1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "hw/hw.h" 28 #include "hw/i386/pc.h" 29 #include "hw/char/serial.h" 30 #include "hw/char/parallel.h" 31 #include "hw/i386/apic.h" 32 #include "hw/i386/topology.h" 33 #include "sysemu/cpus.h" 34 #include "hw/block/fdc.h" 35 #include "hw/ide.h" 36 #include "hw/pci/pci.h" 37 #include "hw/pci/pci_bus.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/timer/hpet.h" 40 #include "hw/firmware/smbios.h" 41 #include "hw/loader.h" 42 #include "elf.h" 43 #include "multiboot.h" 44 #include "hw/timer/mc146818rtc.h" 45 #include "hw/dma/i8257.h" 46 #include "hw/timer/i8254.h" 47 #include "hw/input/i8042.h" 48 #include "hw/audio/pcspk.h" 49 #include "hw/pci/msi.h" 50 #include "hw/sysbus.h" 51 #include "sysemu/sysemu.h" 52 #include "sysemu/numa.h" 53 #include "sysemu/kvm.h" 54 #include "sysemu/qtest.h" 55 #include "kvm_i386.h" 56 #include "hw/xen/xen.h" 57 #include "ui/qemu-spice.h" 58 #include "exec/memory.h" 59 #include "exec/address-spaces.h" 60 #include "sysemu/arch_init.h" 61 #include "qemu/bitmap.h" 62 #include "qemu/config-file.h" 63 #include "qemu/error-report.h" 64 #include "qemu/option.h" 65 #include "hw/acpi/acpi.h" 66 #include "hw/acpi/cpu_hotplug.h" 67 #include "hw/boards.h" 68 #include "acpi-build.h" 69 #include "hw/mem/pc-dimm.h" 70 #include "qapi/error.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/visitor.h" 73 #include "qom/cpu.h" 74 #include "hw/nmi.h" 75 #include "hw/i386/intel_iommu.h" 76 #include "hw/net/ne2000-isa.h" 77 78 /* debug PC/ISA interrupts */ 79 //#define DEBUG_IRQ 80 81 #ifdef DEBUG_IRQ 82 #define DPRINTF(fmt, ...) \ 83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 84 #else 85 #define DPRINTF(fmt, ...) 86 #endif 87 88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 93 94 #define E820_NR_ENTRIES 16 95 96 struct e820_entry { 97 uint64_t address; 98 uint64_t length; 99 uint32_t type; 100 } QEMU_PACKED __attribute((__aligned__(4))); 101 102 struct e820_table { 103 uint32_t count; 104 struct e820_entry entry[E820_NR_ENTRIES]; 105 } QEMU_PACKED __attribute((__aligned__(4))); 106 107 static struct e820_table e820_reserve; 108 static struct e820_entry *e820_table; 109 static unsigned e820_entries; 110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 111 112 GlobalProperty pc_compat_3_1[] = { 113 { 114 .driver = "intel-iommu", 115 .property = "dma-drain", 116 .value = "off", 117 }, 118 }; 119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1); 120 121 GlobalProperty pc_compat_3_0[] = { 122 { 123 .driver = TYPE_X86_CPU, 124 .property = "x-hv-synic-kvm-only", 125 .value = "on", 126 },{ 127 .driver = "Skylake-Server" "-" TYPE_X86_CPU, 128 .property = "pku", 129 .value = "off", 130 },{ 131 .driver = "Skylake-Server-IBRS" "-" TYPE_X86_CPU, 132 .property = "pku", 133 .value = "off", 134 }, 135 }; 136 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0); 137 138 GlobalProperty pc_compat_2_12[] = { 139 { 140 .driver = TYPE_X86_CPU, 141 .property = "legacy-cache", 142 .value = "on", 143 },{ 144 .driver = TYPE_X86_CPU, 145 .property = "topoext", 146 .value = "off", 147 },{ 148 .driver = "EPYC-" TYPE_X86_CPU, 149 .property = "xlevel", 150 .value = stringify(0x8000000a), 151 },{ 152 .driver = "EPYC-IBPB-" TYPE_X86_CPU, 153 .property = "xlevel", 154 .value = stringify(0x8000000a), 155 }, 156 }; 157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12); 158 159 GlobalProperty pc_compat_2_11[] = { 160 { 161 .driver = TYPE_X86_CPU, 162 .property = "x-migrate-smi-count", 163 .value = "off", 164 },{ 165 .driver = "Skylake-Server" "-" TYPE_X86_CPU, 166 .property = "clflushopt", 167 .value = "off", 168 }, 169 }; 170 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11); 171 172 GlobalProperty pc_compat_2_10[] = { 173 { 174 .driver = TYPE_X86_CPU, 175 .property = "x-hv-max-vps", 176 .value = "0x40", 177 },{ 178 .driver = "i440FX-pcihost", 179 .property = "x-pci-hole64-fix", 180 .value = "off", 181 },{ 182 .driver = "q35-pcihost", 183 .property = "x-pci-hole64-fix", 184 .value = "off", 185 }, 186 }; 187 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10); 188 189 GlobalProperty pc_compat_2_9[] = { 190 { 191 .driver = "mch", 192 .property = "extended-tseg-mbytes", 193 .value = stringify(0), 194 }, 195 }; 196 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9); 197 198 GlobalProperty pc_compat_2_8[] = { 199 { 200 .driver = TYPE_X86_CPU, 201 .property = "tcg-cpuid", 202 .value = "off", 203 }, 204 { 205 .driver = "kvmclock", 206 .property = "x-mach-use-reliable-get-clock", 207 .value = "off", 208 }, 209 { 210 .driver = "ICH9-LPC", 211 .property = "x-smi-broadcast", 212 .value = "off", 213 }, 214 { 215 .driver = TYPE_X86_CPU, 216 .property = "vmware-cpuid-freq", 217 .value = "off", 218 }, 219 { 220 .driver = "Haswell-" TYPE_X86_CPU, 221 .property = "stepping", 222 .value = "1", 223 }, 224 }; 225 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8); 226 227 void gsi_handler(void *opaque, int n, int level) 228 { 229 GSIState *s = opaque; 230 231 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 232 if (n < ISA_NUM_IRQS) { 233 qemu_set_irq(s->i8259_irq[n], level); 234 } 235 qemu_set_irq(s->ioapic_irq[n], level); 236 } 237 238 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 239 unsigned size) 240 { 241 } 242 243 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 244 { 245 return 0xffffffffffffffffULL; 246 } 247 248 /* MSDOS compatibility mode FPU exception support */ 249 static qemu_irq ferr_irq; 250 251 void pc_register_ferr_irq(qemu_irq irq) 252 { 253 ferr_irq = irq; 254 } 255 256 /* XXX: add IGNNE support */ 257 void cpu_set_ferr(CPUX86State *s) 258 { 259 qemu_irq_raise(ferr_irq); 260 } 261 262 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 263 unsigned size) 264 { 265 qemu_irq_lower(ferr_irq); 266 } 267 268 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 269 { 270 return 0xffffffffffffffffULL; 271 } 272 273 /* TSC handling */ 274 uint64_t cpu_get_tsc(CPUX86State *env) 275 { 276 return cpu_get_ticks(); 277 } 278 279 /* IRQ handling */ 280 int cpu_get_pic_interrupt(CPUX86State *env) 281 { 282 X86CPU *cpu = x86_env_get_cpu(env); 283 int intno; 284 285 if (!kvm_irqchip_in_kernel()) { 286 intno = apic_get_interrupt(cpu->apic_state); 287 if (intno >= 0) { 288 return intno; 289 } 290 /* read the irq from the PIC */ 291 if (!apic_accept_pic_intr(cpu->apic_state)) { 292 return -1; 293 } 294 } 295 296 intno = pic_read_irq(isa_pic); 297 return intno; 298 } 299 300 static void pic_irq_request(void *opaque, int irq, int level) 301 { 302 CPUState *cs = first_cpu; 303 X86CPU *cpu = X86_CPU(cs); 304 305 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 306 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 307 CPU_FOREACH(cs) { 308 cpu = X86_CPU(cs); 309 if (apic_accept_pic_intr(cpu->apic_state)) { 310 apic_deliver_pic_intr(cpu->apic_state, level); 311 } 312 } 313 } else { 314 if (level) { 315 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 316 } else { 317 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 318 } 319 } 320 } 321 322 /* PC cmos mappings */ 323 324 #define REG_EQUIPMENT_BYTE 0x14 325 326 int cmos_get_fd_drive_type(FloppyDriveType fd0) 327 { 328 int val; 329 330 switch (fd0) { 331 case FLOPPY_DRIVE_TYPE_144: 332 /* 1.44 Mb 3"5 drive */ 333 val = 4; 334 break; 335 case FLOPPY_DRIVE_TYPE_288: 336 /* 2.88 Mb 3"5 drive */ 337 val = 5; 338 break; 339 case FLOPPY_DRIVE_TYPE_120: 340 /* 1.2 Mb 5"5 drive */ 341 val = 2; 342 break; 343 case FLOPPY_DRIVE_TYPE_NONE: 344 default: 345 val = 0; 346 break; 347 } 348 return val; 349 } 350 351 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 352 int16_t cylinders, int8_t heads, int8_t sectors) 353 { 354 rtc_set_memory(s, type_ofs, 47); 355 rtc_set_memory(s, info_ofs, cylinders); 356 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 357 rtc_set_memory(s, info_ofs + 2, heads); 358 rtc_set_memory(s, info_ofs + 3, 0xff); 359 rtc_set_memory(s, info_ofs + 4, 0xff); 360 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 361 rtc_set_memory(s, info_ofs + 6, cylinders); 362 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 363 rtc_set_memory(s, info_ofs + 8, sectors); 364 } 365 366 /* convert boot_device letter to something recognizable by the bios */ 367 static int boot_device2nibble(char boot_device) 368 { 369 switch(boot_device) { 370 case 'a': 371 case 'b': 372 return 0x01; /* floppy boot */ 373 case 'c': 374 return 0x02; /* hard drive boot */ 375 case 'd': 376 return 0x03; /* CD-ROM boot */ 377 case 'n': 378 return 0x04; /* Network boot */ 379 } 380 return 0; 381 } 382 383 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 384 { 385 #define PC_MAX_BOOT_DEVICES 3 386 int nbds, bds[3] = { 0, }; 387 int i; 388 389 nbds = strlen(boot_device); 390 if (nbds > PC_MAX_BOOT_DEVICES) { 391 error_setg(errp, "Too many boot devices for PC"); 392 return; 393 } 394 for (i = 0; i < nbds; i++) { 395 bds[i] = boot_device2nibble(boot_device[i]); 396 if (bds[i] == 0) { 397 error_setg(errp, "Invalid boot device for PC: '%c'", 398 boot_device[i]); 399 return; 400 } 401 } 402 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 403 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 404 } 405 406 