xref: /openbmc/qemu/hw/i386/pc.c (revision e7bbc9b1)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "hw/xen/start_info.h"
58 #include "ui/qemu-spice.h"
59 #include "exec/memory.h"
60 #include "exec/address-spaces.h"
61 #include "sysemu/arch_init.h"
62 #include "qemu/bitmap.h"
63 #include "qemu/config-file.h"
64 #include "qemu/error-report.h"
65 #include "qemu/option.h"
66 #include "hw/acpi/acpi.h"
67 #include "hw/acpi/cpu_hotplug.h"
68 #include "hw/boards.h"
69 #include "acpi-build.h"
70 #include "hw/mem/pc-dimm.h"
71 #include "qapi/error.h"
72 #include "qapi/qapi-visit-common.h"
73 #include "qapi/visitor.h"
74 #include "qom/cpu.h"
75 #include "hw/nmi.h"
76 #include "hw/usb.h"
77 #include "hw/i386/intel_iommu.h"
78 #include "hw/net/ne2000-isa.h"
79 #include "standard-headers/asm-x86/bootparam.h"
80 
81 /* debug PC/ISA interrupts */
82 //#define DEBUG_IRQ
83 
84 #ifdef DEBUG_IRQ
85 #define DPRINTF(fmt, ...)                                       \
86     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
87 #else
88 #define DPRINTF(fmt, ...)
89 #endif
90 
91 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
92 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
93 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
94 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
95 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
96 
97 #define E820_NR_ENTRIES		16
98 
99 struct e820_entry {
100     uint64_t address;
101     uint64_t length;
102     uint32_t type;
103 } QEMU_PACKED __attribute((__aligned__(4)));
104 
105 struct e820_table {
106     uint32_t count;
107     struct e820_entry entry[E820_NR_ENTRIES];
108 } QEMU_PACKED __attribute((__aligned__(4)));
109 
110 static struct e820_table e820_reserve;
111 static struct e820_entry *e820_table;
112 static unsigned e820_entries;
113 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
114 
115 /* Physical Address of PVH entry point read from kernel ELF NOTE */
116 static size_t pvh_start_addr;
117 
118 GlobalProperty pc_compat_3_1[] = {
119     { "intel-iommu", "dma-drain", "off" },
120     { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
121     { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
122     { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
123     { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
124     { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
125     { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
126     { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
127     { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
128     { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
129     { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
130     { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
131     { "Skylake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
132     { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
133     { "Skylake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
134     { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
135     { "Cascadelake-Server" "-" TYPE_X86_CPU,  "mpx", "on" },
136     { "Icelake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
137     { "Icelake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
138     { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
139 };
140 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
141 
142 GlobalProperty pc_compat_3_0[] = {
143     { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
144     { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
145     { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
146 };
147 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
148 
149 GlobalProperty pc_compat_2_12[] = {
150     { TYPE_X86_CPU, "legacy-cache", "on" },
151     { TYPE_X86_CPU, "topoext", "off" },
152     { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
153     { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
154 };
155 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
156 
157 GlobalProperty pc_compat_2_11[] = {
158     { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
159     { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
160 };
161 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
162 
163 GlobalProperty pc_compat_2_10[] = {
164     { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
165     { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
166     { "q35-pcihost", "x-pci-hole64-fix", "off" },
167 };
168 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
169 
170 GlobalProperty pc_compat_2_9[] = {
171     { "mch", "extended-tseg-mbytes", "0" },
172 };
173 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
174 
175 GlobalProperty pc_compat_2_8[] = {
176     { TYPE_X86_CPU, "tcg-cpuid", "off" },
177     { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
178     { "ICH9-LPC", "x-smi-broadcast", "off" },
179     { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
180     { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
181 };
182 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
183 
184 GlobalProperty pc_compat_2_7[] = {
185     { TYPE_X86_CPU, "l3-cache", "off" },
186     { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
187     { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
188     { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
189     { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
190     { "isa-pcspk", "migrate", "off" },
191 };
192 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
193 
194 GlobalProperty pc_compat_2_6[] = {
195     { TYPE_X86_CPU, "cpuid-0xb", "off" },
196     { "vmxnet3", "romfile", "" },
197     { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
198     { "apic-common", "legacy-instance-id", "on", }
199 };
200 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
201 
202 GlobalProperty pc_compat_2_5[] = {};
