1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "hw/hw.h" 28 #include "hw/i386/pc.h" 29 #include "hw/char/serial.h" 30 #include "hw/char/parallel.h" 31 #include "hw/i386/apic.h" 32 #include "hw/i386/topology.h" 33 #include "sysemu/cpus.h" 34 #include "hw/block/fdc.h" 35 #include "hw/ide.h" 36 #include "hw/pci/pci.h" 37 #include "hw/pci/pci_bus.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/timer/hpet.h" 40 #include "hw/firmware/smbios.h" 41 #include "hw/loader.h" 42 #include "elf.h" 43 #include "multiboot.h" 44 #include "hw/timer/mc146818rtc.h" 45 #include "hw/dma/i8257.h" 46 #include "hw/timer/i8254.h" 47 #include "hw/input/i8042.h" 48 #include "hw/audio/pcspk.h" 49 #include "hw/pci/msi.h" 50 #include "hw/sysbus.h" 51 #include "sysemu/sysemu.h" 52 #include "sysemu/numa.h" 53 #include "sysemu/kvm.h" 54 #include "sysemu/qtest.h" 55 #include "kvm_i386.h" 56 #include "hw/xen/xen.h" 57 #include "ui/qemu-spice.h" 58 #include "exec/memory.h" 59 #include "exec/address-spaces.h" 60 #include "sysemu/arch_init.h" 61 #include "qemu/bitmap.h" 62 #include "qemu/config-file.h" 63 #include "qemu/error-report.h" 64 #include "qemu/option.h" 65 #include "hw/acpi/acpi.h" 66 #include "hw/acpi/cpu_hotplug.h" 67 #include "hw/boards.h" 68 #include "acpi-build.h" 69 #include "hw/mem/pc-dimm.h" 70 #include "qapi/error.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/visitor.h" 73 #include "qom/cpu.h" 74 #include "hw/nmi.h" 75 #include "hw/i386/intel_iommu.h" 76 #include "hw/net/ne2000-isa.h" 77 78 /* debug PC/ISA interrupts */ 79 //#define DEBUG_IRQ 80 81 #ifdef DEBUG_IRQ 82 #define DPRINTF(fmt, ...) \ 83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 84 #else 85 #define DPRINTF(fmt, ...) 86 #endif 87 88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 93 94 #define E820_NR_ENTRIES 16 95 96 struct e820_entry { 97 uint64_t address; 98 uint64_t length; 99 uint32_t type; 100 } QEMU_PACKED __attribute((__aligned__(4))); 101 102 struct e820_table { 103 uint32_t count; 104 struct e820_entry entry[E820_NR_ENTRIES]; 105 } QEMU_PACKED __attribute((__aligned__(4))); 106 107 static struct e820_table e820_reserve; 108 static struct e820_entry *e820_table; 109 static unsigned e820_entries; 110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 111 112 GlobalProperty pc_compat_3_1[] = { 113 { 114 .driver = "intel-iommu", 115 .property = "dma-drain", 116 .value = "off", 117 }, 118 }; 119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1); 120 121 GlobalProperty pc_compat_3_0[] = { 122 { 123 .driver = TYPE_X86_CPU, 124 .property = "x-hv-synic-kvm-only", 125 .value = "on", 126 },{ 127 .driver = "Skylake-Server" "-" TYPE_X86_CPU, 128 .property = "pku", 129 .value = "off", 130 },{ 131 .driver = "Skylake-Server-IBRS" "-" TYPE_X86_CPU, 132 .property = "pku", 133 .value = "off", 134 }, 135 }; 136 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0); 137 138 GlobalProperty pc_compat_2_12[] = { 139 { 140 .driver = TYPE_X86_CPU, 141 .property = "legacy-cache", 142 .value = "on", 143 },{ 144 .driver = TYPE_X86_CPU, 145 .property = "topoext", 146 .value = "off", 147 },{ 148 .driver = "EPYC-" TYPE_X86_CPU, 149 .property = "xlevel", 150 .value = stringify(0x8000000a), 151 },{ 152 .driver = "EPYC-IBPB-" TYPE_X86_CPU, 153 .property = "xlevel", 154 .value = stringify(0x8000000a), 155 }, 156 }; 157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12); 158 159 GlobalProperty pc_compat_2_11[] = { 160 { 161 .driver = TYPE_X86_CPU, 162 .property = "x-migrate-smi-count", 163 .value = "off", 164 },{ 165 .driver = "Skylake-Server" "-" TYPE_X86_CPU, 166 .property = "clflushopt", 167 .value = "off", 168 }, 169 }; 170 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11); 171 172 GlobalProperty pc_compat_2_10[] = { 173 { 174 .driver = TYPE_X86_CPU, 175 .property = "x-hv-max-vps", 176 .value = "0x40", 177 },{ 178 .driver = "i440FX-pcihost", 179 .property = "x-pci-hole64-fix", 180 .value = "off", 181 },{ 182 .driver = "q35-pcihost", 183 .property = "x-pci-hole64-fix", 184 .value = "off", 185 }, 186 }; 187 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10); 188 189 GlobalProperty pc_compat_2_9[] = { 190 { 191 .driver = "mch", 192 .property = "extended-tseg-mbytes", 193 .value = stringify(0), 194 }, 195 }; 196 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9); 197 198 GlobalProperty pc_compat_2_8[] = { 199 { 200 .driver = TYPE_X86_CPU, 201 .property = "tcg-cpuid", 202 .value = "off", 203 }, 204 { 205 .driver = "kvmclock", 206 .property = "x-mach-use-reliable-get-clock", 207 .value = "off", 208 }, 209 { 210 .driver = "ICH9-LPC", 211 .property = "x-smi-broadcast", 212 .value = "off", 213 }, 214 { 215 .driver = TYPE_X86_CPU, 216 .property = "vmware-cpuid-freq", 217 .value = "off", 218 }, 219 { 220 .driver = "Haswell-" TYPE_X86_CPU, 221 .property = "stepping", 222 .value = "1", 223 }, 224 }; 225 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8); 226 227 GlobalProperty pc_compat_2_7[] = { 228 { 229 .driver = TYPE_X86_CPU, 230 .property = "l3-cache", 231 .value = "off", 232 }, 233 { 234 .driver = TYPE_X86_CPU, 235 .property = "full-cpuid-auto-level", 236 .value = "off", 237 }, 238 { 239 .driver = "Opteron_G3" "-" TYPE_X86_CPU, 240 .property = "family", 241 .value = "15", 242 }, 243 { 244 .driver = "Opteron_G3" "-" TYPE_X86_CPU, 245 .property = "model", 246 .value = "6", 247 }, 248 { 249 .driver = "Opteron_G3" "-" TYPE_X86_CPU, 250 .property = "stepping", 251 .value = "1", 252 }, 253 { 254 .driver = "isa-pcspk", 255 .property = "migrate", 256 .value = "off", 257 }, 258 }; 259 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7); 260 261 GlobalProperty pc_compat_2_6[] = { 262 { 263 .driver = TYPE_X86_CPU, 264 .property = "cpuid-0xb", 265 .value = "off", 266 },{ 267 .driver = "vmxnet3", 268 .property = "romfile", 269 .value = "", 270 }, 271 { 272 .driver = TYPE_X86_CPU, 273 .property = "fill-mtrr-mask", 274 .value = "off", 275 }, 276 { 277 .driver = "apic-common", 278 .property = "legacy-instance-id", 279 .value = "on", 280 } 281 }; 282 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6); 283 284 void gsi_handler(void *opaque, int n, int level) 285 { 286 GSIState *s = opaque; 287 288 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 289 if (n < ISA_NUM_IRQS) { 290 qemu_set_irq(s->i8259_irq[n], level); 291 } 292 qemu_set_irq(s->ioapic_irq[n], level); 293 } 294 295 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 296 unsigned size) 297 { 298 } 299 300 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 301 { 302 return 0xffffffffffffffffULL; 303 } 304 305 /* MSDOS compatibility mode FPU exception support */ 306 static qemu_irq ferr_irq; 307 308 void pc_register_ferr_irq(qemu_irq irq) 309 { 310 ferr_irq = irq; 311 } 312 313 /* XXX: add IGNNE support */ 314 void cpu_set_ferr(CPUX86State *s) 315 { 316 qemu_irq_raise(ferr_irq); 317 } 318 319 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 320 unsigned size) 321 { 322 qemu_irq_lower(ferr_irq); 323 } 324 325 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 326 { 327 return 0xffffffffffffffffULL; 328 } 329 330 /* TSC handling */ 331 uint64_t cpu_get_tsc(CPUX86State *env) 332 { 333 return cpu_get_ticks(); 334 } 335 336 /* IRQ handling */ 337 int cpu_get_pic_interrupt(CPUX86State *env) 338 { 339 X86CPU *cpu = x86_env_get_cpu(env); 340 int intno; 341 342 if (!kvm_irqchip_in_kernel()) { 343 intno = apic_get_interrupt(cpu->apic_state); 344 if (intno >= 0) { 345 return intno; 346 } 347 /* read the irq from the PIC */ 348 if (!apic_accept_pic_intr(cpu->apic_state)) { 349 return -1; 350 } 351 } 352 353 intno = pic_read_irq(isa_pic); 354 return intno; 355 } 356 357 static void pic_irq_request(void *opaque, int irq, int level) 358 { 359 CPUState *cs = first_cpu; 360 X86CPU *cpu = X86_CPU(cs); 361 362 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 363 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 364 CPU_FOREACH(cs) { 365 cpu = X86_CPU(cs); 366 if (apic_accept_pic_intr(cpu->apic_state)) { 367 apic_deliver_pic_intr(cpu->apic_state, level); 368 } 369 } 370 } else { 371 if (level) { 372 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 373 } else { 374 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 375 } 376 } 377 } 378 379 /* PC cmos mappings */ 380 381 #define REG_EQUIPMENT_BYTE 0x14 382 383 int cmos_get_fd_drive_type(FloppyDriveType fd0) 384 { 385 int val; 386 387 switch (fd0) { 388 case FLOPPY_DRIVE_TYPE_144: 389 /* 1.44 Mb 3"5 drive */ 390 val = 4; 391 break; 392 case FLOPPY_DRIVE_TYPE_288: 393 /* 2.88 Mb 3"5 drive */ 394 val = 5; 395 break; 396 case FLOPPY_DRIVE_TYPE_120: 397 /* 1.2 Mb 5"5 drive */ 398 val = 2; 399 break; 400 case FLOPPY_DRIVE_TYPE_NONE: 401 default: 402 val = 0; 403 break; 404 } 405 return val; 406 } 407 408 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 409 int16_t cylinders, int8_t heads, int8_t sectors) 410 { 411 rtc_set_memory(s, type_ofs, 47); 412 rtc_set_memory(s, info_ofs, cylinders); 413 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 414 rtc_set_memory(s, info_ofs + 2, heads); 415 rtc_set_memory(s, info_ofs + 3, 0xff); 416 rtc_set_memory(s, info_ofs + 4, 0xff); 417 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 418 rtc_set_memory(s, info_ofs + 6, cylinders); 419 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 420 rtc_set_memory(s, info_ofs + 8, sectors); 421 } 422 423 /* convert boot_device letter to