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 407 { 408 set_boot_dev(opaque, boot_device, errp); 409 } 410 411 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 412 { 413 int val, nb, i; 414 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 415 FLOPPY_DRIVE_TYPE_NONE }; 416 417 /* floppy type */ 418 if (floppy) { 419 for (i = 0; i < 2; i++) { 420 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 421 } 422 } 423 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 424 cmos_get_fd_drive_type(fd_type[1]); 425 rtc_set_memory(rtc_state, 0x10, val); 426 427 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 428 nb = 0; 429 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 430 nb++; 431 } 432 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 433 nb++; 434 } 435 switch (nb) { 436 case 0: 437 break; 438 case 1: 439 val |= 0x01; /* 1 drive, ready for boot */ 440 break; 441 case 2: 442 val |= 0x41; /* 2 drives, ready for boot */ 443 break; 444 } 445 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 446 } 447 448 typedef struct pc_cmos_init_late_arg { 449 ISADevice *rtc_state; 450 BusState *idebus[2]; 451 } pc_cmos_init_late_arg; 452 453 typedef struct check_fdc_state { 454 ISADevice *floppy; 455 bool multiple; 456 } CheckFdcState; 457 458 static int check_fdc(Object *obj, void *opaque) 459 { 460 CheckFdcState *state = opaque; 461 Object *fdc; 462 uint32_t iobase; 463 Error *local_err = NULL; 464 465 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 466 if (!fdc) { 467 return 0; 468 } 469 470 iobase = object_property_get_uint(obj, "iobase", &local_err); 471 if (local_err || iobase != 0x3f0) { 472 error_free(local_err); 473 return 0; 474 } 475 476 if (state->floppy) { 477 state->multiple = true; 478 } else { 479 state->floppy = ISA_DEVICE(obj); 480 } 481 return 0; 482 } 483 484 static const char * const fdc_container_path[] = { 485 "/unattached", "/peripheral", "/peripheral-anon" 486 }; 487 488 /* 489 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 490 * and ACPI objects. 491 */ 492 ISADevice *pc_find_fdc0(void) 493 { 494 int i; 495 Object *container; 496 CheckFdcState state = { 0 }; 497 498 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 499 container = container_get(qdev_get_machine(), fdc_container_path[i]); 500 object_child_foreach(container, check_fdc, &state); 501 } 502 503 if (state.multiple) { 504 warn_report("multiple floppy disk controllers with " 505 "iobase=0x3f0 have been found"); 506 error_printf("the one being picked for CMOS setup might not reflect " 507 "your intent"); 508 } 509 510 return state.floppy; 511 } 512 513 static void pc_cmos_init_late(void *opaque) 514 { 515 pc_cmos_init_late_arg *arg = opaque; 516 ISADevice *s = arg->rtc_state; 517 int16_t cylinders; 518 int8_t heads, sectors; 519 int val; 520 int i, trans; 521 522 val = 0; 523 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 524 &cylinders, &heads, §ors) >= 0) { 525 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 526 val |= 0xf0; 527 } 528 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 529 &cylinders, &heads, §ors) >= 0) { 530 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 531 val |= 0x0f; 532 } 533 rtc_set_memory(s, 0x12, val); 534 535 val = 0; 536 for (i = 0; i < 4; i++) { 537 /* NOTE: ide_get_geometry() returns the physical 538 geometry. It is always such that: 1 <= sects <= 63, 1 539 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 540 geometry can be different if a translation is done. */ 541 if (arg->idebus[i / 2] && 542 ide_get_geometry(arg->idebus[i / 2], i % 2, 543 &cylinders, &heads, §ors) >= 0) { 544 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 545 assert((trans & ~3) == 0); 546 val |= trans << (i * 2); 547 } 548 } 549 rtc_set_memory(s, 0x39, val); 550 551 pc_cmos_init_floppy(s, pc_find_fdc0()); 552 553 qemu_unregister_reset(pc_cmos_init_late, opaque); 554 } 555 556 void pc_cmos_init(PCMachineState *pcms, 557 BusState *idebus0, BusState *idebus1, 558 ISADevice *s) 559 { 560 int val; 561 static pc_cmos_init_late_arg arg; 562 563 /* various important CMOS locations needed by PC/Bochs bios */ 564 565 /* memory size */ 566 /* base memory (first MiB) */ 567 val = MIN(pcms->below_4g_mem_size / KiB, 640); 568 rtc_set_memory(s, 0x15, val); 569 rtc_set_memory(s, 0x16, val >> 8); 570 /* extended memory (next 64MiB) */ 571 if (pcms->below_4g_mem_size > 1 * MiB) { 572 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB; 573 } else { 574 val = 0; 575 } 576 if (val > 65535) 577 val = 65535; 578 rtc_set_memory(s, 0x17, val); 579 rtc_set_memory(s, 0x18, val >> 8); 580 rtc_set_memory(s, 0x30, val); 581 rtc_set_memory(s, 0x31, val >> 8); 582 /* memory between 16MiB and 4GiB */ 583 if (pcms->below_4g_mem_size > 16 * MiB) { 584 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB); 585 } else { 586 val = 0; 587 } 588 if (val > 65535) 589 val = 65535; 590 rtc_set_memory(s, 0x34, val); 591 rtc_set_memory(s, 0x35, val >> 8); 592 /* memory above 4GiB */ 593 val = pcms->above_4g_mem_size / 65536; 594 rtc_set_memory(s, 0x5b, val); 595 rtc_set_memory(s, 0x5c, val >> 8); 596 rtc_set_memory(s, 0x5d, val >> 16); 597 598 object_property_add_link(OBJECT(pcms), "rtc_state", 599 TYPE_ISA_DEVICE, 600 (Object **)&pcms->rtc, 601 object_property_allow_set_link, 602 OBJ_PROP_LINK_STRONG, &error_abort); 603 object_property_set_link(OBJECT(pcms), OBJECT(s), 604 "rtc_state", &error_abort); 605 606 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 607 608 val = 0; 609 val |= 0x02; /* FPU is there */ 610 val |= 0x04; /* PS/2 mouse installed */ 611 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 612 613 /* hard drives and FDC */ 614 arg.rtc_state = s; 615 arg.idebus[0] = idebus0; 616 arg.idebus[1] = idebus1; 617 qemu_register_reset(pc_cmos_init_late, &arg); 618 } 619 620 #define TYPE_PORT92 "port92" 621 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 622 623 /* port 92 stuff: could be split off */ 624 typedef struct Port92State { 625 ISADevice parent_obj; 626 627 MemoryRegion io; 628 uint8_t outport; 629 qemu_irq a20_out; 630 } Port92State; 631 632 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 633 unsigned size) 634 { 635 Port92State *s = opaque; 636 int oldval = s->outport; 637 638 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 639 s->outport = val; 640 qemu_set_irq(s->a20_out, (val >> 1) & 1); 641 if ((val & 1) && !(oldval & 1)) { 642 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 643 } 644 } 645 646 static uint64_t port92_read(void *opaque, hwaddr addr, 647 unsigned size) 648 { 649 Port92State *s = opaque; 650 uint32_t ret; 651 652 ret = s->outport; 653 DPRINTF("port92: read 0x%02x\n", ret); 654 return ret; 655 } 656 657 static void port92_init(ISADevice *dev, qemu_irq a20_out) 658 { 659 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 660 } 661 662 static const VMStateDescription vmstate_port92_isa = { 663 .name = "port92", 664 .version_id = 1, 665 .minimum_version_id = 1, 666 .fields = (VMStateField[]) { 667 VMSTATE_UINT8(outport, Port92State), 668 VMSTATE_END_OF_LIST() 669 } 670 }; 671 672 static void port92_reset(DeviceState *d) 673 { 674 Port92State *s = PORT92(d); 675 676 s->outport &= ~1; 677 } 678 679 static const MemoryRegionOps port92_ops = { 680 .read = port92_read, 681 .write = port92_write, 682 .impl = { 683 .min_access_size = 1, 684 .max_access_size = 1, 685 }, 686 .endianness = DEVICE_LITTLE_ENDIAN, 687 }; 688 689 static void port92_initfn(Object *obj) 690 { 691 Port92State *s = PORT92(obj); 692 693 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 694 695 s->outport = 0; 696 697 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 698 } 699 700 static void port92_realizefn(DeviceState *dev, Error **errp) 701 { 702 ISADevice *isadev = ISA_DEVICE(dev); 703 Port92State *s = PORT92(dev); 704 705 isa_register_ioport(isadev, &s->io, 0x92); 706 } 707 708 static void port92_class_initfn(ObjectClass *klass, void *data) 709 { 710 DeviceClass *dc = DEVICE_CLASS(klass); 711 712 dc->realize = port92_realizefn; 713 dc->reset = port92_reset; 714 dc->vmsd = &vmstate_port92_isa; 715 /* 716 * Reason: unlike ordinary ISA devices, this one needs additional 717 * wiring: its A20 output line needs to be wired up by 718 * port92_init(). 