
733         real_addr    = 0x90000;
734         cmdline_addr = 0x9a000 - cmdline_size;
735         prot_addr    = 0x100000;
736     } else {
737         /* High and recent kernel */
738         real_addr    = 0x10000;
739         cmdline_addr = 0x20000;
740         prot_addr    = 0x100000;
741     }
742 
743     /* highest address for loading the initrd */
744     if (protocol >= 0x20c &&
745         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
746         /*
747          * Linux has supported initrd up to 4 GB for a very long time (2007,
748          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
749          * though it only sets initrd_max to 2 GB to "work around bootloader
750          * bugs". Luckily, QEMU firmware(which does something like bootloader)
751          * has supported this.
752          *
753          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
754          * be loaded into any address.
755          *
756          * In addition, initrd_max is uint32_t simply because QEMU doesn't
757          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
758          * field).
759          *
760          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
761          */
762         initrd_max = UINT32_MAX;
763     } else if (protocol >= 0x203) {
764         initrd_max = ldl_p(header + 0x22c);
765     } else {
766         initrd_max = 0x37ffffff;
767     }
768 
769     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
770         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
771     }
772 
773     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
774     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
775     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
776     sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
777     sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
778 
779     if (protocol >= 0x202) {
780         stl_p(header + 0x228, cmdline_addr);
781     } else {
782         stw_p(header + 0x20, 0xA33F);
783         stw_p(header + 0x22, cmdline_addr - real_addr);
784     }
785 
786     /* handle vga= parameter */
787     vmode = strstr(kernel_cmdline, "vga=");
788     if (vmode) {
789         unsigned int video_mode;
790         const char *end;
791         int ret;
792         /* skip "vga=" */
793         vmode += 4;
794         if (!strncmp(vmode, "normal", 6)) {
795             video_mode = 0xffff;
796         } else if (!strncmp(vmode, "ext", 3)) {
797             video_mode = 0xfffe;
798         } else if (!strncmp(vmode, "ask", 3)) {
799             video_mode = 0xfffd;
800         } else {
801             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
802             if (ret != 0 || (*end && *end != ' ')) {
803                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
804                 exit(1);
805             }
806         }
807         stw_p(header + 0x1fa, video_mode);
808     }
809 
810     /* loader type */
811     /*
812      * High nybble = B reserved for QEMU; low nybble is revision number.
813      * If this code is substantially changed, you may want to consider
814      * incrementing the revision.
815      */
816     if (protocol >= 0x200) {
817         header[0x210] = 0xB0;
818     }
819     /* heap */
820     if (protocol >= 0x201) {
821         header[0x211] |= 0x80; /* CAN_USE_HEAP */
822         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
823     }
824 
825     /* load initrd */
826     if (initrd_filename) {
827         GMappedFile *mapped_file;
828         gsize initrd_size;
829         gchar *initrd_data;
830         GError *gerr = NULL;
831 
832         if (protocol < 0x200) {
833             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
834             exit(1);
835         }
836 
837         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
838         if (!mapped_file) {
839             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
840                     initrd_filename, gerr->message);
841             exit(1);
842         }
843         x86ms->initrd_mapped_file = mapped_file;
844 
845         initrd_data = g_mapped_file_get_contents(mapped_file);
846         initrd_size = g_mapped_file_get_length(mapped_file);
847         if (initrd_size >= initrd_max) {
848             fprintf(stderr, "qemu: initrd is too large, cannot support."