203 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
204 
205 GlobalProperty pc_compat_2_4[] = {
206     PC_CPU_MODEL_IDS("2.4.0")
207     { "Haswell-" TYPE_X86_CPU, "abm", "off" },
208     { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
209     { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
210     { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
211     { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
212     { TYPE_X86_CPU, "check", "off" },
213     { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
214     { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
215     { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
216     { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
217     { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
218     { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
219     { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
220     { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
221 };
222 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
223 
224 GlobalProperty pc_compat_2_3[] = {
225     PC_CPU_MODEL_IDS("2.3.0")
226     { TYPE_X86_CPU, "arat", "off" },
227     { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
228     { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
229     { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
230     { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
231     { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
232     { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
233     { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
234     { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
235     { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
236     { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
237     { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
238     { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
239     { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
240     { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
241     { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
242     { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
243     { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
244     { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
245     { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
246 };
247 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
248 
249 GlobalProperty pc_compat_2_2[] = {
250     PC_CPU_MODEL_IDS("2.2.0")
251     { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
252     { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
253     { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
254     { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
255     { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
256     { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
257     { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
258     { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
259     { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
260     { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
261     { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
262     { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
263     { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
264     { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
265     { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
266     { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
267     { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
268     { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
269 };
270 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
271 
272 GlobalProperty pc_compat_2_1[] = {
273     PC_CPU_MODEL_IDS("2.1.0")
274     { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
275     { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
276 };
277 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
278 
279 GlobalProperty pc_compat_2_0[] = {
280     PC_CPU_MODEL_IDS("2.0.0")
281     { "virtio-scsi-pci", "any_layout", "off" },
282     { "PIIX4_PM", "memory-hotplug-support", "off" },
283     { "apic", "version", "0x11" },
284     { "nec-usb-xhci", "superspeed-ports-first", "off" },
285     { "nec-usb-xhci", "force-pcie-endcap", "on" },
286     { "pci-serial", "prog_if", "0" },
287     { "pci-serial-2x", "prog_if", "0" },
288     { "pci-serial-4x", "prog_if", "0" },
289     { "virtio-net-pci", "guest_announce", "off" },
290     { "ICH9-LPC", "memory-hotplug-support", "off" },
291     { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
292     { "ioh3420", COMPAT_PROP_PCP, "off" },
293 };
294 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
295 
296 GlobalProperty pc_compat_1_7[] = {
297     PC_CPU_MODEL_IDS("1.7.0")
298     { TYPE_USB_DEVICE, "msos-desc", "no" },
299     { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
300     { "hpet", HPET_INTCAP, "4" },
301 };
302 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
303 
304 GlobalProperty pc_compat_1_6[] = {
305     PC_CPU_MODEL_IDS("1.6.0")
306     { "e1000", "mitigation", "off" },
307     { "qemu64-" TYPE_X86_CPU, "model", "2" },
308     { "qemu32-" TYPE_X86_CPU, "model", "3" },
309     { "i440FX-pcihost", "short_root_bus", "1" },
310     { "q35-pcihost", "short_root_bus", "1" },
311 };
312 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
313 
314 GlobalProperty pc_compat_1_5[] = {
315     PC_CPU_MODEL_IDS("1.5.0")
316     { "Conroe-" TYPE_X86_CPU, "model", "2" },
317     { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
318     { "Penryn-" TYPE_X86_CPU, "model", "2" },
319     { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
320     { "Nehalem-" TYPE_X86_CPU, "model", "2" },
321     { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
322     { "virtio-net-pci", "any_layout", "off" },