719 */ 720 dc->user_creatable = false; 721 } 722 723 static const TypeInfo port92_info = { 724 .name = TYPE_PORT92, 725 .parent = TYPE_ISA_DEVICE, 726 .instance_size = sizeof(Port92State), 727 .instance_init = port92_initfn, 728 .class_init = port92_class_initfn, 729 }; 730 731 static void port92_register_types(void) 732 { 733 type_register_static(&port92_info); 734 } 735 736 type_init(port92_register_types) 737 738 static void handle_a20_line_change(void *opaque, int irq, int level) 739 { 740 X86CPU *cpu = opaque; 741 742 /* XXX: send to all CPUs ? */ 743 /* XXX: add logic to handle multiple A20 line sources */ 744 x86_cpu_set_a20(cpu, level); 745 } 746 747 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 748 { 749 int index = le32_to_cpu(e820_reserve.count); 750 struct e820_entry *entry; 751 752 if (type != E820_RAM) { 753 /* old FW_CFG_E820_TABLE entry -- reservations only */ 754 if (index >= E820_NR_ENTRIES) { 755 return -EBUSY; 756 } 757 entry = &e820_reserve.entry[index++]; 758 759 entry->address = cpu_to_le64(address); 760 entry->length = cpu_to_le64(length); 761 entry->type = cpu_to_le32(type); 762 763 e820_reserve.count = cpu_to_le32(index); 764 } 765 766 /* new "etc/e820" file -- include ram too */ 767 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 768 e820_table[e820_entries].address = cpu_to_le64(address); 769 e820_table[e820_entries].length = cpu_to_le64(length); 770 e820_table[e820_entries].type = cpu_to_le32(type); 771 e820_entries++; 772 773 return e820_entries; 774 } 775 776 int e820_get_num_entries(void) 777 { 778 return e820_entries; 779 } 780 781 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 782 { 783 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 784 *address = le64_to_cpu(e820_table[idx].address); 785 *length = le64_to_cpu(e820_table[idx].length); 786 return true; 787 } 788 return false; 789 } 790 791 /* Enables contiguous-apic-ID mode, for compatibility */ 792 static bool compat_apic_id_mode; 793 794 void enable_compat_apic_id_mode(void) 795 { 796 compat_apic_id_mode = true; 797 } 798 799 /* Calculates initial APIC ID for a specific CPU index 800 * 801 * Currently we need to be able to calculate the APIC ID from the CPU index 802 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 803 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 804 * all CPUs up to max_cpus. 805 */ 806 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 807 { 808 uint32_t correct_id; 809 static bool warned; 810 811 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 812 if (compat_apic_id_mode) { 813 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 814 error_report("APIC IDs set in compatibility mode, " 815 "CPU topology won't match the configuration"); 816 warned = true; 817 } 818 return cpu_index; 819 } else { 820 return correct_id; 821 } 822 } 823 824 static void pc_build_smbios(PCMachineState *pcms) 825 { 826 uint8_t *smbios_tables, *smbios_anchor; 827 size_t smbios_tables_len, smbios_anchor_len; 828 struct smbios_phys_mem_area *mem_array; 829 unsigned i, array_count; 830 MachineState *ms = MACHINE(pcms); 831 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 832 833 /* tell smbios about cpuid version and features */ 834 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 835 836 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 837 if (smbios_tables) { 838 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 839 smbios_tables, smbios_tables_len); 840 } 841 842 /* build the array of physical mem area from e820 table */ 843 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 844 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 845 uint64_t addr, len; 846 847 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 848 mem_array[array_count].address = addr; 849 mem_array[array_count].length = len; 850 array_count++; 851 } 852 } 853 smbios_get_tables(mem_array, array_count, 854 &smbios_tables, &smbios_tables_len, 855 &smbios_anchor, &smbios_anchor_len); 856 g_free(mem_array); 857 858 if (smbios_anchor) { 859 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 860 smbios_tables, smbios_tables_len); 861 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 862 smbios_anchor, smbios_anchor_len); 863 } 864 } 865 866 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 867 { 868 FWCfgState *fw_cfg; 869 uint64_t *numa_fw_cfg; 870 int i; 871 const CPUArchIdList *cpus; 872 MachineClass *mc = MACHINE_GET_CLASS(pcms); 873 874 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 875 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 876 877 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 878 * 879 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 880 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 881 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 882 * for CPU hotplug also uses APIC ID and not "CPU index". 883 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 884 * but the "limit to the APIC ID values SeaBIOS may see". 885 * 886 * So for compatibility reasons with old BIOSes we are stuck with 887 * "etc/max-cpus" actually being apic_id_limit 888 */ 889 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 890 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 891 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 892 acpi_tables, acpi_tables_len); 893 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 894 895 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 896 &e820_reserve, sizeof(e820_reserve)); 897 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 898 sizeof(struct e820_entry) * e820_entries); 899 900 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 901 /* allocate memory for the NUMA channel: one (64bit) word for the number 902 * of nodes, one word for each VCPU->node and one word for each node to 903 * hold the amount of memory. 904 */ 905 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 906 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 907 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 908 for (i = 0; i < cpus->len; i++) { 909 unsigned int apic_id = cpus->cpus[i].arch_id; 910 assert(apic_id < pcms->apic_id_limit); 911 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 912 } 913 for (i = 0; i < nb_numa_nodes; i++) { 914 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 915 cpu_to_le64(numa_info[i].node_mem); 916 } 917 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 918 (1 + pcms->apic_id_limit + nb_numa_nodes) * 919 sizeof(*numa_fw_cfg)); 920 921 return fw_cfg; 922 } 923 924 static long get_file_size(FILE *f) 925 { 926 long where, size; 927 928 /* XXX: on Unix systems, using fstat() probably makes more sense */ 929 930 where = ftell(f); 931 fseek(f, 0, SEEK_END); 932 size = ftell(f); 933 fseek(f, where, SEEK_SET); 934 935 return size; 936 } 937 938 /* setup_data types */ 939 #define SETUP_NONE 0 940 #define SETUP_E820_EXT 1 941 #define SETUP_DTB 2 942 #define SETUP_PCI 3 943 #define SETUP_EFI 4 944 945 struct setup_data { 946 uint64_t next; 947 uint32_t type; 948 uint32_t len; 949 uint8_t data[0]; 950 } __attribute__((packed)); 951 952 static void load_linux(PCMachineState *pcms, 953 FWCfgState *fw_cfg) 954 { 955 uint16_t protocol; 956 int setup_size, kernel_size, cmdline_size; 957 int dtb_size, setup_data_offset; 958 uint32_t initrd_max; 959 uint8_t header[8192], *setup, *kernel; 960 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 961 FILE *f; 962 char *vmode; 963 MachineState *machine = MACHINE(pcms); 964 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 965 struct setup_data *setup_data; 966 const char *kernel_filename = machine->kernel_filename; 967 const char *initrd_filename = machine->initrd_filename; 968 const char *dtb_filename = machine->dtb; 969 const char *kernel_cmdline = machine->kernel_cmdline; 970 971 /* Align to 16 bytes as a paranoia measure */ 972 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 973 974 /* load the kernel header */ 975 f = fopen(kernel_filename, "rb"); 976 if (!f || !(kernel_size = get_file_size(f)) || 977 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 978 MIN(ARRAY_SIZE(header), kernel_size)) { 979 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 980 kernel_filename, strerror(errno)); 981 exit(1); 982 } 983 984 /* kernel protocol version */ 985 #if 0 986 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 987 #endif 988 if (ldl_p(header+0x202) == 0x53726448) { 989 protocol = lduw_p(header+0x206); 990 } else { 991 /* This looks like a multiboot kernel. If it is, let's stop 992 treating it like a Linux kernel. */ 993 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 994 kernel_cmdline, kernel_size, header)) { 995 return; 996 } 997 protocol = 0; 998 } 999 1000 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 1001 /* Low kernel */ 1002 real_addr = 0x90000; 1003 cmdline_addr = 0x9a000 - cmdline_size; 1004 prot_addr = 0x10000; 1005 } else if (protocol < 0x202) { 1006 /* High but ancient kernel */ 1007 real_addr = 0x90000; 1008 cmdline_addr = 0x9a000 - cmdline_size; 1009 prot_addr = 0x100000; 1010 } else { 1011 /* High and recent kernel */ 1012 real_addr = 0x10000; 1013 cmdline_addr = 0x20000; 1014 prot_addr = 0x100000; 1015 } 1016 1017 #if 0 1018 fprintf(stderr, 1019 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 1020 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 1021 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 1022 real_addr, 1023 cmdline_addr, 1024 prot_addr); 1025 #endif 1026 1027 /* highest address for loading the initrd */ 1028 if (protocol >= 0x203) { 1029 initrd_max = ldl_p(header+0x22c); 1030 } else { 1031 initrd_max = 0x37ffffff; 1032 } 1033 1034 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 1035 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 1036 } 1037 1038 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 1039 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 1040 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 1041 1042 if (protocol >= 0x202) { 1043 stl_p(header+0x228, cmdline_addr); 1044 } else { 1045 stw_p(header+0x20, 0xA33F); 1046 stw_p(header+0x22, cmdline_addr-real_addr); 1047 } 1048 1049 /* handle vga= parameter */ 1050 vmode = strstr(kernel_cmdline, "vga="); 1051 if (vmode) { 1052 unsigned int video_mode; 1053 /* skip "vga=" */ 1054 vmode += 4; 1055 if (!strncmp(vmode, "normal", 6)) { 1056 video_mode = 0xffff; 1057 } else if (!strncmp(vmode, "ext", 3)) { 1058 video_mode = 0xfffe; 1059 } else if (!strncmp(vmode, "ask", 3)) { 1060 video_mode = 0xfffd; 1061 } else { 1062 video_mode = strtol(vmode, NULL, 0); 1063 } 1064 stw_p(header+0x1fa, video_mode); 1065 } 1066 1067 /* loader type */ 1068 /* High nybble = B reserved for QEMU; low nybble is revision number. 