something recognizable by the bios */ 424 static int boot_device2nibble(char boot_device) 425 { 426 switch(boot_device) { 427 case 'a': 428 case 'b': 429 return 0x01; /* floppy boot */ 430 case 'c': 431 return 0x02; /* hard drive boot */ 432 case 'd': 433 return 0x03; /* CD-ROM boot */ 434 case 'n': 435 return 0x04; /* Network boot */ 436 } 437 return 0; 438 } 439 440 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 441 { 442 #define PC_MAX_BOOT_DEVICES 3 443 int nbds, bds[3] = { 0, }; 444 int i; 445 446 nbds = strlen(boot_device); 447 if (nbds > PC_MAX_BOOT_DEVICES) { 448 error_setg(errp, "Too many boot devices for PC"); 449 return; 450 } 451 for (i = 0; i < nbds; i++) { 452 bds[i] = boot_device2nibble(boot_device[i]); 453 if (bds[i] == 0) { 454 error_setg(errp, "Invalid boot device for PC: '%c'", 455 boot_device[i]); 456 return; 457 } 458 } 459 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 460 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 461 } 462 463 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 464 { 465 set_boot_dev(opaque, boot_device, errp); 466 } 467 468 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 469 { 470 int val, nb, i; 471 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 472 FLOPPY_DRIVE_TYPE_NONE }; 473 474 /* floppy type */ 475 if (floppy) { 476 for (i = 0; i < 2; i++) { 477 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 478 } 479 } 480 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 481 cmos_get_fd_drive_type(fd_type[1]); 482 rtc_set_memory(rtc_state, 0x10, val); 483 484 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 485 nb = 0; 486 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 487 nb++; 488 } 489 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 490 nb++; 491 } 492 switch (nb) { 493 case 0: 494 break; 495 case 1: 496 val |= 0x01; /* 1 drive, ready for boot */ 497 break; 498 case 2: 499 val |= 0x41; /* 2 drives, ready for boot */ 500 break; 501 } 502 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 503 } 504 505 typedef struct pc_cmos_init_late_arg { 506 ISADevice *rtc_state; 507 BusState *idebus[2]; 508 } pc_cmos_init_late_arg; 509 510 typedef struct check_fdc_state { 511 ISADevice *floppy; 512 bool multiple; 513 } CheckFdcState; 514 515 static int check_fdc(Object *obj, void *opaque) 516 { 517 CheckFdcState *state = opaque; 518 Object *fdc; 519 uint32_t iobase; 520 Error *local_err = NULL; 521 522 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 523 if (!fdc) { 524 return 0; 525 } 526 527 iobase = object_property_get_uint(obj, "iobase", &local_err); 528 if (local_err || iobase != 0x3f0) { 529 error_free(local_err); 530 return 0; 531 } 532 533 if (state->floppy) { 534 state->multiple = true; 535 } else { 536 state->floppy = ISA_DEVICE(obj); 537 } 538 return 0; 539 } 540 541 static const char * const fdc_container_path[] = { 542 "/unattached", "/peripheral", "/peripheral-anon" 543 }; 544 545 /* 546 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 547 * and ACPI objects. 548 */ 549 ISADevice *pc_find_fdc0(void) 550 { 551 int i; 552 Object *container; 553 CheckFdcState state = { 0 }; 554 555 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 556 container = container_get(qdev_get_machine(), fdc_container_path[i]); 557 object_child_foreach(container, check_fdc, &state); 558 } 559 560 if (state.multiple) { 561 warn_report("multiple floppy disk controllers with " 562 "iobase=0x3f0 have been found"); 563 error_printf("the one being picked for CMOS setup might not reflect " 564 "your intent"); 565 } 566 567 return state.floppy; 568 } 569 570 static void pc_cmos_init_late(void *opaque) 571 { 572 pc_cmos_init_late_arg *arg = opaque; 573 ISADevice *s = arg->rtc_state; 574 int16_t cylinders; 575 int8_t heads, sectors; 576 int val; 577 int i, trans; 578 579 val = 0; 580 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 581 &cylinders, &heads, §ors) >= 0) { 582 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 583 val |= 0xf0; 584 } 585 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 586 &cylinders, &heads, §ors) >= 0) { 587 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 588 val |= 0x0f; 589 } 590 rtc_set_memory(s, 0x12, val); 591 592 val = 0; 593 for (i = 0; i < 4; i++) { 594 /* NOTE: ide_get_geometry() returns the physical 595 geometry. It is always such that: 1 <= sects <= 63, 1 596 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 597 geometry can be different if a translation is done. */ 598 if (arg->idebus[i / 2] && 599 ide_get_geometry(arg->idebus[i / 2], i % 2, 600 &cylinders, &heads, §ors) >= 0) { 601 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 602 assert((trans & ~3) == 0); 603 val |= trans << (i * 2); 604 } 605 } 606 rtc_set_memory(s, 0x39, val); 607 608 pc_cmos_init_floppy(s, pc_find_fdc0()); 609 610 qemu_unregister_reset(pc_cmos_init_late, opaque); 611 } 612 613 void pc_cmos_init(PCMachineState *pcms, 614 BusState *idebus0, BusState *idebus1, 615 ISADevice *s) 616 { 617 int val; 618 static pc_cmos_init_late_arg arg; 619 620 /* various important CMOS locations needed by PC/Bochs bios */ 621 622 /* memory size */ 623 /* base memory (first MiB) */ 624 val = MIN(pcms->below_4g_mem_size / KiB, 640); 625 rtc_set_memory(s, 0x15, val); 626 rtc_set_memory(s, 0x16, val >> 8); 627 /* extended memory (next 64MiB) */ 628 if (pcms->below_4g_mem_size > 1 * MiB) { 629 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB; 630 } else { 631 val = 0; 632 } 633 if (val > 65535) 634 val = 65535; 635 rtc_set_memory(s, 0x17, val); 636 rtc_set_memory(s, 0x18, val >> 8); 637 rtc_set_memory(s, 0x30, val); 638 rtc_set_memory(s, 0x31, val >> 8); 639 /* memory between 16MiB and 4GiB */ 640 if (pcms->below_4g_mem_size > 16 * MiB) { 641 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB); 642 } else { 643 val = 0; 644 } 645 if (val > 65535) 646 val = 65535; 647 rtc_set_memory(s, 0x34, val); 648 rtc_set_memory(s, 0x35, val >> 8); 649 /* memory above 4GiB */ 650 val = pcms->above_4g_mem_size / 65536; 651 rtc_set_memory(s, 0x5b, val); 652 rtc_set_memory(s, 0x5c, val >> 8); 653 rtc_set_memory(s, 0x5d, val >> 16); 654 655 object_property_add_link(OBJECT(pcms), "rtc_state", 656 TYPE_ISA_DEVICE, 657 (Object **)&pcms->rtc, 658 object_property_allow_set_link, 659 OBJ_PROP_LINK_STRONG, &error_abort); 660 object_property_set_link(OBJECT(pcms), OBJECT(s), 661 "rtc_state", &error_abort); 662 663 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 664 665 val = 0; 666 val |= 0x02; /* FPU is there */ 667 val |= 0x04; /* PS/2 mouse installed */ 668 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 669 670 /* hard drives and FDC */ 671 arg.rtc_state = s; 672 arg.idebus[0] = idebus0; 673 arg.idebus[1] = idebus1; 674 qemu_register_reset(pc_cmos_init_late, &arg); 675 } 676 677 #define TYPE_PORT92 "port92" 678 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 679 680 /* port 92 stuff: could be split off */ 681 typedef struct Port92State { 682 ISADevice parent_obj; 683 684 MemoryRegion io; 685 uint8_t outport; 686 qemu_irq a20_out; 687 } Port92State; 688 689 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 690 unsigned size) 691 { 692 Port92State *s = opaque; 693 int oldval = s->outport; 694 695 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 696 s->outport = val; 697 qemu_set_irq(s->a20_out, (val >> 1) & 1); 698 if ((val & 1) && !(oldval & 1)) { 699 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 700 } 701 } 702 703 static uint64_t port92_read(void *opaque, hwaddr addr, 704 unsigned size) 705 { 706 Port92State *s = opaque; 707 uint32_t ret; 708 709 ret = s->outport; 710 DPRINTF("port92: read 0x%02x\n", ret); 711 return ret; 712 } 713 714 static void port92_init(ISADevice *dev, qemu_irq a20_out) 715 { 716 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 717 } 718 719 static const VMStateDescription vmstate_port92_isa = { 720 .name = "port92", 721 .version_id = 1, 722 .minimum_version_id = 1, 723 .fields = (VMStateField[]) { 724 VMSTATE_UINT8(outport, Port92State), 725 VMSTATE_END_OF_LIST() 726 } 727 }; 728 729 static void port92_reset(DeviceState *d) 730 { 731 Port92State *s = PORT92(d); 732 733 s->outport &= ~1; 734 } 735 736 static const MemoryRegionOps port92_ops = { 737 .read = port92_read, 738 .write = port92_write, 739 .impl = { 740 .min_access_size = 1, 741 .max_access_size = 1, 742 }, 743 .endianness = DEVICE_LITTLE_ENDIAN, 744 }; 745 746 static void port92_initfn(Object *obj) 747 { 748 Port92State *s = PORT92(obj); 749 750 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 751 752 s->outport = 0; 753 754 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 755 } 756 757 static void port92_realizefn(DeviceState *dev, Error **errp) 758 { 759 ISADevice *isadev = ISA_DEVICE(dev); 760 Port92State *s = PORT92(dev); 761 762 isa_register_ioport(isadev, &s->io, 0x92); 763 } 764 765 static void port92_class_initfn(ObjectClass *klass, void *data) 766 { 767 DeviceClass *dc = DEVICE_CLASS(klass); 768 769 dc->realize = port92_realizefn; 770 dc->reset = port92_reset; 771 dc->vmsd = &vmstate_port92_isa; 772 /* 773 * Reason: unlike ordinary ISA devices, this one needs additional 774 * wiring: its A20 output line needs to be wired up by 775 * port92_init(). 