849                     "(max: %"PRIu32", need %"PRId64")\n",
850                     initrd_max, (uint64_t)initrd_size);
851             exit(1);
852         }
853 
854         initrd_addr = (initrd_max - initrd_size) & ~4095;
855 
856         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
857         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
858         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
859         sev_load_ctx.initrd_data = initrd_data;
860         sev_load_ctx.initrd_size = initrd_size;
861 
862         stl_p(header + 0x218, initrd_addr);
863         stl_p(header + 0x21c, initrd_size);
864     }
865 
866     /* load kernel and setup */
867     setup_size = header[0x1f1];
868     if (setup_size == 0) {
869         setup_size = 4;
870     }
871     setup_size = (setup_size + 1) * 512;
872     if (setup_size > kernel_size) {
873         fprintf(stderr, "qemu: invalid kernel header\n");
874         exit(1);
875     }
876     kernel_size -= setup_size;
877 
878     setup  = g_malloc(setup_size);
879     kernel = g_malloc(kernel_size);
880     fseek(f, 0, SEEK_SET);
881     if (fread(setup, 1, setup_size, f) != setup_size) {
882         fprintf(stderr, "fread() failed\n");
883         exit(1);
884     }
885     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
886         fprintf(stderr, "fread() failed\n");
887         exit(1);
888     }
889     fclose(f);
890 
891     /* append dtb to kernel */
892     if (dtb_filename) {
893         if (protocol < 0x209) {
894             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
895             exit(1);
896         }
897 
898         dtb_size = get_image_size(dtb_filename);
899         if (dtb_size <= 0) {
900             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
901                     dtb_filename, strerror(errno));
902             exit(1);
903         }
904 
905         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
906         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
907         kernel = g_realloc(kernel, kernel_size);
908 
909         stq_p(header + 0x250, prot_addr + setup_data_offset);
910 
911         setup_data = (struct setup_data *)(kernel + setup_data_offset);
912         setup_data->next = 0;
913         setup_data->type = cpu_to_le32(SETUP_DTB);
914         setup_data->len = cpu_to_le32(dtb_size);
915 
916         load_image_size(dtb_filename, setup_data->data, dtb_size);
917     }
918 
919     /*
920      * If we're starting an encrypted VM, it will be OVMF based, which uses the
921      * efi stub for booting and doesn't require any values to be placed in the
922      * kernel header.  We therefore don't update the header so the hash of the
923      * kernel on the other side of the fw_cfg interface matches the hash of the
924      * file the user passed in.
925      */
926     if (!sev_enabled()) {
927         memcpy(setup, header, MIN(sizeof(header), setup_size));
928     }
929 
930     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
931     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
932     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
933     sev_load_ctx.kernel_data = (char *)kernel;
934     sev_load_ctx.kernel_size = kernel_size;
935 
936     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
937     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
938     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
939     sev_load_ctx.setup_data = (char *)setup;
940     sev_load_ctx.setup_size = setup_size;
941 
942     if (sev_enabled()) {
943         sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
944     }
945 
946     option_rom[nb_option_roms].bootindex = 0;
947     option_rom[nb_option_roms].name = "linuxboot.bin";
948     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
949         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
950     }
951     nb_option_roms++;
952 }
953 
954 void x86_isa_bios_init(MemoryRegion *isa_bios, MemoryRegion *isa_memory,
955                        MemoryRegion *bios, bool read_only)
956 {
957     uint64_t bios_size = memory_region_size(bios);
958     uint64_t isa_bios_size = MIN(bios_size, 128 * KiB);
959 
960     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
961                              bios_size - isa_bios_size, isa_bios_size);
962     memory_region_add_subregion_overlap(isa_memory, 1 * MiB - isa_bios_size,
963                                         isa_bios, 1);
964     memory_region_set_readonly(isa_bios, read_only);
965 }
966 
967 void x86_bios_rom_init(X86MachineState *x86ms, const char *default_firmware,
968                        MemoryRegion *rom_memory, bool isapc_ram_fw)
969 {
970     const char *bios_name;
971     char *filename;
972     int bios_size;
973     ssize_t ret;
974 
975     /* BIOS load */
976     bios_name = MACHINE(x86ms)->firmware ?: default_firmware;
977     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
978     if (filename) {
979         bios_size = get_image_size(filename);
980     } else {
981         bios_size = -1;
982     }
983     if (bios_size <= 0 ||
984         (bios_size % 65536) != 0) {
985         goto bios_error;
986     }
987     memory_region_init_ram(&x86ms->bios, NULL, "pc.bios", bios_size,
988                            &error_fatal);
989     if (sev_enabled()) {
990         /*
991          * The concept of a "reset" simply doesn't exist for
992          * confidential computing guests, we have to destroy and
993          * re-launch them instead.  So there is no need to register
994          * the firmware as rom to properly re-initialize on reset.
995          * Just go for a straight file load instead.
996          */
997         void *ptr = memory_region_get_ram_ptr(&x86ms->bios);
998         load_image_size(filename, ptr, bios_size);
999         x86_firmware_configure(ptr, bios_size);
1000     } else {
1001         memory_region_set_readonly(&x86ms->bios, !isapc_ram_fw);
1002         ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1003         if (ret != 0) {
1004             goto bios_error;
1005         }
1006     }
1007     g_free(filename);
1008 
1009     /* map the last 128KB of the BIOS in ISA space */
1010     x86_isa_bios_init(&x86ms->isa_bios, rom_memory, &x86ms->bios,
1011                       !isapc_ram_fw);
1012 
1013     /* map all the bios at the top of memory */
1014     memory_region_add_subregion(rom_memory,
1015                                 (uint32_t)(-bios_size),
1016                                 &x86ms->bios);
1017     return;
1018 
1019 bios_error:
1020     fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1021     exit(1);
1022 }
1023