1069 If this code is substantially changed, you may want to consider 1070 incrementing the revision. */ 1071 if (protocol >= 0x200) { 1072 header[0x210] = 0xB0; 1073 } 1074 /* heap */ 1075 if (protocol >= 0x201) { 1076 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 1077 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 1078 } 1079 1080 /* load initrd */ 1081 if (initrd_filename) { 1082 gsize initrd_size; 1083 gchar *initrd_data; 1084 GError *gerr = NULL; 1085 1086 if (protocol < 0x200) { 1087 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 1088 exit(1); 1089 } 1090 1091 if (!g_file_get_contents(initrd_filename, &initrd_data, 1092 &initrd_size, &gerr)) { 1093 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 1094 initrd_filename, gerr->message); 1095 exit(1); 1096 } 1097 if (initrd_size >= initrd_max) { 1098 fprintf(stderr, "qemu: initrd is too large, cannot support." 1099 "(max: %"PRIu32", need %"PRId64")\n", 1100 initrd_max, (uint64_t)initrd_size); 1101 exit(1); 1102 } 1103 1104 initrd_addr = (initrd_max-initrd_size) & ~4095; 1105 1106 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 1107 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1108 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 1109 1110 stl_p(header+0x218, initrd_addr); 1111 stl_p(header+0x21c, initrd_size); 1112 } 1113 1114 /* load kernel and setup */ 1115 setup_size = header[0x1f1]; 1116 if (setup_size == 0) { 1117 setup_size = 4; 1118 } 1119 setup_size = (setup_size+1)*512; 1120 if (setup_size > kernel_size) { 1121 fprintf(stderr, "qemu: invalid kernel header\n"); 1122 exit(1); 1123 } 1124 kernel_size -= setup_size; 1125 1126 setup = g_malloc(setup_size); 1127 kernel = g_malloc(kernel_size); 1128 fseek(f, 0, SEEK_SET); 1129 if (fread(setup, 1, setup_size, f) != setup_size) { 1130 fprintf(stderr, "fread() failed\n"); 1131 exit(1); 1132 } 1133 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1134 fprintf(stderr, "fread() failed\n"); 1135 exit(1); 1136 } 1137 fclose(f); 1138 1139 /* append dtb to kernel */ 1140 if (dtb_filename) { 1141 if (protocol < 0x209) { 1142 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1143 exit(1); 1144 } 1145 1146 dtb_size = get_image_size(dtb_filename); 1147 if (dtb_size <= 0) { 1148 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1149 dtb_filename, strerror(errno)); 1150 exit(1); 1151 } 1152 1153 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1154 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1155 kernel = g_realloc(kernel, kernel_size); 1156 1157 stq_p(header+0x250, prot_addr + setup_data_offset); 1158 1159 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1160 setup_data->next = 0; 1161 setup_data->type = cpu_to_le32(SETUP_DTB); 1162 setup_data->len = cpu_to_le32(dtb_size); 1163 1164 load_image_size(dtb_filename, setup_data->data, dtb_size); 1165 } 1166 1167 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1168 1169 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1170 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1171 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1172 1173 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1174 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1175 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1176 1177 option_rom[nb_option_roms].bootindex = 0; 1178 option_rom[nb_option_roms].name = "linuxboot.bin"; 1179 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1180 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1181 } 1182 nb_option_roms++; 1183 } 1184 1185 #define NE2000_NB_MAX 6 1186 1187 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1188 0x280, 0x380 }; 1189 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1190 1191 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1192 { 1193 static int nb_ne2k = 0; 1194 1195 if (nb_ne2k == NE2000_NB_MAX) 1196 return; 1197 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1198 ne2000_irq[nb_ne2k], nd); 1199 nb_ne2k++; 1200 } 1201 1202 DeviceState *cpu_get_current_apic(void) 1203 { 1204 if (current_cpu) { 1205 X86CPU *cpu = X86_CPU(current_cpu); 1206 return cpu->apic_state; 1207 } else { 1208 return NULL; 1209 } 1210 } 1211 1212 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1213 { 1214 X86CPU *cpu = opaque; 1215 1216 if (level) { 1217 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1218 } 1219 } 1220 1221 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1222 { 1223 Object *cpu = NULL; 1224 Error *local_err = NULL; 1225 1226 cpu = object_new(typename); 1227 1228 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1229 object_property_set_bool(cpu, true, "realized", &local_err); 1230 1231 object_unref(cpu); 1232 error_propagate(errp, local_err); 1233 } 1234 1235 void pc_hot_add_cpu(const int64_t id, Error **errp) 1236 { 1237 MachineState *ms = MACHINE(qdev_get_machine()); 1238 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1239 Error *local_err = NULL; 1240 1241 if (id < 0) { 1242 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1243 return; 1244 } 1245 1246 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1247 error_setg(errp, "Unable to add CPU: %" PRIi64 1248 ", resulting APIC ID (%" PRIi64 ") is too large", 1249 id, apic_id); 1250 return; 1251 } 1252 1253 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1254 if (local_err) { 1255 error_propagate(errp, local_err); 1256 return; 1257 } 1258 } 1259 1260 void pc_cpus_init(PCMachineState *pcms) 1261 { 1262 int i; 1263 const CPUArchIdList *possible_cpus; 1264 MachineState *ms = MACHINE(pcms); 1265 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1266 1267 /* Calculates the limit to CPU APIC ID values 1268 * 1269 * Limit for the APIC ID value, so that all 1270 * CPU APIC IDs are < pcms->apic_id_limit. 1271 * 1272 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1273 */ 1274 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1275 possible_cpus = mc->possible_cpu_arch_ids(ms); 1276 for (i = 0; i < smp_cpus; i++) { 1277 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id, 1278 &error_fatal); 1279 } 1280 } 1281 1282 static void pc_build_feature_control_file(PCMachineState *pcms) 1283 { 1284 MachineState *ms = MACHINE(pcms); 1285 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1286 CPUX86State *env = &cpu->env; 1287 uint32_t unused, ecx, edx; 1288 uint64_t feature_control_bits = 0; 1289 uint64_t *val; 1290 1291 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1292 if (ecx & CPUID_EXT_VMX) { 1293 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1294 } 1295 1296 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1297 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1298 (env->mcg_cap & MCG_LMCE_P)) { 1299 feature_control_bits |= FEATURE_CONTROL_LMCE; 1300 } 1301 1302 if (!feature_control_bits) { 1303 return; 1304 } 1305 1306 val = g_malloc(sizeof(*val)); 1307 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1308 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1309 } 1310 1311 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1312 { 1313 if (cpus_count > 0xff) { 1314 /* If the number of CPUs can't be represented in 8 bits, the 1315 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1316 * to make old BIOSes fail more predictably. 1317 */ 1318 rtc_set_memory(rtc, 0x5f, 0); 1319 } else { 1320 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1321 } 1322 } 1323 1324 static 1325 void pc_machine_done(Notifier *notifier, void *data) 1326 { 1327 PCMachineState *pcms = container_of(notifier, 1328 PCMachineState, machine_done); 1329 PCIBus *bus = pcms->bus; 1330 1331 /* set the number of CPUs */ 1332 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1333 1334 if (bus) { 1335 int extra_hosts = 0; 1336 1337 QLIST_FOREACH(bus, &bus->child, sibling) { 1338 /* look for expander root buses */ 1339 if (pci_bus_is_root(bus)) { 1340 extra_hosts++; 1341 } 1342 } 1343 if (extra_hosts && pcms->fw_cfg) { 1344 uint64_t *val = g_malloc(sizeof(*val)); 1345 *val = cpu_to_le64(extra_hosts); 1346 fw_cfg_add_file(pcms->fw_cfg, 1347 "etc/extra-pci-roots", val, sizeof(*val)); 1348 } 1349 } 1350 1351 acpi_setup(); 1352 if (pcms->fw_cfg) { 1353 pc_build_smbios(pcms); 1354 pc_build_feature_control_file(pcms); 1355 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1356 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1357 } 1358 1359 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1360 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1361 1362 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) || 1363 iommu->intr_eim != ON_OFF_AUTO_ON) { 1364 error_report("current -smp configuration requires " 1365 "Extended Interrupt Mode enabled. " 1366 "You can add an IOMMU using: " 1367 "-device intel-iommu,intremap=on,eim=on"); 