776 */ 777 dc->user_creatable = false; 778 } 779 780 static const TypeInfo port92_info = { 781 .name = TYPE_PORT92, 782 .parent = TYPE_ISA_DEVICE, 783 .instance_size = sizeof(Port92State), 784 .instance_init = port92_initfn, 785 .class_init = port92_class_initfn, 786 }; 787 788 static void port92_register_types(void) 789 { 790 type_register_static(&port92_info); 791 } 792 793 type_init(port92_register_types) 794 795 static void handle_a20_line_change(void *opaque, int irq, int level) 796 { 797 X86CPU *cpu = opaque; 798 799 /* XXX: send to all CPUs ? */ 800 /* XXX: add logic to handle multiple A20 line sources */ 801 x86_cpu_set_a20(cpu, level); 802 } 803 804 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 805 { 806 int index = le32_to_cpu(e820_reserve.count); 807 struct e820_entry *entry; 808 809 if (type != E820_RAM) { 810 /* old FW_CFG_E820_TABLE entry -- reservations only */ 811 if (index >= E820_NR_ENTRIES) { 812 return -EBUSY; 813 } 814 entry = &e820_reserve.entry[index++]; 815 816 entry->address = cpu_to_le64(address); 817 entry->length = cpu_to_le64(length); 818 entry->type = cpu_to_le32(type); 819 820 e820_reserve.count = cpu_to_le32(index); 821 } 822 823 /* new "etc/e820" file -- include ram too */ 824 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 825 e820_table[e820_entries].address = cpu_to_le64(address); 826 e820_table[e820_entries].length = cpu_to_le64(length); 827 e820_table[e820_entries].type = cpu_to_le32(type); 828 e820_entries++; 829 830 return e820_entries; 831 } 832 833 int e820_get_num_entries(void) 834 { 835 return e820_entries; 836 } 837 838 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 839 { 840 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 841 *address = le64_to_cpu(e820_table[idx].address); 842 *length = le64_to_cpu(e820_table[idx].length); 843 return true; 844 } 845 return false; 846 } 847 848 /* Enables contiguous-apic-ID mode, for compatibility */ 849 static bool compat_apic_id_mode; 850 851 void enable_compat_apic_id_mode(void) 852 { 853 compat_apic_id_mode = true; 854 } 855 856 /* Calculates initial APIC ID for a specific CPU index 857 * 858 * Currently we need to be able to calculate the APIC ID from the CPU index 859 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 860 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 861 * all CPUs up to max_cpus. 862 */ 863 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 864 { 865 uint32_t correct_id; 866 static bool warned; 867 868 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 869 if (compat_apic_id_mode) { 870 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 871 error_report("APIC IDs set in compatibility mode, " 872 "CPU topology won't match the configuration"); 873 warned = true; 874 } 875 return cpu_index; 876 } else { 877 return correct_id; 878 } 879 } 880 881 static void pc_build_smbios(PCMachineState *pcms) 882 { 883 uint8_t *smbios_tables, *smbios_anchor; 884 size_t smbios_tables_len, smbios_anchor_len; 885 struct smbios_phys_mem_area *mem_array; 886 unsigned i, array_count; 887 MachineState *ms = MACHINE(pcms); 888 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 889 890 /* tell smbios about cpuid version and features */ 891 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 892 893 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 894 if (smbios_tables) { 895 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 896 smbios_tables, smbios_tables_len); 897 } 898 899 /* build the array of physical mem area from e820 table */ 900 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 901 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 902 uint64_t addr, len; 903 904 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 905 mem_array[array_count].address = addr; 906 mem_array[array_count].length = len; 907 array_count++; 908 } 909 } 910 smbios_get_tables(mem_array, array_count, 911 &smbios_tables, &smbios_tables_len, 912 &smbios_anchor, &smbios_anchor_len); 913 g_free(mem_array); 914 915 if (smbios_anchor) { 916 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 917 smbios_tables, smbios_tables_len); 918 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 919 smbios_anchor, smbios_anchor_len); 920 } 921 } 922 923 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 924 { 925 FWCfgState *fw_cfg; 926 uint64_t *numa_fw_cfg; 927 int i; 928 const CPUArchIdList *cpus; 929 MachineClass *mc = MACHINE_GET_CLASS(pcms); 930 931 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 932 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 933 934 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 935 * 936 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 937 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 938 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 939 * for CPU hotplug also uses APIC ID and not "CPU index". 940 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 941 * but the "limit to the APIC ID values SeaBIOS may see". 942 * 943 * So for compatibility reasons with old BIOSes we are stuck with 944 * "etc/max-cpus" actually being apic_id_limit 945 */ 946 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 947 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 948 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 949 acpi_tables, acpi_tables_len); 950 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 951 952 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 953 &e820_reserve, sizeof(e820_reserve)); 954 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 955 sizeof(struct e820_entry) * e820_entries); 956 957 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 958 /* allocate memory for the NUMA channel: one (64bit) word for the number 959 * of nodes, one word for each VCPU->node and one word for each node to 960 * hold the amount of memory. 961 */ 962 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 963 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 964 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 965 for (i = 0; i < cpus->len; i++) { 966 unsigned int apic_id = cpus->cpus[i].arch_id; 967 assert(apic_id < pcms->apic_id_limit); 968 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 969 } 970 for (i = 0; i < nb_numa_nodes; i++) { 971 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 972 cpu_to_le64(numa_info[i].node_mem); 973 } 974 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 975 (1 + pcms->apic_id_limit + nb_numa_nodes) * 976 sizeof(*numa_fw_cfg)); 977 978 return fw_cfg; 979 } 980 981 static long get_file_size(FILE *f) 982 { 983 long where, size; 984 985 /* XXX: on Unix systems, using fstat() probably makes more sense */ 986 987 where = ftell(f); 988 fseek(f, 0, SEEK_END); 989 size = ftell(f); 990 fseek(f, where, SEEK_SET); 991 992 return size; 993 } 994 995 /* setup_data types */ 996 #define SETUP_NONE 0 997 #define SETUP_E820_EXT 1 998 #define SETUP_DTB 2 999 #define SETUP_PCI 3 1000 #define SETUP_EFI 4 1001 1002 struct setup_data { 1003 uint64_t next; 1004 uint32_t type; 1005 uint32_t len; 1006 uint8_t data[0]; 1007 } __attribute__((packed)); 1008 1009 static void load_linux(PCMachineState *pcms, 1010 FWCfgState *fw_cfg) 1011 { 1012 uint16_t protocol; 1013 int setup_size, kernel_size, cmdline_size; 1014 int dtb_size, setup_data_offset; 1015 uint32_t initrd_max; 1016 uint8_t header[8192], *setup, *kernel; 1017 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 1018 FILE *f; 1019 char *vmode; 1020 MachineState *machine = MACHINE(pcms); 1021 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1022 struct setup_data *setup_data; 1023 const char *kernel_filename = machine->kernel_filename; 1024 const char *initrd_filename = machine->initrd_filename; 1025 const char *dtb_filename = machine->dtb; 1026 const char *kernel_cmdline = machine->kernel_cmdline; 1027 1028 /* Align to 16 bytes as a paranoia measure */ 1029 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 1030 1031 /* load the kernel header */ 1032 f = fopen(kernel_filename, "rb"); 1033 if (!f || !(kernel_size = get_file_size(f)) || 1034 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 1035 MIN(ARRAY_SIZE(header), kernel_size)) { 1036 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 1037 kernel_filename, strerror(errno)); 1038 exit(1); 1039 } 1040 1041 /* kernel protocol version */ 1042 #if 0 1043 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 1044 #endif 1045 if (ldl_p(header+0x202) == 0x53726448) { 1046 protocol = lduw_p(header+0x206); 1047 } else { 1048 /* This looks like a multiboot kernel. If it is, let's stop 1049 treating it like a Linux kernel. */ 1050 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 1051 kernel_cmdline, kernel_size, header)) { 1052 return; 1053 } 1054 protocol = 0; 1055 } 1056 1057 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 1058 /* Low kernel */ 1059 real_addr = 0x90000; 1060 cmdline_addr = 0x9a000 - cmdline_size; 1061 prot_addr = 0x10000; 1062 } else if (protocol < 0x202) { 1063 /* High but ancient kernel */ 1064 real_addr = 0x90000; 1065 cmdline_addr = 0x9a000 - cmdline_size; 1066 prot_addr = 0x100000; 1067 } else { 1068 /* High and recent kernel */ 1069 real_addr = 0x10000; 1070 cmdline_addr = 0x20000; 1071 prot_addr = 0x100000; 1072 } 1073 1074 #if 0 1075 fprintf(stderr, 1076 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 1077 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 1078 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 1079 real_addr, 1080 cmdline_addr, 1081 prot_addr); 1082 #endif 1083 1084 /* highest address for loading the initrd */ 1085 if (protocol >= 0x203) { 1086 initrd_max = ldl_p(header+0x22c); 1087 } else { 1088 initrd_max = 0x37ffffff; 1089 } 1090 1091 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 1092 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 1093 } 1094 1095 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 1096 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 1097 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 1098 1099 if (protocol >= 0x202) { 1100 stl_p(header+0x228, cmdline_addr); 1101 } else { 1102 stw_p(header+0x20, 0xA33F); 1103 stw_p(header+0x22, cmdline_addr-real_addr); 1104 } 1105 1106 /* handle vga= parameter */ 1107 vmode = strstr(kernel_cmdline, "vga="); 1108 if (vmode) { 1109 unsigned int video_mode; 1110 /* skip "vga=" */ 1111 vmode += 4; 1112 if (!strncmp(vmode, "normal", 6)) { 1113 video_mode = 0xffff; 1114 } else if (!strncmp(vmode, "ext", 3)) { 1115 video_mode = 0xfffe; 1116 } else if (!strncmp(vmode, "ask", 3)) { 1117 video_mode = 0xfffd; 1118 } else { 1119 video_mode = strtol(vmode, NULL, 0); 1120 } 1121 stw_p(header+0x1fa, video_mode); 1122 } 1123 1124 /* loader type */ 1125 /* High nybble = B reserved for QEMU; low nybble is revision number. 