1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019, 2024 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/cutils.h" 26 #include "qemu/units.h" 27 #include "qemu/datadir.h" 28 #include "qapi/error.h" 29 #include "sysemu/numa.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/xen.h" 32 #include "trace.h" 33 34 #include "hw/i386/x86.h" 35 #include "target/i386/cpu.h" 36 #include "hw/rtc/mc146818rtc.h" 37 #include "target/i386/sev.h" 38 39 #include "hw/acpi/cpu_hotplug.h" 40 #include "hw/irq.h" 41 #include "hw/loader.h" 42 #include "multiboot.h" 43 #include "elf.h" 44 #include "standard-headers/asm-x86/bootparam.h" 45 #include CONFIG_DEVICES 46 #include "kvm/kvm_i386.h" 47 48 #ifdef CONFIG_XEN_EMU 49 #include "hw/xen/xen.h" 50 #include "hw/i386/kvm/xen_evtchn.h" 51 #endif 52 53 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 54 static size_t pvh_start_addr; 55 56 static void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 57 { 58 Object *cpu = object_new(MACHINE(x86ms)->cpu_type); 59 60 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { 61 goto out; 62 } 63 qdev_realize(DEVICE(cpu), NULL, errp); 64 65 out: 66 object_unref(cpu); 67 } 68 69 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 70 { 71 int i; 72 const CPUArchIdList *possible_cpus; 73 MachineState *ms = MACHINE(x86ms); 74 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 75 76 x86_cpu_set_default_version(default_cpu_version); 77 78 /* 79 * Calculates the limit to CPU APIC ID values 80 * 81 * Limit for the APIC ID value, so that all 82 * CPU APIC IDs are < x86ms->apic_id_limit. 83 * 84 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 85 */ 86 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 87 ms->smp.max_cpus - 1) + 1; 88 89 /* 90 * Can we support APIC ID 255 or higher? With KVM, that requires 91 * both in-kernel lapic and X2APIC userspace API. 92 * 93 * kvm_enabled() must go first to ensure that kvm_* references are 94 * not emitted for the linker to consume (kvm_enabled() is 95 * a literal `0` in configurations where kvm_* aren't defined) 96 */ 97 if (kvm_enabled() && x86ms->apic_id_limit > 255 && 98 kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) { 99 error_report("current -smp configuration requires kernel " 100 "irqchip and X2APIC API support."); 101 exit(EXIT_FAILURE); 102 } 103 104 if (kvm_enabled()) { 105 kvm_set_max_apic_id(x86ms->apic_id_limit); 106 } 107 108 if (!kvm_irqchip_in_kernel()) { 109 apic_set_max_apic_id(x86ms->apic_id_limit); 110 } 111 112 possible_cpus = mc->possible_cpu_arch_ids(ms); 113 for (i = 0; i < ms->smp.cpus; i++) { 114 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 115 } 116 } 117 118 void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count) 119 { 120 MC146818RtcState *rtc = MC146818_RTC(s); 121 122 if (cpus_count > 0xff) { 123 /* 124 * If the number of CPUs can't be represented in 8 bits, the 125 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 126 * to make old BIOSes fail more predictably. 127 */ 128 mc146818rtc_set_cmos_data(rtc, 0x5f, 0); 129 } else { 130 mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1); 131 } 132 } 133 134 static int x86_apic_cmp(const void *a, const void *b) 135 { 136 CPUArchId *apic_a = (CPUArchId *)a; 137 CPUArchId *apic_b = (CPUArchId *)b; 138 139 return apic_a->arch_id - apic_b->arch_id; 140 } 141 142 /* 143 * returns pointer to CPUArchId descriptor that matches CPU's apic_id 144 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 145 * entry corresponding to CPU's apic_id returns NULL. 146 */ 147 static CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 148 { 149 CPUArchId apic_id, *found_cpu; 150 151 apic_id.arch_id = id; 152 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 153 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 154 x86_apic_cmp); 155 if (found_cpu && idx) { 156 *idx = found_cpu - ms->possible_cpus->cpus; 157 } 158 return found_cpu; 159 } 160 161 void x86_cpu_plug(HotplugHandler *hotplug_dev, 162 DeviceState *dev, Error **errp) 163 { 164 CPUArchId *found_cpu; 165 Error *local_err = NULL; 166 X86CPU *cpu = X86_CPU(dev); 167 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 168 169 if (x86ms->acpi_dev) { 170 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); 171 if (local_err) { 172 goto out; 173 } 174 } 175 176 /* increment the number of CPUs */ 177 x86ms->boot_cpus++; 178 if (x86ms->rtc) { 179 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 180 } 181 if (x86ms->fw_cfg) { 182 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 183 } 184 185 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 186 found_cpu->cpu = CPU(dev); 187 out: 188 error_propagate(errp, local_err); 189 } 190 191 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 192 DeviceState *dev, Error **errp) 193 { 194 int idx = -1; 195 X86CPU *cpu = X86_CPU(dev); 196 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 197 198 if (!x86ms->acpi_dev) { 199 error_setg(errp, "CPU hot unplug not supported without ACPI"); 200 return; 201 } 202 203 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 204 assert(idx != -1); 205 if (idx == 0) { 206 error_setg(errp, "Boot CPU is unpluggable"); 207 return; 208 } 209 210 hotplug_handler_unplug_request(x86ms->acpi_dev, dev, 211 errp); 212 } 213 214 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, 215 DeviceState *dev, Error **errp) 216 { 217 CPUArchId *found_cpu; 218 Error *local_err = NULL; 219 X86CPU *cpu = X86_CPU(dev); 220 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 221 222 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); 223 if (local_err) { 224 goto out; 225 } 226 227 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 228 found_cpu->cpu = NULL; 229 qdev_unrealize(dev); 230 231 /* decrement the number of CPUs */ 232 x86ms->boot_cpus--; 233 /* Update the number of CPUs in CMOS */ 234 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 235 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 236 out: 237 error_propagate(errp, local_err); 238 } 239 240 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, 241 DeviceState *dev, Error **errp) 242 { 243 int idx; 244 CPUState *cs; 245 CPUArchId *cpu_slot; 246 X86CPUTopoIDs topo_ids; 247 X86CPU *cpu = X86_CPU(dev); 248 CPUX86State *env = &cpu->env; 249 MachineState *ms = MACHINE(hotplug_dev); 250 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 251 unsigned int smp_cores = ms->smp.cores; 252 unsigned int smp_threads = ms->smp.threads; 253 X86CPUTopoInfo topo_info; 254 255 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 256 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 257 ms->cpu_type); 258 return; 259 } 260 261 if (x86ms->acpi_dev) { 262 Error *local_err = NULL; 263 264 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, 265 &local_err); 266 if (local_err) { 267 error_propagate(errp, local_err); 268 return; 269 } 270 } 271 272 init_topo_info(&topo_info, x86ms); 273 274 if (ms->smp.modules > 1) { 275 env->nr_modules = ms->smp.modules; 276 set_bit(CPU_TOPO_LEVEL_MODULE, env->avail_cpu_topo); 277 } 278 279 if (ms->smp.dies > 1) { 280 env->nr_dies = ms->smp.dies; 281 set_bit(CPU_TOPO_LEVEL_DIE, env->avail_cpu_topo); 282 } 283 284 /* 285 * If APIC ID is not set, 286 * set it based on socket/die/core/thread properties. 287 */ 288 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 289 int max_socket = (ms->smp.max_cpus - 1) / 290 smp_threads / smp_cores / ms->smp.dies; 291 292 /* 293 * die-id was optional in QEMU 4.0 and older, so keep it optional 294 * if there's only one die per socket. 295 */ 296 if (cpu->die_id < 0 && ms->smp.dies == 1) { 297 cpu->die_id = 0; 298 } 299 300 if (cpu->socket_id < 0) { 301 error_setg(errp, "CPU socket-id is not set"); 302 return; 303 } else if (cpu->socket_id > max_socket) { 304 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 305 cpu->socket_id, max_socket); 306 return; 307 } 308 if (cpu->die_id < 0) { 309 error_setg(errp, "CPU die-id is not set"); 310 return; 311 } else if (cpu->die_id > ms->smp.dies - 1) { 312 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", 313 cpu->die_id, ms->smp.dies - 1); 314 return; 315 } 316 if (cpu->core_id < 0) { 317 error_setg(errp, "CPU core-id is not set"); 318 return; 319 } else if (cpu->core_id > (smp_cores - 1)) { 320 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 321 cpu->core_id, smp_cores - 1); 322 return; 323 } 324 if (cpu->thread_id < 0) { 325 error_setg(errp, "CPU thread-id is not set"); 326 return; 327 } else if (cpu->thread_id > (smp_threads - 1)) { 328 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 329 