323     { TYPE_X86_CPU, "pmu", "on" },
324     { "i440FX-pcihost", "short_root_bus", "0" },
325     { "q35-pcihost", "short_root_bus", "0" },
326 };
327 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
328 
329 GlobalProperty pc_compat_1_4[] = {
330     PC_CPU_MODEL_IDS("1.4.0")
331     { "scsi-hd", "discard_granularity", "0" },
332     { "scsi-cd", "discard_granularity", "0" },
333     { "scsi-disk", "discard_granularity", "0" },
334     { "ide-hd", "discard_granularity", "0" },
335     { "ide-cd", "discard_granularity", "0" },
336     { "ide-drive", "discard_granularity", "0" },
337     { "virtio-blk-pci", "discard_granularity", "0" },
338     /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
339     { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
340     { "virtio-net-pci", "ctrl_guest_offloads", "off" },
341     { "e1000", "romfile", "pxe-e1000.rom" },
342     { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
343     { "pcnet", "romfile", "pxe-pcnet.rom" },
344     { "rtl8139", "romfile", "pxe-rtl8139.rom" },
345     { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
346     { "486-" TYPE_X86_CPU, "model", "0" },
347     { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
348     { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
349 };
350 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
351 
352 void gsi_handler(void *opaque, int n, int level)
353 {
354     GSIState *s = opaque;
355 
356     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
357     if (n < ISA_NUM_IRQS) {
358         qemu_set_irq(s->i8259_irq[n], level);
359     }
360     qemu_set_irq(s->ioapic_irq[n], level);
361 }
362 
363 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
364                            unsigned size)
365 {
366 }
367 
368 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
369 {
370     return 0xffffffffffffffffULL;
371 }
372 
373 /* MSDOS compatibility mode FPU exception support */
374 static qemu_irq ferr_irq;
375 
376 void pc_register_ferr_irq(qemu_irq irq)
377 {
378     ferr_irq = irq;
379 }
380 
381 /* XXX: add IGNNE support */
382 void cpu_set_ferr(CPUX86State *s)
383 {
384     qemu_irq_raise(ferr_irq);
385 }
386 
387 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
388                            unsigned size)
389 {
390     qemu_irq_lower(ferr_irq);
391 }
392 
393 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
394 {
395     return 0xffffffffffffffffULL;
396 }
397 
398 /* TSC handling */
399 uint64_t cpu_get_tsc(CPUX86State *env)
400 {
401     return cpu_get_ticks();
402 }
403 
404 /* IRQ handling */
405 int cpu_get_pic_interrupt(CPUX86State *env)
406 {
407     X86CPU *cpu = x86_env_get_cpu(env);
408     int intno;
409 
410     if (!kvm_irqchip_in_kernel()) {
411         intno = apic_get_interrupt(cpu->apic_state);
412         if (intno >= 0) {
413             return intno;
414         }
415         /* read the irq from the PIC */
416         if (!apic_accept_pic_intr(cpu->apic_state)) {
417             return -1;
418         }
419     }
420 
421     intno = pic_read_irq(isa_pic);
422     return intno;
423 }
424 
425 static void pic_irq_request(void *opaque, int irq, int level)
426 {
427     CPUState *cs = first_cpu;
428     X86CPU *cpu = X86_CPU(cs);
429 
430     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
431     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
432         CPU_FOREACH(cs) {
433             cpu = X86_CPU(cs);
434             if (apic_accept_pic_intr(cpu->apic_state)) {
435                 apic_deliver_pic_intr(cpu->apic_state, level);
436             }
437         }
438     } else {
439         if (level) {
440             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
441         } else {
442             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
443         }
444     }
445 }
446 
447 /* PC cmos mappings */
448 
449 #define REG_EQUIPMENT_BYTE          0x14
450 
451 int cmos_get_fd_drive_type(FloppyDriveType fd0)
452 {
453     int val;
454 
455     switch (fd0) {
456     case FLOPPY_DRIVE_TYPE_144:
457         /* 1.44 Mb 3"5 drive */
458         val = 4;
459         break;
460     case FLOPPY_DRIVE_TYPE_288:
461         /* 2.88 Mb 3"5 drive */
462         val = 5;
463         break;
464     case FLOPPY_DRIVE_TYPE_120:
465         /* 1.2 Mb 5"5 drive */
466         val = 2;
467         break;
468     case FLOPPY_DRIVE_TYPE_NONE:
469     default:
470         val = 0;
471         break;
472     }
473     return val;
474 }
475 
476 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
477                          int16_t cylinders, int8_t heads, int8_t sectors)
478 {
479     rtc_set_memory(s, type_ofs, 47);
480     rtc_set_memory(s, info_ofs, cylinders);
481     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
482     rtc_set_memory(s, info_ofs + 2, heads);
483     rtc_set_memory(s, info_ofs + 3, 0xff);
484     rtc_set_memory(s, info_ofs + 4, 0xff);
485     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
486     rtc_set_memory(s, info_ofs + 6, cylinders);
487     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
488     rtc_set_memory(s, info_ofs + 8, sectors);
489 }
490 
491 /* convert boot_device letter to something recognizable by the bios */
492 static int boot_device2nibble(char boot_device)
493 {
494     switch(boot_device) {
495     case 'a':
496     case 'b':
497         return 0x01; /* floppy boot */
498     case 'c':
499         return 0x02; /* hard drive boot */
500     case 'd':
501         return 0x03; /* CD-ROM boot */
502     case 'n':
503         return 0x04; /* Network boot */
504     }
505     return 0;
506 }
507 
508 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
509 {
510 #define PC_MAX_BOOT_DEVICES 3
511     int nbds, bds[3] = { 0, };
512     int i;
513 
514     nbds = strlen(boot_device);
515     if (nbds > PC_MAX_BOOT_DEVICES) {