1126 If this code is substantially changed, you may want to consider 1127 incrementing the revision. */ 1128 if (protocol >= 0x200) { 1129 header[0x210] = 0xB0; 1130 } 1131 /* heap */ 1132 if (protocol >= 0x201) { 1133 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 1134 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 1135 } 1136 1137 /* load initrd */ 1138 if (initrd_filename) { 1139 gsize initrd_size; 1140 gchar *initrd_data; 1141 GError *gerr = NULL; 1142 1143 if (protocol < 0x200) { 1144 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 1145 exit(1); 1146 } 1147 1148 if (!g_file_get_contents(initrd_filename, &initrd_data, 1149 &initrd_size, &gerr)) { 1150 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 1151 initrd_filename, gerr->message); 1152 exit(1); 1153 } 1154 if (initrd_size >= initrd_max) { 1155 fprintf(stderr, "qemu: initrd is too large, cannot support." 1156 "(max: %"PRIu32", need %"PRId64")\n", 1157 initrd_max, (uint64_t)initrd_size); 1158 exit(1); 1159 } 1160 1161 initrd_addr = (initrd_max-initrd_size) & ~4095; 1162 1163 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 1164 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1165 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 1166 1167 stl_p(header+0x218, initrd_addr); 1168 stl_p(header+0x21c, initrd_size); 1169 } 1170 1171 /* load kernel and setup */ 1172 setup_size = header[0x1f1]; 1173 if (setup_size == 0) { 1174 setup_size = 4; 1175 } 1176 setup_size = (setup_size+1)*512; 1177 if (setup_size > kernel_size) { 1178 fprintf(stderr, "qemu: invalid kernel header\n"); 1179 exit(1); 1180 } 1181 kernel_size -= setup_size; 1182 1183 setup = g_malloc(setup_size); 1184 kernel = g_malloc(kernel_size); 1185 fseek(f, 0, SEEK_SET); 1186 if (fread(setup, 1, setup_size, f) != setup_size) { 1187 fprintf(stderr, "fread() failed\n"); 1188 exit(1); 1189 } 1190 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1191 fprintf(stderr, "fread() failed\n"); 1192 exit(1); 1193 } 1194 fclose(f); 1195 1196 /* append dtb to kernel */ 1197 if (dtb_filename) { 1198 if (protocol < 0x209) { 1199 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1200 exit(1); 1201 } 1202 1203 dtb_size = get_image_size(dtb_filename); 1204 if (dtb_size <= 0) { 1205 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1206 dtb_filename, strerror(errno)); 1207 exit(1); 1208 } 1209 1210 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1211 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1212 kernel = g_realloc(kernel, kernel_size); 1213 1214 stq_p(header+0x250, prot_addr + setup_data_offset); 1215 1216 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1217 setup_data->next = 0; 1218 setup_data->type = cpu_to_le32(SETUP_DTB); 1219 setup_data->len = cpu_to_le32(dtb_size); 1220 1221 load_image_size(dtb_filename, setup_data->data, dtb_size); 1222 } 1223 1224 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1225 1226 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1227 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1228 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1229 1230 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1231 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1232 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1233 1234 option_rom[nb_option_roms].bootindex = 0; 1235 option_rom[nb_option_roms].name = "linuxboot.bin"; 1236 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1237 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1238 } 1239 nb_option_roms++; 1240 } 1241 1242 #define NE2000_NB_MAX 6 1243 1244 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1245 0x280, 0x380 }; 1246 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1247 1248 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1249 { 1250 static int nb_ne2k = 0; 1251 1252 if (nb_ne2k == NE2000_NB_MAX) 1253 return; 1254 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1255 ne2000_irq[nb_ne2k], nd); 1256 nb_ne2k++; 1257 } 1258 1259 DeviceState *cpu_get_current_apic(void) 1260 { 1261 if (current_cpu) { 1262 X86CPU *cpu = X86_CPU(current_cpu); 1263 return cpu->apic_state; 1264 } else { 1265 return NULL; 1266 } 1267 } 1268 1269 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1270 { 1271 X86CPU *cpu = opaque; 1272 1273 if (level) { 1274 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1275 } 1276 } 1277 1278 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1279 { 1280 Object *cpu = NULL; 1281 Error *local_err = NULL; 1282 1283 cpu = object_new(typename); 1284 1285 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1286 object_property_set_bool(cpu, true, "realized", &local_err); 1287 1288 object_unref(cpu); 1289 error_propagate(errp, local_err); 1290 } 1291 1292 void pc_hot_add_cpu(const int64_t id, Error **errp) 1293 { 1294 MachineState *ms = MACHINE(qdev_get_machine()); 1295 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1296 Error *local_err = NULL; 1297 1298 if (id < 0) { 1299 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1300 return; 1301 } 1302 1303 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1304 error_setg(errp, "Unable to add CPU: %" PRIi64 1305 ", resulting APIC ID (%" PRIi64 ") is too large", 1306 id, apic_id); 1307 return; 1308 } 1309 1310 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1311 if (local_err) { 1312 error_propagate(errp, local_err); 1313 return; 1314 } 1315 } 1316 1317 void pc_cpus_init(PCMachineState *pcms) 1318 { 1319 int i; 1320 const CPUArchIdList *possible_cpus; 1321 MachineState *ms = MACHINE(pcms); 1322 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1323 1324 /* Calculates the limit to CPU APIC ID values 1325 * 1326 * Limit for the APIC ID value, so that all 1327 * CPU APIC IDs are < pcms->apic_id_limit. 1328 * 1329 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1330 */ 1331 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1332 possible_cpus = mc->possible_cpu_arch_ids(ms); 1333 for (i = 0; i < smp_cpus; i++) { 1334 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id, 1335 &error_fatal); 1336 } 1337 } 1338 1339 static void pc_build_feature_control_file(PCMachineState *pcms) 1340 { 1341 MachineState *ms = MACHINE(pcms); 1342 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1343 CPUX86State *env = &cpu->env; 1344 uint32_t unused, ecx, edx; 1345 uint64_t feature_control_bits = 0; 1346 uint64_t *val; 1347 1348 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1349 if (ecx & CPUID_EXT_VMX) { 1350 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1351 } 1352 1353 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1354 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1355 (env->mcg_cap & MCG_LMCE_P)) { 1356 feature_control_bits |= FEATURE_CONTROL_LMCE; 1357 } 1358 1359 if (!feature_control_bits) { 1360 return; 1361 } 1362 1363 val = g_malloc(sizeof(*val)); 1364 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1365 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1366 } 1367 1368 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1369 { 1370 if (cpus_count > 0xff) { 1371 /* If the number of CPUs can't be represented in 8 bits, the 1372 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1373 * to make old BIOSes fail more predictably. 