cpu->thread_id, smp_threads - 1); 330 return; 331 } 332 333 topo_ids.pkg_id = cpu->socket_id; 334 topo_ids.die_id = cpu->die_id; 335 topo_ids.core_id = cpu->core_id; 336 topo_ids.smt_id = cpu->thread_id; 337 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids); 338 } 339 340 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 341 if (!cpu_slot) { 342 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 343 error_setg(errp, 344 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with" 345 " APIC ID %" PRIu32 ", valid index range 0:%d", 346 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id, 347 cpu->apic_id, ms->possible_cpus->len - 1); 348 return; 349 } 350 351 if (cpu_slot->cpu) { 352 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 353 idx, cpu->apic_id); 354 return; 355 } 356 357 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 358 * so that machine_query_hotpluggable_cpus would show correct values 359 */ 360 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 361 * once -smp refactoring is complete and there will be CPU private 362 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 363 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 364 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { 365 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 366 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, 367 topo_ids.pkg_id); 368 return; 369 } 370 cpu->socket_id = topo_ids.pkg_id; 371 372 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { 373 error_setg(errp, "property die-id: %u doesn't match set apic-id:" 374 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); 375 return; 376 } 377 cpu->die_id = topo_ids.die_id; 378 379 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { 380 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 381 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, 382 topo_ids.core_id); 383 return; 384 } 385 cpu->core_id = topo_ids.core_id; 386 387 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { 388 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 389 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, 390 topo_ids.smt_id); 391 return; 392 } 393 cpu->thread_id = topo_ids.smt_id; 394 395 /* 396 * kvm_enabled() must go first to ensure that kvm_* references are 397 * not emitted for the linker to consume (kvm_enabled() is 398 * a literal `0` in configurations where kvm_* aren't defined) 399 */ 400 if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && 401 !kvm_hv_vpindex_settable()) { 402 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 403 return; 404 } 405 406 cs = CPU(cpu); 407 cs->cpu_index = idx; 408 409 numa_cpu_pre_plug(cpu_slot, dev, errp); 410 } 411 412 static long get_file_size(FILE *f) 413 { 414 long where, size; 415 416 /* XXX: on Unix systems, using fstat() probably makes more sense */ 417 418 where = ftell(f); 419 fseek(f, 0, SEEK_END); 420 size = ftell(f); 421 fseek(f, where, SEEK_SET); 422 423 return size; 424 } 425 426 void gsi_handler(void *opaque, int n, int level) 427 { 428 GSIState *s = opaque; 429 430 trace_x86_gsi_interrupt(n, level); 431 switch (n) { 432 case 0 ... ISA_NUM_IRQS - 1: 433 if (s->i8259_irq[n]) { 434 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 435 qemu_set_irq(s->i8259_irq[n], level); 436 } 437 /* fall through */ 438 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1: 439 #ifdef CONFIG_XEN_EMU 440 /* 441 * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC 442 * routing actually works properly under Xen). And then to 443 * *either* the PIRQ handling or the I/OAPIC depending on 444 * whether the former wants it. 445 */ 446 if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) { 447 break; 448 } 449 #endif 450 qemu_set_irq(s->ioapic_irq[n], level); 451 break; 452 case IO_APIC_SECONDARY_IRQBASE 453 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1: 454 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level); 455 break; 456 } 457 } 458 459 void ioapic_init_gsi(GSIState *gsi_state, Object *parent) 460 { 461 DeviceState *dev; 462 SysBusDevice *d; 463 unsigned int i; 464 465 assert(parent); 466 if (kvm_ioapic_in_kernel()) { 467 dev = qdev_new(TYPE_KVM_IOAPIC); 468 } else { 469 dev = qdev_new(TYPE_IOAPIC); 470 } 471 object_property_add_child(parent, "ioapic", OBJECT(dev)); 472 d = SYS_BUS_DEVICE(dev); 473 sysbus_realize_and_unref(d, &error_fatal); 474 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 475 476 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 477 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 478 } 479 } 480 481 DeviceState *ioapic_init_secondary(GSIState *gsi_state) 482 { 483 DeviceState *dev; 484 SysBusDevice *d; 485 unsigned int i; 486 487 dev = qdev_new(TYPE_IOAPIC); 488 d = SYS_BUS_DEVICE(dev); 489 sysbus_realize_and_unref(d, &error_fatal); 490 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS); 491 492 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 493 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i); 494 } 495 return dev; 496 } 497 498 /* 499 * The entry point into the kernel for PVH boot is different from 500 * the native entry point. The PVH entry is defined by the x86/HVM 501 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 502 * 503 * This function is passed to load_elf() when it is called from 504 * load_elfboot() which then additionally checks for an ELF Note of 505 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 506 * parse the PVH entry address from the ELF Note. 507 * 508 * Due to trickery in elf_opts.h, load_elf() is actually available as 509 * load_elf32() or load_elf64() and this routine needs to be able 510 * to deal with being called as 32 or 64 bit. 511 * 512 * The address of the PVH entry point is saved to the 'pvh_start_addr' 513 * global variable. (although the entry point is 32-bit, the kernel 514 * binary can be either 32-bit or 64-bit). 515 */ 516 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 517 { 518 size_t *elf_note_data_addr; 519 520 /* Check if ELF Note header passed in is valid */ 521 if (arg1 == NULL) { 522 return 0; 523 } 524 525 if (is64) { 526 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 527 uint64_t nhdr_size64 = sizeof(struct elf64_note); 528 uint64_t phdr_align = *(uint64_t *)arg2; 529 uint64_t nhdr_namesz = nhdr64->n_namesz; 530 531 elf_note_data_addr = 532 ((void *)nhdr64) + nhdr_size64 + 533 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 534 535 pvh_start_addr = *elf_note_data_addr; 536 } else { 537 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 538 uint32_t nhdr_size32 = sizeof(struct elf32_note); 539 uint32_t phdr_align = *(uint32_t *)arg2; 540 uint32_t nhdr_namesz = nhdr32->n_namesz; 541 542 elf_note_data_addr = 543 ((void *)nhdr32) + nhdr_size32 + 544 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 545 546 pvh_start_addr = *(uint32_t *)elf_note_data_addr; 547 } 548 549 return pvh_start_addr; 550 } 551 552 static bool load_elfboot(const char *kernel_filename, 553 int kernel_file_size, 554 uint8_t *header, 555 size_t pvh_xen_start_addr, 556 FWCfgState *fw_cfg) 557 { 558 uint32_t flags = 0; 559 uint32_t mh_load_addr = 0; 560 uint32_t elf_kernel_size = 0; 561 uint64_t elf_entry; 562 uint64_t elf_low, elf_high; 563 int kernel_size; 564 565 if (ldl_p(header) != 0x464c457f) { 566 return false; /* no elfboot */ 567 } 568 569 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 570 flags = elf_is64 ? 571 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 572 573 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 574 error_report("elfboot unsupported flags = %x", flags); 575 exit(1); 576 } 577 578 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 579 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 580 NULL, &elf_note_type, &elf_entry, 581 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 582 0, 0); 583 584 if (kernel_size < 0) { 585 error_report("Error while loading elf kernel"); 586 exit(1); 587 } 588 mh_load_addr = elf_low; 589 elf_kernel_size = elf_high - elf_low; 590 591 if (pvh_start_addr == 0) { 592 error_report("Error loading uncompressed kernel without PVH ELF Note"); 593 exit(1); 594 } 595 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 596 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 597 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 598 599 return true; 600 } 601 602 void x86_load_linux(X86MachineState *x86ms, 603 FWCfgState *fw_cfg, 604 int acpi_data_size, 605 bool pvh_enabled) 606 { 607 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled; 608 uint16_t protocol; 609 int setup_size, kernel_size, cmdline_size; 610 int