1368 exit(EXIT_FAILURE); 1369 } 1370 } 1371 } 1372 1373 void pc_guest_info_init(PCMachineState *pcms) 1374 { 1375 int i; 1376 1377 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1378 pcms->numa_nodes = nb_numa_nodes; 1379 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1380 sizeof *pcms->node_mem); 1381 for (i = 0; i < nb_numa_nodes; i++) { 1382 pcms->node_mem[i] = numa_info[i].node_mem; 1383 } 1384 1385 pcms->machine_done.notify = pc_machine_done; 1386 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1387 } 1388 1389 /* setup pci memory address space mapping into system address space */ 1390 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1391 MemoryRegion *pci_address_space) 1392 { 1393 /* Set to lower priority than RAM */ 1394 memory_region_add_subregion_overlap(system_memory, 0x0, 1395 pci_address_space, -1); 1396 } 1397 1398 void pc_acpi_init(const char *default_dsdt) 1399 { 1400 char *filename; 1401 1402 if (acpi_tables != NULL) { 1403 /* manually set via -acpitable, leave it alone */ 1404 return; 1405 } 1406 1407 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1408 if (filename == NULL) { 1409 warn_report("failed to find %s", default_dsdt); 1410 } else { 1411 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1412 &error_abort); 1413 Error *err = NULL; 1414 1415 qemu_opt_set(opts, "file", filename, &error_abort); 1416 1417 acpi_table_add_builtin(opts, &err); 1418 if (err) { 1419 warn_reportf_err(err, "failed to load %s: ", filename); 1420 } 1421 g_free(filename); 1422 } 1423 } 1424 1425 void xen_load_linux(PCMachineState *pcms) 1426 { 1427 int i; 1428 FWCfgState *fw_cfg; 1429 1430 assert(MACHINE(pcms)->kernel_filename != NULL); 1431 1432 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1433 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1434 rom_set_fw(fw_cfg); 1435 1436 load_linux(pcms, fw_cfg); 1437 for (i = 0; i < nb_option_roms; i++) { 1438 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1439 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1440 !strcmp(option_rom[i].name, "multiboot.bin")); 1441 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1442 } 1443 pcms->fw_cfg = fw_cfg; 1444 } 1445 1446 void pc_memory_init(PCMachineState *pcms, 1447 MemoryRegion *system_memory, 1448 MemoryRegion *rom_memory, 1449 MemoryRegion **ram_memory) 1450 { 1451 int linux_boot, i; 1452 MemoryRegion *ram, *option_rom_mr; 1453 MemoryRegion *ram_below_4g, *ram_above_4g; 1454 FWCfgState *fw_cfg; 1455 MachineState *machine = MACHINE(pcms); 1456 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1457 1458 assert(machine->ram_size == pcms->below_4g_mem_size + 1459 pcms->above_4g_mem_size); 1460 1461 linux_boot = (machine->kernel_filename != NULL); 1462 1463 /* Allocate RAM. We allocate it as a single memory region and use 1464 * aliases to address portions of it, mostly for backwards compatibility 1465 * with older qemus that used qemu_ram_alloc(). 1466 */ 1467 ram = g_malloc(sizeof(*ram)); 1468 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1469 machine->ram_size); 1470 *ram_memory = ram; 1471 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1472 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1473 0, pcms->below_4g_mem_size); 1474 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1475 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1476 if (pcms->above_4g_mem_size > 0) { 1477 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1478 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1479 pcms->below_4g_mem_size, 1480 pcms->above_4g_mem_size); 1481 memory_region_add_subregion(system_memory, 0x100000000ULL, 1482 ram_above_4g); 1483 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1484 } 1485 1486 if (!pcmc->has_reserved_memory && 1487 (machine->ram_slots || 1488 (machine->maxram_size > machine->ram_size))) { 1489 MachineClass *mc = MACHINE_GET_CLASS(machine); 1490 1491 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1492 mc->name); 1493 exit(EXIT_FAILURE); 1494 } 1495 1496 /* always allocate the device memory information */ 1497 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 1498 1499 /* initialize device memory address space */ 1500 if (pcmc->has_reserved_memory && 1501 (machine->ram_size < machine->maxram_size)) { 1502 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 1503 1504 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1505 error_report("unsupported amount of memory slots: %"PRIu64, 1506 machine->ram_slots); 1507 exit(EXIT_FAILURE); 1508 } 1509 1510 if (QEMU_ALIGN_UP(machine->maxram_size, 1511 TARGET_PAGE_SIZE) != machine->maxram_size) { 1512 error_report("maximum memory size must by aligned to multiple of " 1513 "%d bytes", TARGET_PAGE_SIZE); 1514 exit(EXIT_FAILURE); 1515 } 1516 1517 machine->device_memory->base = 1518 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB); 1519 1520 if (pcmc->enforce_aligned_dimm) { 1521 /* size device region assuming 1G page max alignment per slot */ 1522 device_mem_size += (1 * GiB) * machine->ram_slots; 1523 } 1524 1525 if ((machine->device_memory->base + device_mem_size) < 1526 device_mem_size) { 1527 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1528 machine->maxram_size); 1529 exit(EXIT_FAILURE); 1530 } 1531 1532 memory_region_init(&machine->device_memory->mr, OBJECT(pcms), 1533 "device-memory", device_mem_size); 1534 memory_region_add_subregion(system_memory, machine->device_memory->base, 1535 &machine->device_memory->mr); 1536 } 1537 1538 /* Initialize PC system firmware */ 1539 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1540 1541 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1542 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1543 &error_fatal); 1544 if (pcmc->pci_enabled) { 1545 memory_region_set_readonly(option_rom_mr, true); 1546 } 1547 memory_region_add_subregion_overlap(rom_memory, 1548 PC_ROM_MIN_VGA, 1549 option_rom_mr, 1550 1); 1551 1552 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1553 1554 rom_set_fw(fw_cfg); 1555 1556 if (pcmc->has_reserved_memory && machine->device_memory->base) { 1557 uint64_t *val = g_malloc(sizeof(*val)); 1558 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1559 uint64_t res_mem_end = machine->device_memory->base; 1560 1561 if (!pcmc->broken_reserved_end) { 1562 res_mem_end += memory_region_size(&machine->device_memory->mr); 1563 } 1564 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB)); 1565 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1566 } 1567 1568 if (linux_boot) { 1569 load_linux(pcms, fw_cfg); 1570 } 1571 1572 for (i = 0; i < nb_option_roms; i++) { 1573 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1574 } 1575 pcms->fw_cfg = fw_cfg; 1576 1577 /* Init default IOAPIC address space */ 1578 pcms->ioapic_as = &address_space_memory; 1579 } 1580 1581 /* 1582 * The 64bit pci hole starts after "above 4G RAM" and 1583 * potentially the space reserved for memory hotplug. 1584 */ 1585 uint64_t pc_pci_hole64_start(void) 1586 { 1587 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1588 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1589 MachineState *ms = MACHINE(pcms); 1590 uint64_t hole64_start = 0; 1591 1592 if (pcmc->has_reserved_memory && ms->device_memory->base) { 1593 hole64_start = ms->device_memory->base; 1594 if (!pcmc->broken_reserved_end) { 1595 hole64_start += memory_region_size(&ms->device_memory->mr); 1596 } 1597 } else { 1598 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1599 } 1600 1601 return ROUND_UP(hole64_start, 1 * GiB); 1602 } 1603 1604 qemu_irq pc_allocate_cpu_irq(void) 1605 { 1606 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1607 } 1608 1609 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1610 { 1611 DeviceState *dev = NULL; 1612 1613 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1614 if (pci_bus) { 1615 PCIDevice *pcidev = pci_vga_init(pci_bus); 1616 dev = pcidev ? &pcidev->qdev : NULL; 1617 } else if (isa_bus) { 1618 ISADevice *isadev = isa_vga_init(isa_bus); 1619 dev = isadev ? DEVICE(isadev) : NULL; 1620 } 1621 rom_reset_order_override(); 1622 return dev; 1623 } 1624 1625 static const MemoryRegionOps ioport80_io_ops = { 1626 .write = ioport80_write, 1627 .read = ioport80_read, 1628 .endianness = DEVICE_NATIVE_ENDIAN, 1629 .impl = { 1630 .min_access_size = 1, 1631 .max_access_size = 1, 1632 }, 1633 }; 1634 1635 static const MemoryRegionOps ioportF0_io_ops = { 1636 .write = ioportF0_write, 1637 .read = ioportF0_read, 1638 .endianness = DEVICE_NATIVE_ENDIAN, 1639 .impl = { 1640 .min_access_size = 1, 1641 .max_access_size = 1, 1642 }, 1643 }; 1644 1645 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport) 1646 { 1647 int i; 1648 DriveInfo *fd[MAX_FD]; 1649 qemu_irq *a20_line; 1650 ISADevice *i8042, *port92, *vmmouse; 1651 1652 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS); 1653 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1654 1655 for (i = 0; i < MAX_FD; i++) { 1656 fd[i] = drive_get(IF_FLOPPY, 0, i); 1657 create_fdctrl |= !!fd[i]; 1658 } 1659 if (create_fdctrl) { 1660 fdctrl_init_isa(isa_bus, fd); 1661 } 1662 1663 i8042 = isa_create_simple(isa_bus, "i8042"); 1664 if (!no_vmport) { 1665 vmport_init(isa_bus); 1666 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1667 } else { 1668 vmmouse = NULL; 1669 } 1670 if (vmmouse) { 1671 DeviceState *dev = DEVICE(vmmouse); 1672 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1673 qdev_init_nofail(dev); 1674 } 1675 port92 = isa_create_simple(isa_bus, "port92"); 1676 1677 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1678 i8042_setup_a20_line(i8042, a20_line[0]); 1679 port92_init(port92, a20_line[1]); 1680 g_free(a20_line); 1681 } 1682 1683 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1684 ISADevice **rtc_state, 1685 bool create_fdctrl, 1686 bool no_vmport, 1687 bool has_pit, 1688 uint32_t hpet_irqs) 1689 { 1690 int i; 1691 DeviceState *hpet = NULL; 1692 int pit_isa_irq = 0; 1693 qemu_irq pit_alt_irq = NULL; 1694 qemu_irq rtc_irq = NULL; 1695 ISADevice *pit = NULL; 1696 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1697 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1698 1699 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1700 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1701 1702 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1703 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1704 1705 /* 1706 * Check if an HPET shall be created. 