1374 */ 1375 rtc_set_memory(rtc, 0x5f, 0); 1376 } else { 1377 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1378 } 1379 } 1380 1381 static 1382 void pc_machine_done(Notifier *notifier, void *data) 1383 { 1384 PCMachineState *pcms = container_of(notifier, 1385 PCMachineState, machine_done); 1386 PCIBus *bus = pcms->bus; 1387 1388 /* set the number of CPUs */ 1389 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1390 1391 if (bus) { 1392 int extra_hosts = 0; 1393 1394 QLIST_FOREACH(bus, &bus->child, sibling) { 1395 /* look for expander root buses */ 1396 if (pci_bus_is_root(bus)) { 1397 extra_hosts++; 1398 } 1399 } 1400 if (extra_hosts && pcms->fw_cfg) { 1401 uint64_t *val = g_malloc(sizeof(*val)); 1402 *val = cpu_to_le64(extra_hosts); 1403 fw_cfg_add_file(pcms->fw_cfg, 1404 "etc/extra-pci-roots", val, sizeof(*val)); 1405 } 1406 } 1407 1408 acpi_setup(); 1409 if (pcms->fw_cfg) { 1410 pc_build_smbios(pcms); 1411 pc_build_feature_control_file(pcms); 1412 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1413 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1414 } 1415 1416 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1417 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1418 1419 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) || 1420 iommu->intr_eim != ON_OFF_AUTO_ON) { 1421 error_report("current -smp configuration requires " 1422 "Extended Interrupt Mode enabled. " 1423 "You can add an IOMMU using: " 1424 "-device intel-iommu,intremap=on,eim=on"); 1425 exit(EXIT_FAILURE); 1426 } 1427 } 1428 } 1429 1430 void pc_guest_info_init(PCMachineState *pcms) 1431 { 1432 int i; 1433 1434 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1435 pcms->numa_nodes = nb_numa_nodes; 1436 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1437 sizeof *pcms->node_mem); 1438 for (i = 0; i < nb_numa_nodes; i++) { 1439 pcms->node_mem[i] = numa_info[i].node_mem; 1440 } 1441 1442 pcms->machine_done.notify = pc_machine_done; 1443 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1444 } 1445 1446 /* setup pci memory address space mapping into system address space */ 1447 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1448 MemoryRegion *pci_address_space) 1449 { 1450 /* Set to lower priority than RAM */ 1451 memory_region_add_subregion_overlap(system_memory, 0x0, 1452 pci_address_space, -1); 1453 } 1454 1455 void pc_acpi_init(const char *default_dsdt) 1456 { 1457 char *filename; 1458 1459 if (acpi_tables != NULL) { 1460 /* manually set via -acpitable, leave it alone */ 1461 return; 1462 } 1463 1464 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1465 if (filename == NULL) { 1466 warn_report("failed to find %s", default_dsdt); 1467 } else { 1468 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1469 &error_abort); 1470 Error *err = NULL; 1471 1472 qemu_opt_set(opts, "file", filename, &error_abort); 1473 1474 acpi_table_add_builtin(opts, &err); 1475 if (err) { 1476 warn_reportf_err(err, "failed to load %s: ", filename); 1477 } 1478 g_free(filename); 1479 } 1480 } 1481 1482 void xen_load_linux(PCMachineState *pcms) 1483 { 1484 int i; 1485 FWCfgState *fw_cfg; 1486 1487 assert(MACHINE(pcms)->kernel_filename != NULL); 1488 1489 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1490 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1491 rom_set_fw(fw_cfg); 1492 1493 load_linux(pcms, fw_cfg); 1494 for (i = 0; i < nb_option_roms; i++) { 1495 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1496 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1497 !strcmp(option_rom[i].name, "multiboot.bin")); 1498 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1499 } 1500 pcms->fw_cfg = fw_cfg; 1501 } 1502 1503 void pc_memory_init(PCMachineState *pcms, 1504 MemoryRegion *system_memory, 1505 MemoryRegion *rom_memory, 1506 MemoryRegion **ram_memory) 1507 { 1508 int linux_boot, i; 1509 MemoryRegion *ram, *option_rom_mr; 1510 MemoryRegion *ram_below_4g, *ram_above_4g; 1511 FWCfgState *fw_cfg; 1512 MachineState *machine = MACHINE(pcms); 1513 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1514 1515 assert(machine->ram_size == pcms->below_4g_mem_size + 1516 pcms->above_4g_mem_size); 1517 1518 linux_boot = (machine->kernel_filename != NULL); 1519 1520 /* Allocate RAM. We allocate it as a single memory region and use 1521 * aliases to address portions of it, mostly for backwards compatibility 1522 * with older qemus that used qemu_ram_alloc(). 1523 */ 1524 ram = g_malloc(sizeof(*ram)); 1525 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1526 machine->ram_size); 1527 *ram_memory = ram; 1528 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1529 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1530 0, pcms->below_4g_mem_size); 1531 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1532 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1533 if (pcms->above_4g_mem_size > 0) { 1534 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1535 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1536 pcms->below_4g_mem_size, 1537 pcms->above_4g_mem_size); 1538 memory_region_add_subregion(system_memory, 0x100000000ULL, 1539 ram_above_4g); 1540 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1541 } 1542 1543 if (!pcmc->has_reserved_memory && 1544 (machine->ram_slots || 1545 (machine->maxram_size > machine->ram_size))) { 1546 MachineClass *mc = MACHINE_GET_CLASS(machine); 1547 1548 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1549 mc->name); 1550 exit(EXIT_FAILURE); 1551 } 1552 1553 /* always allocate the device memory information */ 1554 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 1555 1556 /* initialize device memory address space */ 1557 if (pcmc->has_reserved_memory && 1558 (machine->ram_size < machine->maxram_size)) { 1559 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 1560 1561 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1562 error_report("unsupported amount of memory slots: %"PRIu64, 1563 machine->ram_slots); 1564 exit(EXIT_FAILURE); 1565 } 1566 1567 if (QEMU_ALIGN_UP(machine->maxram_size, 1568 TARGET_PAGE_SIZE) != machine->maxram_size) { 1569 error_report("maximum memory size must by aligned to multiple of " 1570 "%d bytes", TARGET_PAGE_SIZE); 1571 exit(EXIT_FAILURE); 1572 } 1573 1574 machine->device_memory->base = 1575 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB); 1576 1577 if (pcmc->enforce_aligned_dimm) { 1578 /* size device region assuming 1G page max alignment per slot */ 1579 device_mem_size += (1 * GiB) * machine->ram_slots; 1580 } 1581 1582 if ((machine->device_memory->base + device_mem_size) < 1583 device_mem_size) { 1584 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1585 machine->maxram_size); 1586 exit(EXIT_FAILURE); 1587 } 1588 1589 memory_region_init(&machine->device_memory->mr, OBJECT(pcms), 1590 "device-memory", device_mem_size); 1591 memory_region_add_subregion(system_memory, machine->device_memory->base, 1592 &machine->device_memory->mr); 1593 } 1594 1595 /* Initialize PC system firmware */ 1596 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1597 1598 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1599 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1600 &error_fatal); 1601 if (pcmc->pci_enabled) { 1602 memory_region_set_readonly(option_rom_mr, true); 1603 } 1604 memory_region_add_subregion_overlap(rom_memory, 1605 PC_ROM_MIN_VGA, 1606 option_rom_mr, 1607 1); 1608 1609 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1610 1611 rom_set_fw(fw_cfg); 1612 1613 if (pcmc->has_reserved_memory && machine->device_memory->base) { 1614 uint64_t *val = g_malloc(sizeof(*val)); 1615 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1616 uint64_t res_mem_end = machine->device_memory->base; 1617 1618 if (!pcmc->broken_reserved_end) { 1619 res_mem_end += memory_region_size(&machine->device_memory->mr); 1620 } 1621 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB)); 1622 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1623 } 1624 1625 if (linux_boot) { 1626 load_linux(pcms, fw_cfg); 1627 } 1628 1629 for (i = 0; i < nb_option_roms; i++) { 1630 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1631 } 1632 pcms->fw_cfg = fw_cfg; 1633 1634 /* Init default IOAPIC address space */ 1635 pcms->ioapic_as = &address_space_memory; 1636 } 1637 1638 /* 1639 * The 64bit pci hole starts after "above 4G RAM" and 1640 * potentially the space reserved for memory hotplug. 1641 */ 1642 uint64_t pc_pci_hole64_start(void) 1643 { 1644 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1645 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1646 MachineState *ms = MACHINE(pcms); 1647 uint64_t hole64_start = 0; 1648 1649 if (pcmc->has_reserved_memory && ms->device_memory->base) { 1650 hole64_start = ms->device_memory->base; 1651 if (!pcmc->broken_reserved_end) { 1652 hole64_start += memory_region_size(&ms->device_memory->mr); 1653 } 1654 } else { 1655 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1656 } 1657 1658 return ROUND_UP(hole64_start, 1 * GiB); 1659 } 1660 1661 qemu_irq pc_allocate_cpu_irq(void) 1662 { 1663 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1664 } 1665 1666 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1667 { 1668 DeviceState *dev = NULL; 1669 1670 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1671 if (pci_bus) { 1672 PCIDevice *pcidev = pci_vga_init(pci_bus); 1673 dev = pcidev ? &pcidev->qdev : NULL; 1674 } else if (isa_bus) { 1675 ISADevice *isadev = isa_vga_init(isa_bus); 1676 dev = isadev ? DEVICE(isadev) : NULL; 1677 } 1678 rom_reset_order_override(); 1679 return dev; 1680 } 1681 1682 static const MemoryRegionOps ioport80_io_ops = { 1683 .write = ioport80_write, 1684 .read = ioport80_read, 1685 .endianness = DEVICE_NATIVE_ENDIAN, 1686 .impl = { 1687 .min_access_size = 1, 1688 .max_access_size = 1, 1689 }, 1690 }; 1691 1692 static const MemoryRegionOps ioportF0_io_ops = { 1693 .write = ioportF0_write, 1694 .read = ioportF0_read, 1695 .endianness = DEVICE_NATIVE_ENDIAN, 1696 .impl = { 1697 .min_access_size = 1, 1698 .max_access_size = 1, 1699 }, 1700 }; 1701 1702 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport) 1703 { 1704 int i; 1705 DriveInfo *fd[MAX_FD]; 1706 qemu_irq *a20_line; 1707 ISADevice *i8042, *port92, *vmmouse; 