dtb_size, setup_data_offset; 611 uint32_t initrd_max; 612 uint8_t header[8192], *setup, *kernel; 613 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 614 FILE *f; 615 char *vmode; 616 MachineState *machine = MACHINE(x86ms); 617 struct setup_data *setup_data; 618 const char *kernel_filename = machine->kernel_filename; 619 const char *initrd_filename = machine->initrd_filename; 620 const char *dtb_filename = machine->dtb; 621 const char *kernel_cmdline = machine->kernel_cmdline; 622 SevKernelLoaderContext sev_load_ctx = {}; 623 624 /* Align to 16 bytes as a paranoia measure */ 625 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 626 627 /* load the kernel header */ 628 f = fopen(kernel_filename, "rb"); 629 if (!f) { 630 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 631 kernel_filename, strerror(errno)); 632 exit(1); 633 } 634 635 kernel_size = get_file_size(f); 636 if (!kernel_size || 637 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 638 MIN(ARRAY_SIZE(header), kernel_size)) { 639 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 640 kernel_filename, strerror(errno)); 641 exit(1); 642 } 643 644 /* kernel protocol version */ 645 if (ldl_p(header + 0x202) == 0x53726448) { 646 protocol = lduw_p(header + 0x206); 647 } else { 648 /* 649 * This could be a multiboot kernel. If it is, let's stop treating it 650 * like a Linux kernel. 651 * Note: some multiboot images could be in the ELF format (the same of 652 * PVH), so we try multiboot first since we check the multiboot magic 653 * header before to load it. 654 */ 655 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename, 656 kernel_cmdline, kernel_size, header)) { 657 return; 658 } 659 /* 660 * Check if the file is an uncompressed kernel file (ELF) and load it, 661 * saving the PVH entry point used by the x86/HVM direct boot ABI. 662 * If load_elfboot() is successful, populate the fw_cfg info. 663 */ 664 if (pvh_enabled && 665 load_elfboot(kernel_filename, kernel_size, 666 header, pvh_start_addr, fw_cfg)) { 667 fclose(f); 668 669 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 670 strlen(kernel_cmdline) + 1); 671 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 672 673 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 674 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 675 header, sizeof(header)); 676 677 /* load initrd */ 678 if (initrd_filename) { 679 GMappedFile *mapped_file; 680 gsize initrd_size; 681 gchar *initrd_data; 682 GError *gerr = NULL; 683 684 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 685 if (!mapped_file) { 686 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 687 initrd_filename, gerr->message); 688 exit(1); 689 } 690 x86ms->initrd_mapped_file = mapped_file; 691 692 initrd_data = g_mapped_file_get_contents(mapped_file); 693 initrd_size = g_mapped_file_get_length(mapped_file); 694 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 695 if (initrd_size >= initrd_max) { 696 fprintf(stderr, "qemu: initrd is too large, cannot support." 697 "(max: %"PRIu32", need %"PRId64")\n", 698 initrd_max, (uint64_t)initrd_size); 699 exit(1); 700 } 701 702 initrd_addr = (initrd_max - initrd_size) & ~4095; 703 704 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 705 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 706 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 707 initrd_size); 708 } 709 710 option_rom[nb_option_roms].bootindex = 0; 711 option_rom[nb_option_roms].name = "pvh.bin"; 712 nb_option_roms++; 713 714 return; 715 } 716 protocol = 0; 717 } 718 719 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 720 /* Low kernel */ 721 real_addr = 0x90000; 722 cmdline_addr = 0x9a000 - cmdline_size; 723 prot_addr = 0x10000; 724 } else if (protocol < 0x202) { 725 /* High but ancient kernel */ 726 real_addr = 0x90000; 727 cmdline_addr = 0x9a000 - cmdline_size; 728 prot_addr = 0x100000; 729 } else { 730 /* High and recent kernel */ 731 real_addr = 0x10000; 732 cmdline_addr = 0x20000; 733 prot_addr = 0x100000; 734 } 735 736 /* highest address for loading the initrd */ 737 if (protocol >= 0x20c && 738 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 739 /* 740 * Linux has supported initrd up to 4 GB for a very long time (2007, 741 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 742 * though it only sets initrd_max to 2 GB to "work around bootloader 743 * bugs". Luckily, QEMU firmware(which does something like bootloader) 744 * has supported this. 745 * 746 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 747 * be loaded into any address. 