1707 * 1708 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1709 * when the HPET wants to take over. Thus we have to disable the latter. 1710 */ 1711 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1712 /* In order to set property, here not using sysbus_try_create_simple */ 1713 hpet = qdev_try_create(NULL, TYPE_HPET); 1714 if (hpet) { 1715 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1716 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1717 * IRQ8 and IRQ2. 1718 */ 1719 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1720 HPET_INTCAP, NULL); 1721 if (!compat) { 1722 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1723 } 1724 qdev_init_nofail(hpet); 1725 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1726 1727 for (i = 0; i < GSI_NUM_PINS; i++) { 1728 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1729 } 1730 pit_isa_irq = -1; 1731 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1732 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1733 } 1734 } 1735 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 1736 1737 qemu_register_boot_set(pc_boot_set, *rtc_state); 1738 1739 if (!xen_enabled() && has_pit) { 1740 if (kvm_pit_in_kernel()) { 1741 pit = kvm_pit_init(isa_bus, 0x40); 1742 } else { 1743 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1744 } 1745 if (hpet) { 1746 /* connect PIT to output control line of the HPET */ 1747 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1748 } 1749 pcspk_init(isa_bus, pit); 1750 } 1751 1752 i8257_dma_init(isa_bus, 0); 1753 1754 /* Super I/O */ 1755 pc_superio_init(isa_bus, create_fdctrl, no_vmport); 1756 } 1757 1758 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus) 1759 { 1760 int i; 1761 1762 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1763 for (i = 0; i < nb_nics; i++) { 1764 NICInfo *nd = &nd_table[i]; 1765 const char *model = nd->model ? nd->model : pcmc->default_nic_model; 1766 1767 if (g_str_equal(model, "ne2k_isa")) { 1768 pc_init_ne2k_isa(isa_bus, nd); 1769 } else { 1770 pci_nic_init_nofail(nd, pci_bus, model, NULL); 1771 } 1772 } 1773 rom_reset_order_override(); 1774 } 1775 1776 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1777 { 1778 DeviceState *dev; 1779 SysBusDevice *d; 1780 unsigned int i; 1781 1782 if (kvm_ioapic_in_kernel()) { 1783 dev = qdev_create(NULL, "kvm-ioapic"); 1784 } else { 1785 dev = qdev_create(NULL, "ioapic"); 1786 } 1787 if (parent_name) { 1788 object_property_add_child(object_resolve_path(parent_name, NULL), 1789 "ioapic", OBJECT(dev), NULL); 1790 } 1791 qdev_init_nofail(dev); 1792 d = SYS_BUS_DEVICE(dev); 1793 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1794 1795 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1796 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1797 } 1798 } 1799 1800 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 1801 Error **errp) 1802 { 1803 const PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1804 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1805 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1806 const uint64_t legacy_align = TARGET_PAGE_SIZE; 1807 1808 /* 1809 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1810 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1811 * addition to cover this case. 1812 */ 1813 if (!pcms->acpi_dev || !acpi_enabled) { 1814 error_setg(errp, 1815 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1816 return; 1817 } 1818 1819 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) { 1820 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1821 return; 1822 } 1823 1824 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), 1825 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp); 1826 } 1827 1828 static void pc_memory_plug(HotplugHandler *hotplug_dev, 1829 DeviceState *dev, Error **errp) 1830 { 1831 HotplugHandlerClass *hhc; 1832 Error *local_err = NULL; 1833 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1834 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1835 1836 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err); 1837 if (local_err) { 1838 goto out; 1839 } 1840 1841 if (is_nvdimm) { 1842 nvdimm_plug(&pcms->acpi_nvdimm_state); 1843 } 1844 1845 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1846 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1847 out: 1848 error_propagate(errp, local_err); 1849 } 1850 1851 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev, 1852 DeviceState *dev, Error **errp) 1853 { 1854 HotplugHandlerClass *hhc; 1855 Error *local_err = NULL; 1856 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1857 1858 /* 1859 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1860 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1861 * addition to cover this case. 1862 */ 1863 if (!pcms->acpi_dev || !acpi_enabled) { 1864 error_setg(&local_err, 1865 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1866 goto out; 1867 } 1868 1869 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1870 error_setg(&local_err, 1871 "nvdimm device hot unplug is not supported yet."); 1872 goto out; 1873 } 1874 1875 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1876 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1877 1878 out: 1879 error_propagate(errp, local_err); 1880 } 1881 1882 static void pc_memory_unplug(HotplugHandler *hotplug_dev, 1883 DeviceState *dev, Error **errp) 1884 { 1885 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1886 HotplugHandlerClass *hhc; 1887 Error *local_err = NULL; 1888 1889 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1890 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1891 1892 if (local_err) { 1893 goto out; 1894 } 1895 1896 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms)); 1897 object_unparent(OBJECT(dev)); 1898 1899 out: 1900 error_propagate(errp, local_err); 1901 } 1902 1903 static int pc_apic_cmp(const void *a, const void *b) 1904 { 1905 CPUArchId *apic_a = (CPUArchId *)a; 1906 CPUArchId *apic_b = (CPUArchId *)b; 1907 1908 return apic_a->arch_id - apic_b->arch_id; 1909 } 1910 1911 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1912 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1913 * entry corresponding to CPU's apic_id returns NULL. 1914 */ 1915 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1916 { 1917 CPUArchId apic_id, *found_cpu; 1918 1919 apic_id.arch_id = id; 1920 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1921 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1922 pc_apic_cmp); 1923 if (found_cpu && idx) { 1924 *idx = found_cpu - ms->possible_cpus->cpus; 1925 } 1926 return found_cpu; 1927 } 1928 1929 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1930 DeviceState *dev, Error **errp) 1931 { 1932 CPUArchId *found_cpu; 1933 HotplugHandlerClass *hhc; 1934 Error *local_err = NULL; 1935 X86CPU *cpu = X86_CPU(dev); 1936 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1937 1938 if (pcms->acpi_dev) { 1939 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1940 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1941 if (local_err) { 1942 goto out; 1943 } 1944 } 1945 1946 /* increment the number of CPUs */ 1947 pcms->boot_cpus++; 1948 if (pcms->rtc) { 1949 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1950 } 1951 if (pcms->fw_cfg) { 1952 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1953 } 1954 1955 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1956 found_cpu->cpu = OBJECT(dev); 1957 out: 1958 error_propagate(errp, local_err); 1959 } 1960 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1961 DeviceState *dev, Error **errp) 1962 { 1963 int idx = -1; 1964 HotplugHandlerClass *hhc; 1965 Error *local_err = NULL; 1966 X86CPU *cpu = X86_CPU(dev); 1967 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1968 1969 if (!pcms->acpi_dev) { 1970 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 1971 goto out; 1972 } 1973 1974 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1975 assert(idx != -1); 1976 if (idx == 0) { 1977 error_setg(&local_err, "Boot