1708 1709 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS); 1710 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1711 1712 for (i = 0; i < MAX_FD; i++) { 1713 fd[i] = drive_get(IF_FLOPPY, 0, i); 1714 create_fdctrl |= !!fd[i]; 1715 } 1716 if (create_fdctrl) { 1717 fdctrl_init_isa(isa_bus, fd); 1718 } 1719 1720 i8042 = isa_create_simple(isa_bus, "i8042"); 1721 if (!no_vmport) { 1722 vmport_init(isa_bus); 1723 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1724 } else { 1725 vmmouse = NULL; 1726 } 1727 if (vmmouse) { 1728 DeviceState *dev = DEVICE(vmmouse); 1729 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1730 qdev_init_nofail(dev); 1731 } 1732 port92 = isa_create_simple(isa_bus, "port92"); 1733 1734 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1735 i8042_setup_a20_line(i8042, a20_line[0]); 1736 port92_init(port92, a20_line[1]); 1737 g_free(a20_line); 1738 } 1739 1740 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1741 ISADevice **rtc_state, 1742 bool create_fdctrl, 1743 bool no_vmport, 1744 bool has_pit, 1745 uint32_t hpet_irqs) 1746 { 1747 int i; 1748 DeviceState *hpet = NULL; 1749 int pit_isa_irq = 0; 1750 qemu_irq pit_alt_irq = NULL; 1751 qemu_irq rtc_irq = NULL; 1752 ISADevice *pit = NULL; 1753 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1754 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1755 1756 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1757 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1758 1759 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1760 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1761 1762 /* 1763 * Check if an HPET shall be created. 1764 * 1765 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1766 * when the HPET wants to take over. Thus we have to disable the latter. 1767 */ 1768 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1769 /* In order to set property, here not using sysbus_try_create_simple */ 1770 hpet = qdev_try_create(NULL, TYPE_HPET); 1771 if (hpet) { 1772 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1773 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1774 * IRQ8 and IRQ2. 1775 */ 1776 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1777 HPET_INTCAP, NULL); 1778 if (!compat) { 1779 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1780 } 1781 qdev_init_nofail(hpet); 1782 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1783 1784 for (i = 0; i < GSI_NUM_PINS; i++) { 1785 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1786 } 1787 pit_isa_irq = -1; 1788 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1789 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1790 } 1791 } 1792 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 1793 1794 qemu_register_boot_set(pc_boot_set, *rtc_state); 1795 1796 if (!xen_enabled() && has_pit) { 1797 if (kvm_pit_in_kernel()) { 1798 pit = kvm_pit_init(isa_bus, 0x40); 1799 } else { 1800 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1801 } 1802 if (hpet) { 1803 /* connect PIT to output control line of the HPET */ 1804 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1805 } 1806 pcspk_init(isa_bus, pit); 1807 } 1808 1809 i8257_dma_init(isa_bus, 0); 1810 1811 /* Super I/O */ 1812 pc_superio_init(isa_bus, create_fdctrl, no_vmport); 1813 } 1814 1815 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus) 1816 { 1817 int i; 1818 1819 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1820 for (i = 0; i < nb_nics; i++) { 1821 NICInfo *nd = &nd_table[i]; 1822 const char *model = nd->model ? nd->model : pcmc->default_nic_model; 1823 1824 if (g_str_equal(model, "ne2k_isa")) { 1825 pc_init_ne2k_isa(isa_bus, nd); 1826 } else { 1827 pci_nic_init_nofail(nd, pci_bus, model, NULL); 1828 } 1829 } 1830 rom_reset_order_override(); 1831 } 1832 1833 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1834 { 1835 DeviceState *dev; 1836 SysBusDevice *d; 1837 unsigned int i; 1838 1839 if (kvm_ioapic_in_kernel()) { 1840 dev = qdev_create(NULL, "kvm-ioapic"); 1841 } else { 1842 dev = qdev_create(NULL, "ioapic"); 1843 } 1844 if (parent_name) { 1845 object_property_add_child(object_resolve_path(parent_name, NULL), 1846 "ioapic", OBJECT(dev), NULL); 1847 } 1848 qdev_init_nofail(dev); 1849 d = SYS_BUS_DEVICE(dev); 1850 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1851 1852 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1853 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1854 } 1855 } 1856 1857 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 1858 Error **errp) 1859 { 1860 const PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1861 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1862 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1863 const uint64_t legacy_align = TARGET_PAGE_SIZE; 1864 1865 /* 1866 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1867 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1868 * addition to cover this case. 1869 */ 1870 if (!pcms->acpi_dev || !acpi_enabled) { 1871 error_setg(errp, 1872 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1873 return; 1874 } 1875 1876 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) { 1877 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1878 return; 1879 } 1880 1881 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), 1882 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp); 1883 } 1884 1885 static void pc_memory_plug(HotplugHandler *hotplug_dev, 1886 DeviceState *dev, Error **errp) 1887 { 1888 HotplugHandlerClass *hhc; 1889 Error *local_err = NULL; 1890 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1891 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1892 1893 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err); 1894 if (local_err) { 1895 goto out; 1896 } 1897 1898 if (is_nvdimm) { 1899 nvdimm_plug(&pcms->acpi_nvdimm_state); 1900 } 1901 1902 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1903 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1904 out: 1905 error_propagate(errp, local_err); 1906 } 1907 1908 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev, 1909 DeviceState *dev, Error **errp) 1910 { 1911 HotplugHandlerClass *hhc; 1912 Error *local_err = NULL; 1913 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1914 1915 /* 1916 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1917 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1918 * addition to cover this case. 1919 */ 1920 if (!pcms->acpi_dev || !acpi_enabled) { 1921 error_setg(&local_err, 1922 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1923 goto out; 1924 } 1925 1926 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1927 error_setg(&local_err, 1928 "nvdimm device hot unplug is not supported yet."); 1929 goto out; 1930 } 1931 1932 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1933 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1934 1935 out: 1936 error_propagate(errp, local_err); 1937 } 1938 1939 static void pc_memory_unplug(HotplugHandler *hotplug_dev, 1940 DeviceState *dev, Error **errp) 1941 { 1942 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1943 HotplugHandlerClass *hhc; 1944 Error *local_err = NULL; 1945 1946 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1947 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1948 1949 if (local_err) { 1950 goto out; 1951 } 1952 1953 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms)); 1954 object_unparent(OBJECT(dev)); 1955 1956 out: 1957 error_propagate(errp, local_err); 1958 } 1959 1960 static int pc_apic_cmp(const void *a, const void *b) 1961 { 1962 CPUArchId *apic_a = (CPUArchId *)a; 1963 CPUArchId *apic_b = (CPUArchId *)b; 1964 1965 return apic_a->arch_id - apic_b->arch_id; 1966 } 1967 1968 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1969 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1970 * entry corresponding to CPU's apic_id returns NULL. 1971 */ 1972 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1973 { 1974 CPUArchId apic_id, *found_cpu; 1975 1976 apic_id.arch_id = id; 1977 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1978 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1979 pc_apic_cmp); 1980 if (found_cpu && idx) { 1981 *idx = found_cpu - ms->possible_cpus->cpus; 1982 } 1983 return found_cpu; 1984 } 1985 1986 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1987 DeviceState *dev, Error **errp) 1988 { 1989 CPUArchId *found_cpu; 1990 HotplugHandlerClass *hhc; 1991 Error *local_err = NULL; 1992 X86CPU *cpu = X86_CPU(dev); 1993 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1994 1995 if (pcms->acpi_dev) { 1996 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1997 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1998 if (local_err) { 1999 goto out; 2000 } 2001 } 2002 2003 /* increment the number of CPUs */ 2004 pcms->boot_cpus++; 2005 if (pcms->rtc) { 2006 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 2007 } 2008 if (pcms->fw_cfg) { 2009 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 2010 } 2011 2012 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 2013 found_cpu->cpu = OBJECT(dev); 2014 out: 2015 error_propagate(errp, local_err); 2016 } 2017 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 2018 DeviceState *dev, Error **errp) 2019 { 2020 int idx = -1; 2021 HotplugHandlerClass *hhc; 2022 Error *local_err = NULL; 2023 X86CPU *cpu = X86_CPU(dev); 2024 