748 * 749 * In addition, initrd_max is uint32_t simply because QEMU doesn't 750 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 751 * field). 752 * 753 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 754 */ 755 initrd_max = UINT32_MAX; 756 } else if (protocol >= 0x203) { 757 initrd_max = ldl_p(header + 0x22c); 758 } else { 759 initrd_max = 0x37ffffff; 760 } 761 762 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 763 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 764 } 765 766 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 767 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 768 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 769 sev_load_ctx.cmdline_data = (char *)kernel_cmdline; 770 sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1; 771 772 if (protocol >= 0x202) { 773 stl_p(header + 0x228, cmdline_addr); 774 } else { 775 stw_p(header + 0x20, 0xA33F); 776 stw_p(header + 0x22, cmdline_addr - real_addr); 777 } 778 779 /* handle vga= parameter */ 780 vmode = strstr(kernel_cmdline, "vga="); 781 if (vmode) { 782 unsigned int video_mode; 783 const char *end; 784 int ret; 785 /* skip "vga=" */ 786 vmode += 4; 787 if (!strncmp(vmode, "normal", 6)) { 788 video_mode = 0xffff; 789 } else if (!strncmp(vmode, "ext", 3)) { 790 video_mode = 0xfffe; 791 } else if (!strncmp(vmode, "ask", 3)) { 792 video_mode = 0xfffd; 793 } else { 794 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 795 if (ret != 0 || (*end && *end != ' ')) { 796 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 797 exit(1); 798 } 799 } 800 stw_p(header + 0x1fa, video_mode); 801 } 802 803 /* loader type */ 804 /* 805 * High nybble = B reserved for QEMU; low nybble is revision number. 806 * If this code is substantially changed, you may want to consider 807 * incrementing the revision. 808 */ 809 if (protocol >= 0x200) { 810 header[0x210] = 0xB0; 811 } 812 /* heap */ 813 if (protocol >= 0x201) { 814 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 815 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 816 } 817 818 /* load initrd */ 819 if (initrd_filename) { 820 GMappedFile *mapped_file; 821 gsize initrd_size; 822 gchar *initrd_data; 823 GError *gerr = NULL; 824 825 if (protocol < 0x200) { 826 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 827 exit(1); 828 } 829 830 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 831 if (!mapped_file) { 832 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 833 initrd_filename, gerr->message); 834 exit(1); 835 } 836 x86ms->initrd_mapped_file = mapped_file; 837 838 initrd_data = g_mapped_file_get_contents(mapped_file); 839 initrd_size = g_mapped_file_get_length(mapped_file); 840 if (initrd_size >= initrd_max) { 841 fprintf(stderr, "qemu: initrd is too large, cannot support." 842 "(max: %"PRIu32", need %"PRId64")\n", 843 initrd_max, (uint64_t)initrd_size); 844 exit(1); 845 } 846 847 initrd_addr = (initrd_max - initrd_size) & ~4095; 848 849 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 850 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 851 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 852 sev_load_ctx.initrd_data = initrd_data; 853 sev_load_ctx.initrd_size = initrd_size; 854 855 stl_p(header + 0x218, initrd_addr); 856 stl_p(header + 0x21c, initrd_size); 857 } 858 859 /* load kernel and setup */ 860 setup_size = header[0x1f1]; 861 if (setup_size == 0) { 862 setup_size = 4; 863 } 864 setup_size = (setup_size + 1) * 512; 865 if (setup_size > kernel_size) { 866 fprintf(stderr, "qemu: invalid kernel header\n"); 867 exit(1); 868 } 869 kernel_size -= setup_size; 870 871 setup = g_malloc(setup_size); 872 kernel = g_malloc(kernel_size); 873 fseek(f, 0, SEEK_SET); 874 if (fread(setup, 1, setup_size, f) != setup_size) { 875 fprintf(stderr, "fread() failed\n"); 876 exit(1); 877 } 878 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 879 fprintf(stderr, "fread() failed\n"); 880 exit(1); 881 } 882 fclose(f); 883 884 /* append dtb to kernel */ 885 if (dtb_filename) { 886 if (protocol < 0x209) { 887 