CPU is unpluggable"); 1978 goto out; 1979 } 1980 1981 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1982 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1983 1984 if (local_err) { 1985 goto out; 1986 } 1987 1988 out: 1989 error_propagate(errp, local_err); 1990 1991 } 1992 1993 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1994 DeviceState *dev, Error **errp) 1995 { 1996 CPUArchId *found_cpu; 1997 HotplugHandlerClass *hhc; 1998 Error *local_err = NULL; 1999 X86CPU *cpu = X86_CPU(dev); 2000 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2001 2002 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 2003 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 2004 2005 if (local_err) { 2006 goto out; 2007 } 2008 2009 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 2010 found_cpu->cpu = NULL; 2011 object_unparent(OBJECT(dev)); 2012 2013 /* decrement the number of CPUs */ 2014 pcms->boot_cpus--; 2015 /* Update the number of CPUs in CMOS */ 2016 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 2017 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 2018 out: 2019 error_propagate(errp, local_err); 2020 } 2021 2022 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 2023 DeviceState *dev, Error **errp) 2024 { 2025 int idx; 2026 CPUState *cs; 2027 CPUArchId *cpu_slot; 2028 X86CPUTopoInfo topo; 2029 X86CPU *cpu = X86_CPU(dev); 2030 MachineState *ms = MACHINE(hotplug_dev); 2031 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2032 2033 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 2034 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 2035 ms->cpu_type); 2036 return; 2037 } 2038 2039 /* if APIC ID is not set, set it based on socket/core/thread properties */ 2040 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 2041 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 2042 2043 if (cpu->socket_id < 0) { 2044 error_setg(errp, "CPU socket-id is not set"); 2045 return; 2046 } else if (cpu->socket_id > max_socket) { 2047 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 2048 cpu->socket_id, max_socket); 2049 return; 2050 } 2051 if (cpu->core_id < 0) { 2052 error_setg(errp, "CPU core-id is not set"); 2053 return; 2054 } else if (cpu->core_id > (smp_cores - 1)) { 2055 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 2056 cpu->core_id, smp_cores - 1); 2057 return; 2058 } 2059 if (cpu->thread_id < 0) { 2060 error_setg(errp, "CPU thread-id is not set"); 2061 return; 2062 } else if (cpu->thread_id > (smp_threads - 1)) { 2063 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 2064 cpu->thread_id, smp_threads - 1); 2065 return; 2066 } 2067 2068 topo.pkg_id = cpu->socket_id; 2069 topo.core_id = cpu->core_id; 2070 topo.smt_id = cpu->thread_id; 2071 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 2072 } 2073 2074 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 2075 if (!cpu_slot) { 2076 MachineState *ms = MACHINE(pcms); 2077 2078 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 2079 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 2080 " APIC ID %" PRIu32 ", valid index range 0:%d", 2081 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 2082 ms->possible_cpus->len - 1); 2083 return; 2084 } 2085 2086 if (cpu_slot->cpu) { 2087 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 2088 idx, cpu->apic_id); 2089 return; 2090 } 2091 2092 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 2093 * so that machine_query_hotpluggable_cpus would show correct values 2094 */ 2095 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 2096 * once -smp refactoring is complete and there will be CPU private 2097 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 2098 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 2099 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 2100 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 2101 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 2102 return; 2103 } 2104 cpu->socket_id = topo.pkg_id; 2105 2106 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 2107 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 2108 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 2109 return; 2110 } 2111 cpu->core_id = topo.core_id; 2112 2113 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 2114 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 2115 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 2116 return; 2117 } 2118 cpu->thread_id = topo.smt_id; 2119 2120 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) { 2121 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 2122 return; 2123 } 2124 2125 cs = CPU(cpu); 2126 cs->cpu_index = idx; 2127 2128 numa_cpu_pre_plug(cpu_slot, dev, errp); 2129 } 2130 2131 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2132 DeviceState *dev, Error **errp) 2133 { 2134 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2135 pc_memory_pre_plug(hotplug_dev, dev, errp); 2136 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2137 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2138 } 2139 } 2140 2141 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2142 DeviceState *dev, Error **errp) 2143 { 2144 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2145 pc_memory_plug(hotplug_dev, dev, errp); 2146 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2147 pc_cpu_plug(hotplug_dev, dev, errp); 2148 } 2149 } 2150 2151 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2152 DeviceState *dev, Error **errp) 2153 { 2154 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2155 pc_memory_unplug_request(hotplug_dev, dev, errp); 2156 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2157 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2158 } else { 2159 error_setg(errp, "acpi: device unplug request for not supported device" 2160 " type: %s", object_get_typename(OBJECT(dev))); 2161 } 2162 } 2163 2164 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2165 DeviceState *dev, Error **errp) 2166 { 2167 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2168 pc_memory_unplug(hotplug_dev, dev, errp); 2169 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2170 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2171 } else { 2172 error_setg(errp, "acpi: device unplug for not supported device" 2173 " type: %s", object_get_typename(OBJECT(dev))); 2174 } 2175 } 2176 2177 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2178 DeviceState *dev) 2179 { 2180 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2181 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2182 return HOTPLUG_HANDLER(machine); 2183 } 2184 2185 return NULL; 2186 } 2187 2188 static void 2189 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v, 2190 const char *name, void *opaque, 2191 Error **errp) 2192 { 2193 MachineState *ms = MACHINE(obj); 2194 int64_t value = memory_region_size(&ms->device_memory->mr); 2195 2196 visit_type_int(v, name, &value, errp); 2197 } 2198 2199 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2200 const char *name, void *opaque, 2201 Error **errp) 2202 { 2203 PCMachineState *pcms = PC_MACHINE(obj); 2204 uint64_t value = pcms->max_ram_below_4g; 2205 2206 visit_type_size(v, name, &value, errp); 2207 } 2208 2209 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2210 const char *name, void *opaque, 2211 Error **errp) 2212 { 2213 PCMachineState *pcms = PC_MACHINE(obj); 2214 Error *error = NULL; 2215 uint64_t value; 2216 2217 visit_type_size(v, name, &value, &error); 2218 if (error) { 2219 error_propagate(errp, error); 2220 return; 2221 } 2222 if (value > 4 * GiB) { 2223 error_setg(&error, 2224 "Machine option 'max-ram-below-4g=%"PRIu64 2225 "' expects size less than or equal to 4G", value); 2226 error_propagate(errp, error); 2227 return; 2228 } 2229 2230 if (value < 1 * MiB) { 2231 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2232 "BIOS may not work with less than 1MiB", value); 2233 } 2234 2235 pcms->max_ram_below_4g = value; 2236 } 2237 2238 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2239 void *opaque, Error **errp) 2240 { 2241 PCMachineState *pcms = PC_MACHINE(obj); 2242 OnOffAuto vmport = pcms->vmport; 2243 2244 visit_type_OnOffAuto(v, name, &vmport, errp); 2245 } 2246 2247 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2248 void *opaque, Error **errp) 2249 { 2250 PCMachineState *pcms = PC_MACHINE(obj); 2251 2252 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2253 } 2254 2255 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2256 { 2257 bool smm_available = false; 2258 2259 if (pcms->smm == ON_OFF_AUTO_OFF) { 2260 return false; 2261 } 2262 2263 if (tcg_enabled() || qtest_enabled()) { 2264 smm_available = true; 2265 } else if (kvm_enabled()) { 2266 smm_available = kvm_has_smm(); 2267 } 2268 2269 if (smm_available) { 2270 return true; 2271 } 2272 2273 if (pcms->smm == ON_OFF_AUTO_ON) { 2274 error_report("System Management Mode not supported by this hypervisor."); 2275 exit(1); 2276 } 2277 return false; 2278 } 2279 2280 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2281 void *opaque, Error **errp) 2282 { 2283 PCMachineState *pcms = PC_MACHINE(obj); 2284 OnOffAuto smm = pcms->smm; 2285 2286 visit_type_OnOffAuto(v, name, &smm, errp); 2287 } 2288 2289 