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2025 2026 if (!pcms->acpi_dev) { 2027 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 2028 goto out; 2029 } 2030 2031 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 2032 assert(idx != -1); 2033 if (idx == 0) { 2034 error_setg(&local_err, "Boot CPU is unpluggable"); 2035 goto out; 2036 } 2037 2038 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 2039 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 2040 2041 if (local_err) { 2042 goto out; 2043 } 2044 2045 out: 2046 error_propagate(errp, local_err); 2047 2048 } 2049 2050 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 2051 DeviceState *dev, Error **errp) 2052 { 2053 CPUArchId *found_cpu; 2054 HotplugHandlerClass *hhc; 2055 Error *local_err = NULL; 2056 X86CPU *cpu = X86_CPU(dev); 2057 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2058 2059 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 2060 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 2061 2062 if (local_err) { 2063 goto out; 2064 } 2065 2066 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 2067 found_cpu->cpu = NULL; 2068 object_unparent(OBJECT(dev)); 2069 2070 /* decrement the number of CPUs */ 2071 pcms->boot_cpus--; 2072 /* Update the number of CPUs in CMOS */ 2073 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 2074 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 2075 out: 2076 error_propagate(errp, local_err); 2077 } 2078 2079 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 2080 DeviceState *dev, Error **errp) 2081 { 2082 int idx; 2083 CPUState *cs; 2084 CPUArchId *cpu_slot; 2085 X86CPUTopoInfo topo; 2086 X86CPU *cpu = X86_CPU(dev); 2087 MachineState *ms = MACHINE(hotplug_dev); 2088 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2089 2090 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 2091 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 2092 ms->cpu_type); 2093 return; 2094 } 2095 2096 /* if APIC ID is not set, set it based on socket/core/thread properties */ 2097 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 2098 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 2099 2100 if (cpu->socket_id < 0) { 2101 error_setg(errp, "CPU socket-id is not set"); 2102 return; 2103 } else if (cpu->socket_id > max_socket) { 2104 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 2105 cpu->socket_id, max_socket); 2106 return; 2107 } 2108 if (cpu->core_id < 0) { 2109 error_setg(errp, "CPU core-id is not set"); 2110 return; 2111 } else if (cpu->core_id > (smp_cores - 1)) { 2112 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 2113 cpu->core_id, smp_cores - 1); 2114 return; 2115 } 2116 if (cpu->thread_id < 0) { 2117 error_setg(errp, "CPU thread-id is not set"); 2118 return; 2119 } else if (cpu->thread_id > (smp_threads - 1)) { 2120 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 2121 cpu->thread_id, smp_threads - 1); 2122 return; 2123 } 2124 2125 topo.pkg_id = cpu->socket_id; 2126 topo.core_id = cpu->core_id; 2127 topo.smt_id = cpu->thread_id; 2128 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 2129 } 2130 2131 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 2132 if (!cpu_slot) { 2133 MachineState *ms = MACHINE(pcms); 2134 2135 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 2136 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 2137 " APIC ID %" PRIu32 ", valid index range 0:%d", 2138 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 2139 ms->possible_cpus->len - 1); 2140 return; 2141 } 2142 2143 if (cpu_slot->cpu) { 2144 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 2145 idx, cpu->apic_id); 2146 return; 2147 } 2148 2149 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 2150 * so that machine_query_hotpluggable_cpus would show correct values 2151 */ 2152 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 2153 * once -smp refactoring is complete and there will be CPU private 2154 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 2155 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 2156 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 2157 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 2158 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 2159 return; 2160 } 2161 cpu->socket_id = topo.pkg_id; 2162 2163 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 2164 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 2165 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 2166 return; 2167 } 2168 cpu->core_id = topo.core_id; 2169 2170 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 2171 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 2172 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 2173 return; 2174 } 2175 cpu->thread_id = topo.smt_id; 2176 2177 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) { 2178 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 2179 return; 2180 } 2181 2182 cs = CPU(cpu); 2183 cs->cpu_index = idx; 2184 2185 numa_cpu_pre_plug(cpu_slot, dev, errp); 2186 } 2187 2188 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2189 DeviceState *dev, Error **errp) 2190 { 2191 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2192 pc_memory_pre_plug(hotplug_dev, dev, errp); 2193 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2194 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2195 } 2196 } 2197 2198 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2199 DeviceState *dev, Error **errp) 2200 { 2201 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2202 pc_memory_plug(hotplug_dev, dev, errp); 2203 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2204 pc_cpu_plug(hotplug_dev, dev, errp); 2205 } 2206 } 2207 2208 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2209 DeviceState *dev, Error **errp) 2210 { 2211 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2212 pc_memory_unplug_request(hotplug_dev, dev, errp); 2213 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2214 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2215 } else { 2216 error_setg(errp, "acpi: device unplug request for not supported device" 2217 " type: %s", object_get_typename(OBJECT(dev))); 2218 } 2219 } 2220 2221 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2222 DeviceState *dev, Error **errp) 2223 { 2224 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2225 pc_memory_unplug(hotplug_dev, dev, errp); 2226 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2227 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2228 } else { 2229 error_setg(errp, "acpi: device unplug for not supported device" 2230 " type: %s", object_get_typename(OBJECT(dev))); 2231 } 2232 } 2233 2234 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2235 DeviceState *dev) 2236 { 2237 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2238 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2239 return HOTPLUG_HANDLER(machine); 2240 } 2241 2242 return NULL; 2243 } 2244 2245 static void 2246 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v, 2247 const char *name, void *opaque, 2248 Error **errp) 2249 { 2250 MachineState *ms = MACHINE(obj); 2251 int64_t value = memory_region_size(&ms->device_memory->mr); 2252 2253 visit_type_int(v, name, &value, errp); 2254 } 2255 2256 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2257 const char *name, void *opaque, 2258 Error **errp) 2259 { 2260 PCMachineState *pcms = PC_MACHINE(obj); 2261 uint64_t value = pcms->max_ram_below_4g; 2262 2263 visit_type_size(v, name, &value, errp); 2264 } 2265 2266 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2267 const char *name, void *opaque, 2268 Error **errp) 2269 { 2270 PCMachineState *pcms = PC_MACHINE(obj); 2271 Error *error = NULL; 2272 uint64_t value; 2273 2274 visit_type_size(v, name, &value, &error); 2275 if (error) { 2276 error_propagate(errp, error); 2277 return; 2278 } 2279 if (value > 4 * GiB) { 2280 error_setg(&error, 2281 "Machine option 'max-ram-below-4g=%"PRIu64 2282 "' expects size less than or equal to 4G", value); 2283 error_propagate(errp, error); 2284 return; 2285 } 2286 2287 if (value < 1 * MiB) { 2288 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2289 "BIOS may not work with less than 1MiB", value); 2290 } 2291 2292 pcms->max_ram_below_4g = value; 2293 } 2294 2295 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2296 void *opaque, Error **errp) 2297 { 2298 PCMachineState *pcms = PC_MACHINE(obj); 2299 OnOffAuto vmport = pcms->vmport; 2300 2301 visit_type_OnOffAuto(v, name, &vmport, errp); 2302 } 2303 2304 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2305 void *opaque, Error **errp) 2306 { 2307 PCMachineState *pcms = PC_MACHINE(obj); 2308 2309 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2310 } 2311 2312 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2313 { 2314 bool smm_available = false; 2315 2316 if (pcms->smm == ON_OFF_AUTO_OFF) { 2317 return false; 2318 } 2319 2320 if (tcg_enabled() || qtest_enabled()) { 2321 smm_available = true; 2322 } else if (kvm_enabled()) { 2323 smm_available = kvm_has_smm(); 2324 } 2325 2326 if (smm_available) { 2327 return true; 2328 } 2329 2330 if (pcms->smm == ON_OFF_AUTO_ON) { 2331 error_report("System Management Mode not supported by this hypervisor."); 2332 exit(1); 2333 } 2334 return false; 2335 } 2336 2337 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2338 void *opaque, Error **errp) 2339 { 2340 PCMachineState *pcms = PC_MACHINE(obj); 2341 OnOffAuto smm = pcms->smm; 2342 2343 visit_type_OnOffAuto(v, name, &smm, errp); 2344 } 2345 2346 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2347 void *opaque, Error **errp) 2348 { 2349 PCMachineState *pcms = PC_MACHINE(obj); 2350 2351 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2352 } 2353 2354 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2355 { 2356 PCMachineState *pcms = PC_MACHINE(obj); 2357 2358 return pcms->acpi_nvdimm_state.is_enabled; 2359 } 2360 2361 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2362 { 2363 PCMachineState *pcms = PC_MACHINE(obj); 2364 2365 pcms->acpi_nvdimm_state.is_enabled = value; 2366 } 2367 2368 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp) 2369 { 2370 PCMachineState *pcms = PC_MACHINE(obj); 2371 2372 return g_strdup(pcms->acpi_nvdimm_state.persistence_string); 2373 } 2374 2375 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value, 2376 Error **errp) 2377 { 2378 PCMachineState *pcms = PC_MACHINE(obj); 2379 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state; 2380 2381 if (strcmp(value, "cpu") == 0) 2382 nvdimm_state->persistence = 3; 2383 else if (strcmp(value, "mem-ctrl") == 0) 2384 nvdimm_state->persistence = 2; 2385 else { 2386 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option", 2387 value); 2388 return; 2389 } 2390 2391 g_free(nvdimm_state->persistence_string); 2392 nvdimm_state->persistence_string = g_strdup(value); 2393 } 2394 2395 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2396 { 2397 PCMachineState *pcms = PC_MACHINE(obj); 2398 2399 return pcms->smbus_enabled; 2400 } 2401 2402 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2403 { 2404 PCMachineState *pcms = PC_MACHINE(obj); 2405 2406 pcms->smbus_enabled = value; 2407 } 2408 2409 static bool pc_machine_get_sata(Object *obj, Error **errp) 2410 { 2411 PCMachineState *pcms = PC_MACHINE(obj); 2412 2413 return pcms->sata_enabled; 2414 } 2415 2416 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2417 { 2418 PCMachineState *pcms = PC_MACHINE(obj); 2419 2420 pcms->sata_enabled = value; 2421 } 2422 2423 static bool pc_machine_get_pit(Object *obj, Error **errp) 2424 { 2425 PCMachineState *pcms = PC_MACHINE(obj); 2426 2427 return pcms->pit_enabled; 2428 } 2429 2430 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2431 { 2432 PCMachineState *pcms = PC_MACHINE(obj); 2433 2434 pcms->pit_enabled = value; 2435 } 2436 2437 static void pc_machine_initfn(Object *obj) 2438 { 2439 PCMachineState *pcms = PC_MACHINE(obj); 2440 2441 pcms->max_ram_below_4g = 0; /* use default */ 2442 pcms->smm = ON_OFF_AUTO_AUTO; 2443 pcms->vmport = ON_OFF_AUTO_AUTO; 2444 /* nvdimm is disabled on default. */ 2445 pcms->acpi_nvdimm_state.is_enabled = false; 2446 /* acpi build is enabled by default if machine supports it */ 2447 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2448 pcms->smbus_enabled = true; 2449 pcms->sata_enabled = true; 2450 pcms->pit_enabled = true; 2451 } 2452 2453 static void pc_machine_reset(void) 2454 { 2455 CPUState *cs; 2456 X86CPU *cpu; 2457 2458 qemu_devices_reset(); 2459 2460 /* Reset APIC after devices have been reset to cancel 2461 * any changes that qemu_devices_reset() might have done. 2462 */ 2463 CPU_FOREACH(cs) { 2464 cpu = X86_CPU(cs); 2465 2466 if (cpu->apic_state) { 2467 device_reset(cpu->apic_state); 2468 } 2469 } 2470 } 2471 2472 static CpuInstanceProperties 2473 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2474 { 2475 MachineClass *mc = MACHINE_GET_CLASS(ms); 2476 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2477 2478 assert(cpu_index < possible_cpus->len); 2479 return possible_cpus->cpus[cpu_index].props; 2480 } 2481 2482 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2483 { 2484 X86CPUTopoInfo topo; 2485 2486 assert(idx < ms->possible_cpus->len); 2487 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2488 smp_cores, smp_threads, &topo); 2489 return topo.pkg_id % nb_numa_nodes; 2490 } 2491 2492 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2493 { 2494 int i; 2495 2496 if (ms->possible_cpus) { 2497 /* 2498 * make sure that max_cpus hasn't changed since the first use, i.e. 2499 * -smp hasn't been parsed after it 2500 */ 2501 assert(ms->possible_cpus->len == max_cpus); 2502 return ms->possible_cpus; 2503 } 2504 2505 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2506 sizeof(CPUArchId) * max_cpus); 2507 ms->possible_cpus->len = max_cpus; 2508 for (i = 0; i < ms->possible_cpus->len; i++) { 2509 X86CPUTopoInfo topo; 2510 2511 ms->possible_cpus->cpus[i].type = ms->cpu_type; 2512 ms->possible_cpus->cpus[i].vcpus_count = 1; 2513 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2514 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2515 smp_cores, smp_threads, &topo); 2516 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2517 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2518 ms->possible_cpus->cpus[i].props.has_core_id = true; 2519 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2520 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2521 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2522 } 2523 return ms->possible_cpus; 2524 } 2525 2526 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2527 { 2528 /* cpu index isn't used */ 2529 CPUState *cs; 2530 2531 CPU_FOREACH(cs) { 2532 X86CPU *cpu = X86_CPU(cs); 2533 2534 if (!cpu->apic_state) { 2535 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2536 } else { 2537 apic_deliver_nmi(cpu->apic_state); 2538 } 2539 } 2540 } 2541 2542 static void pc_machine_class_init(ObjectClass *oc, void *data) 2543 { 2544 MachineClass *mc = MACHINE_CLASS(oc); 2545 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2546 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2547 NMIClass *nc = NMI_CLASS(oc); 2548 2549 pcmc->pci_enabled = true; 2550 pcmc->has_acpi_build = true; 2551 pcmc->rsdp_in_ram = true; 2552 pcmc->smbios_defaults = true; 2553 pcmc->smbios_uuid_encoded = true; 2554 pcmc->gigabyte_align = true; 2555 pcmc->has_reserved_memory = true; 2556 pcmc->kvmclock_enabled = true; 2557 pcmc->enforce_aligned_dimm = true; 2558 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2559 * to be used at the moment, 32K should be enough for a while. */ 2560 pcmc->acpi_data_size = 0x20000 + 0x8000; 2561 pcmc->save_tsc_khz = true; 2562 pcmc->linuxboot_dma_enabled = true; 2563 assert(!mc->get_hotplug_handler); 2564 mc->get_hotplug_handler = pc_get_hotpug_handler; 2565 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2566 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2567 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2568 mc->auto_enable_numa_with_memhp = true; 2569 mc->has_hotpluggable_cpus = true; 2570 mc->default_boot_order = "cad"; 2571 mc->hot_add_cpu = pc_hot_add_cpu; 2572 mc->block_default_type = IF_IDE; 2573 mc->max_cpus = 255; 2574 mc->reset = pc_machine_reset; 2575 hc->pre_plug = pc_machine_device_pre_plug_cb; 2576 hc->plug = pc_machine_device_plug_cb; 2577 hc->unplug_request = pc_machine_device_unplug_request_cb; 2578 hc->unplug = pc_machine_device_unplug_cb; 2579 nc->nmi_monitor_handler = x86_nmi; 2580 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2581 2582 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int", 2583 pc_machine_get_device_memory_region_size, NULL, 2584 NULL, NULL, &error_abort); 2585 2586 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2587 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2588 NULL, NULL, &error_abort); 2589 2590 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2591 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2592 2593 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2594 pc_machine_get_smm, pc_machine_set_smm, 2595 NULL, NULL, &error_abort); 2596 object_class_property_set_description(oc, PC_MACHINE_SMM, 2597 "Enable SMM (pc & q35)", &error_abort); 2598 2599 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2600 pc_machine_get_vmport, pc_machine_set_vmport, 2601 NULL, NULL, &error_abort); 2602 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2603 "Enable vmport (pc & q35)", &error_abort); 2604 2605 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2606 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2607 2608 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST, 2609 pc_machine_get_nvdimm_persistence, 2610 pc_machine_set_nvdimm_persistence, &error_abort); 2611 2612 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2613 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2614 2615 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2616 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2617 2618 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2619 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2620 } 2621 2622 static const TypeInfo pc_machine_info = { 2623 .name = TYPE_PC_MACHINE, 2624 .parent = TYPE_MACHINE, 2625 .abstract = true, 2626 .instance_size = sizeof(PCMachineState), 2627 .instance_init = pc_machine_initfn, 2628 .class_size = sizeof(PCMachineClass), 2629 .class_init = pc_machine_class_init, 2630 .interfaces = (InterfaceInfo[]) { 2631 { TYPE_HOTPLUG_HANDLER }, 2632 { TYPE_NMI }, 2633 { } 2634 }, 2635 }; 2636 2637 static void pc_machine_register_types(void) 2638 { 2639 type_register_static(&pc_machine_info); 2640 } 2641 2642 type_init(pc_machine_register_types) 2643