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 888 exit(1); 889 } 890 891 dtb_size = get_image_size(dtb_filename); 892 if (dtb_size <= 0) { 893 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 894 dtb_filename, strerror(errno)); 895 exit(1); 896 } 897 898 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 899 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 900 kernel = g_realloc(kernel, kernel_size); 901 902 stq_p(header + 0x250, prot_addr + setup_data_offset); 903 904 setup_data = (struct setup_data *)(kernel + setup_data_offset); 905 setup_data->next = 0; 906 setup_data->type = cpu_to_le32(SETUP_DTB); 907 setup_data->len = cpu_to_le32(dtb_size); 908 909 load_image_size(dtb_filename, setup_data->data, dtb_size); 910 } 911 912 /* 913 * If we're starting an encrypted VM, it will be OVMF based, which uses the 914 * efi stub for booting and doesn't require any values to be placed in the 915 * kernel header. We therefore don't update the header so the hash of the 916 * kernel on the other side of the fw_cfg interface matches the hash of the 917 * file the user passed in. 918 */ 919 if (!sev_enabled()) { 920 memcpy(setup, header, MIN(sizeof(header), setup_size)); 921 } 922 923 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 924 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 925 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 926 sev_load_ctx.kernel_data = (char *)kernel; 927 sev_load_ctx.kernel_size = kernel_size; 928 929 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 930 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 931 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 932 sev_load_ctx.setup_data = (char *)setup; 933 sev_load_ctx.setup_size = setup_size; 934 935 if (sev_enabled()) { 936 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal); 937 } 938 939 option_rom[nb_option_roms].bootindex = 0; 940 option_rom[nb_option_roms].name = "linuxboot.bin"; 941 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 942 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 943 } 944 nb_option_roms++; 945 } 946 947 void x86_isa_bios_init(MemoryRegion *isa_bios, MemoryRegion *isa_memory, 948 MemoryRegion *bios, bool read_only) 949 { 950 uint64_t bios_size = memory_region_size(bios); 951 uint64_t isa_bios_size = MIN(bios_size, 128 * KiB); 952 953 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 954 bios_size - isa_bios_size, isa_bios_size); 955 memory_region_add_subregion_overlap(isa_memory, 1 * MiB - isa_bios_size, 956 isa_bios, 1); 957 memory_region_set_readonly(isa_bios, read_only); 958 } 959 960 void x86_bios_rom_init(X86MachineState *x86ms, const char *default_firmware, 961 MemoryRegion *rom_memory, bool isapc_ram_fw) 962 { 963 const char *bios_name; 964 char *filename; 965 int bios_size; 966 ssize_t ret; 967 968 /* BIOS load */ 969 bios_name = MACHINE(x86ms)->firmware ?: default_firmware; 970 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 971 if (filename) { 972 bios_size = get_image_size(filename); 973 } else { 974 bios_size = -1; 975 } 976 if (bios_size <= 0 || 977 (bios_size % 65536) != 0) { 978 goto bios_error; 979 } 980 memory_region_init_ram(&x86ms->bios, NULL, "pc.bios", bios_size, 981 &error_fatal); 982 if (sev_enabled()) { 983 /* 984 * The concept of a "reset" simply doesn't exist for 985 * confidential computing guests, we have to destroy and 986 * re-launch them instead. So there is no need to register 987 * the firmware as rom to properly re-initialize on reset. 988 * Just go for a straight file load instead. 989 */ 990 void *ptr = memory_region_get_ram_ptr(&x86ms->bios); 991 load_image_size(filename, ptr, bios_size); 992 x86_firmware_configure(ptr, bios_size); 993 } else { 994 memory_region_set_readonly(&x86ms->bios, !isapc_ram_fw); 995 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 996 if (ret != 0) { 997 goto bios_error; 998 } 999 } 1000 g_free(filename); 1001 1002 /* map the last 128KB of the BIOS in ISA space */ 1003 x86_isa_bios_init(&x86ms->isa_bios, rom_memory, &x86ms->bios, 1004 !isapc_ram_fw); 1005 1006 /* map all the bios at the top of memory */ 1007 memory_region_add_subregion(rom_memory, 1008 (uint32_t)(-bios_size), 1009 &x86ms->bios); 1010 return; 1011 1012 bios_error: 1013 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 1014 exit(1); 1015 } 1016