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2290 void *opaque, Error **errp) 2291 { 2292 PCMachineState *pcms = PC_MACHINE(obj); 2293 2294 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2295 } 2296 2297 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2298 { 2299 PCMachineState *pcms = PC_MACHINE(obj); 2300 2301 return pcms->acpi_nvdimm_state.is_enabled; 2302 } 2303 2304 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2305 { 2306 PCMachineState *pcms = PC_MACHINE(obj); 2307 2308 pcms->acpi_nvdimm_state.is_enabled = value; 2309 } 2310 2311 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp) 2312 { 2313 PCMachineState *pcms = PC_MACHINE(obj); 2314 2315 return g_strdup(pcms->acpi_nvdimm_state.persistence_string); 2316 } 2317 2318 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value, 2319 Error **errp) 2320 { 2321 PCMachineState *pcms = PC_MACHINE(obj); 2322 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state; 2323 2324 if (strcmp(value, "cpu") == 0) 2325 nvdimm_state->persistence = 3; 2326 else if (strcmp(value, "mem-ctrl") == 0) 2327 nvdimm_state->persistence = 2; 2328 else { 2329 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option", 2330 value); 2331 return; 2332 } 2333 2334 g_free(nvdimm_state->persistence_string); 2335 nvdimm_state->persistence_string = g_strdup(value); 2336 } 2337 2338 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2339 { 2340 PCMachineState *pcms = PC_MACHINE(obj); 2341 2342 return pcms->smbus_enabled; 2343 } 2344 2345 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2346 { 2347 PCMachineState *pcms = PC_MACHINE(obj); 2348 2349 pcms->smbus_enabled = value; 2350 } 2351 2352 static bool pc_machine_get_sata(Object *obj, Error **errp) 2353 { 2354 PCMachineState *pcms = PC_MACHINE(obj); 2355 2356 return pcms->sata_enabled; 2357 } 2358 2359 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2360 { 2361 PCMachineState *pcms = PC_MACHINE(obj); 2362 2363 pcms->sata_enabled = value; 2364 } 2365 2366 static bool pc_machine_get_pit(Object *obj, Error **errp) 2367 { 2368 PCMachineState *pcms = PC_MACHINE(obj); 2369 2370 return pcms->pit_enabled; 2371 } 2372 2373 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2374 { 2375 PCMachineState *pcms = PC_MACHINE(obj); 2376 2377 pcms->pit_enabled = value; 2378 } 2379 2380 static void pc_machine_initfn(Object *obj) 2381 { 2382 PCMachineState *pcms = PC_MACHINE(obj); 2383 2384 pcms->max_ram_below_4g = 0; /* use default */ 2385 pcms->smm = ON_OFF_AUTO_AUTO; 2386 pcms->vmport = ON_OFF_AUTO_AUTO; 2387 /* nvdimm is disabled on default. */ 2388 pcms->acpi_nvdimm_state.is_enabled = false; 2389 /* acpi build is enabled by default if machine supports it */ 2390 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2391 pcms->smbus_enabled = true; 2392 pcms->sata_enabled = true; 2393 pcms->pit_enabled = true; 2394 } 2395 2396 static void pc_machine_reset(void) 2397 { 2398 CPUState *cs; 2399 X86CPU *cpu; 2400 2401 qemu_devices_reset(); 2402 2403 /* Reset APIC after devices have been reset to cancel 2404 * any changes that qemu_devices_reset() might have done. 2405 */ 2406 CPU_FOREACH(cs) { 2407 cpu = X86_CPU(cs); 2408 2409 if (cpu->apic_state) { 2410 device_reset(cpu->apic_state); 2411 } 2412 } 2413 } 2414 2415 static CpuInstanceProperties 2416 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2417 { 2418 MachineClass *mc = MACHINE_GET_CLASS(ms); 2419 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2420 2421 assert(cpu_index < possible_cpus->len); 2422 return possible_cpus->cpus[cpu_index].props; 2423 } 2424 2425 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2426 { 2427 X86CPUTopoInfo topo; 2428 2429 assert(idx < ms->possible_cpus->len); 2430 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2431 smp_cores, smp_threads, &topo); 2432 return topo.pkg_id % nb_numa_nodes; 2433 } 2434 2435 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2436 { 2437 int i; 2438 2439 if (ms->possible_cpus) { 2440 /* 2441 * make sure that max_cpus hasn't changed since the first use, i.e. 2442 * -smp hasn't been parsed after it 2443 */ 2444 assert(ms->possible_cpus->len == max_cpus); 2445 return ms->possible_cpus; 2446 } 2447 2448 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2449 sizeof(CPUArchId) * max_cpus); 2450 ms->possible_cpus->len = max_cpus; 2451 for (i = 0; i < ms->possible_cpus->len; i++) { 2452 X86CPUTopoInfo topo; 2453 2454 ms->possible_cpus->cpus[i].type = ms->cpu_type; 2455 ms->possible_cpus->cpus[i].vcpus_count = 1; 2456 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2457 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2458 smp_cores, smp_threads, &topo); 2459 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2460 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2461 ms->possible_cpus->cpus[i].props.has_core_id = true; 2462 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2463 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2464 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2465 } 2466 return ms->possible_cpus; 2467 } 2468 2469 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2470 { 2471 /* cpu index isn't used */ 2472 CPUState *cs; 2473 2474 CPU_FOREACH(cs) { 2475 X86CPU *cpu = X86_CPU(cs); 2476 2477 if (!cpu->apic_state) { 2478 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2479 } else { 2480 apic_deliver_nmi(cpu->apic_state); 2481 } 2482 } 2483 } 2484 2485 static void pc_machine_class_init(ObjectClass *oc, void *data) 2486 { 2487 MachineClass *mc = MACHINE_CLASS(oc); 2488 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2489 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2490 NMIClass *nc = NMI_CLASS(oc); 2491 2492 pcmc->pci_enabled = true; 2493 pcmc->has_acpi_build = true; 2494 pcmc->rsdp_in_ram = true; 2495 pcmc->smbios_defaults = true; 2496 pcmc->smbios_uuid_encoded = true; 2497 pcmc->gigabyte_align = true; 2498 pcmc->has_reserved_memory = true; 2499 pcmc->kvmclock_enabled = true; 2500 pcmc->enforce_aligned_dimm = true; 2501 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2502 * to be used at the moment, 32K should be enough for a while. */ 2503 pcmc->acpi_data_size = 0x20000 + 0x8000; 2504 pcmc->save_tsc_khz = true; 2505 pcmc->linuxboot_dma_enabled = true; 2506 assert(!mc->get_hotplug_handler); 2507 mc->get_hotplug_handler = pc_get_hotpug_handler; 2508 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2509 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2510 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2511 mc->auto_enable_numa_with_memhp = true; 2512 mc->has_hotpluggable_cpus = true; 2513 mc->default_boot_order = "cad"; 2514 mc->hot_add_cpu = pc_hot_add_cpu; 2515 mc->block_default_type = IF_IDE; 2516 mc->max_cpus = 255; 2517 mc->reset = pc_machine_reset; 2518 hc->pre_plug = pc_machine_device_pre_plug_cb; 2519 hc->plug = pc_machine_device_plug_cb; 2520 hc->unplug_request = pc_machine_device_unplug_request_cb; 2521 hc->unplug = pc_machine_device_unplug_cb; 2522 nc->nmi_monitor_handler = x86_nmi; 2523 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2524 2525 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int", 2526 pc_machine_get_device_memory_region_size, NULL, 2527 NULL, NULL, &error_abort); 2528 2529 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2530 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2531 NULL, NULL, &error_abort); 2532 2533 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2534 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2535 2536 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2537 pc_machine_get_smm, pc_machine_set_smm, 2538 NULL, NULL, &error_abort); 2539 object_class_property_set_description(oc, PC_MACHINE_SMM, 2540 "Enable SMM (pc & q35)", &error_abort); 2541 2542 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2543 pc_machine_get_vmport, pc_machine_set_vmport, 2544 NULL, NULL, &error_abort); 2545 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2546 "Enable vmport (pc & q35)", &error_abort); 2547 2548 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2549 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2550 2551 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST, 2552 pc_machine_get_nvdimm_persistence, 2553 pc_machine_set_nvdimm_persistence, &error_abort); 2554 2555 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2556 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2557 2558 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2559 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2560 2561 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2562 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2563 } 2564 2565 static const TypeInfo pc_machine_info = { 2566 .name = TYPE_PC_MACHINE, 2567 .parent = TYPE_MACHINE, 2568 .abstract = true, 2569 .instance_size = sizeof(PCMachineState), 2570 .instance_init = pc_machine_initfn, 2571 .class_size = sizeof(PCMachineClass), 2572 .class_init = pc_machine_class_init, 2573 .interfaces = (InterfaceInfo[]) { 2574 { TYPE_HOTPLUG_HANDLER }, 2575 { TYPE_NMI }, 2576 { } 2577 }, 2578 }; 2579 2580 static void pc_machine_register_types(void) 2581 { 2582 type_register_static(&pc_machine_info); 2583 } 2584 2585 type_init(pc_machine_register_types) 2586