516         error_setg(errp, "Too many boot devices for PC");
517         return;
518     }
519     for (i = 0; i < nbds; i++) {
520         bds[i] = boot_device2nibble(boot_device[i]);
521         if (bds[i] == 0) {
522             error_setg(errp, "Invalid boot device for PC: '%c'",
523                        boot_device[i]);
524             return;
525         }
526     }
527     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
528     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
529 }
530 
531 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
532 {
533     set_boot_dev(opaque, boot_device, errp);
534 }
535 
536 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
537 {
538     int val, nb, i;
539     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
540                                    FLOPPY_DRIVE_TYPE_NONE };
541 
542     /* floppy type */
543     if (floppy) {
544         for (i = 0; i < 2; i++) {
545             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
546         }
547     }
548     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
549         cmos_get_fd_drive_type(fd_type[1]);
550     rtc_set_memory(rtc_state, 0x10, val);
551 
552     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
553     nb = 0;
554     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
555         nb++;
556     }
557     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
558         nb++;
559     }
560     switch (nb) {
561     case 0:
562         break;
563     case 1:
564         val |= 0x01; /* 1 drive, ready for boot */
565         break;
566     case 2:
567         val |= 0x41; /* 2 drives, ready for boot */
568         break;
569     }
570     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
571 }
572 
573 typedef struct pc_cmos_init_late_arg {
574     ISADevice *rtc_state;
575     BusState *idebus[2];
576 } pc_cmos_init_late_arg;
577 
578 typedef struct check_fdc_state {
579     ISADevice *floppy;
580     bool multiple;
581 } CheckFdcState;
582 
583 static int check_fdc(Object *obj, void *opaque)
584 {
585     CheckFdcState *state = opaque;
586     Object *fdc;
587     uint32_t iobase;
588     Error *local_err = NULL;
589 
590     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
591     if (!fdc) {
592         return 0;
593     }
594 
595     iobase = object_property_get_uint(obj, "iobase", &local_err);
596     if (local_err || iobase != 0x3f0) {
597         error_free(local_err);
598         return 0;
599     }
600 
601     if (state->floppy) {
602         state->multiple = true;
603     } else {
604         state->floppy = ISA_DEVICE(obj);
605     }
606     return 0;
607 }
608 
609 static const char * const fdc_container_path[] = {
610     "/unattached", "/peripheral", "/peripheral-anon"
611 };
612 
613 /*
614  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
615  * and ACPI objects.
616  */
617 ISADevice *pc_find_fdc0(void)
618 {
619     int i;
620     Object *container;
621     CheckFdcState state = { 0 };
622 
623     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
624         container = container_get(qdev_get_machine(), fdc_container_path[i]);
625         object_child_foreach(container, check_fdc, &state);
626     }
627 
628     if (state.multiple) {
629         warn_report("multiple floppy disk controllers with "
630                     "iobase=0x3f0 have been found");
631         error_printf("the one being picked for CMOS setup might not reflect "
632                      "your intent");
633     }
634 
635     return state.floppy;
636 }
637 
638 static void pc_cmos_init_late(void *opaque)
639 {
640     pc_cmos_init_late_arg *arg = opaque;
641     ISADevice *s = arg->rtc_state;
642     int16_t cylinders;
643     int8_t heads, sectors;
644     int val;
645     int i, trans;
646 
647     val = 0;
648     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
649                                            &cylinders, &heads, &sectors) >= 0) {
650         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
651         val |= 0xf0;
652     }
653     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
654                                            &cylinders, &heads, &sectors) >= 0) {
655         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
656         val |= 0x0f;
657     }
658     rtc_set_memory(s, 0x12, val);
659 
660     val = 0;
661     for (i = 0; i < 4; i++) {
662         /* NOTE: ide_get_geometry() returns the physical
663            geometry.  It is always such that: 1 <= sects <= 63, 1
664            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
665            geometry can be different if a translation is done. */
666         if (arg->idebus[i / 2] &&
667             ide_get_geometry(arg->idebus[i / 2], i % 2,
668                              &cylinders, &heads, &sectors) >= 0) {
669             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
670             assert((trans & ~3) == 0);
671             val |= trans << (i * 2);
672         }
673     }
674     rtc_set_memory(s, 0x39, val);
675 
676     pc_cmos_init_floppy(s, pc_find_fdc0());
677 
678     qemu_unregister_reset(pc_cmos_init_late, opaque);
679 }
680 
681 void pc_cmos_init(PCMachineState *pcms,
682                   BusState *idebus0, BusState *idebus1,
683                   ISADevice *s)
684 {
685     int val;
686     static pc_cmos_init_late_arg arg;
687 
688     /* various important CMOS locations needed by PC/Bochs bios */
689 
690     /* memory size */
691     /* base memory (first MiB) */
692     val = MIN(pcms->below_4g_mem_size / KiB, 640);
693     rtc_set_memory(s, 0x15, val);
694     rtc_set_memory(s, 0x16, val >> 8);
695     /* extended memory (next 64MiB) */
696     if (pcms->below_4g_mem_size > 1 * MiB) {
697         val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
698     } else {
699         val = 0;
700     }
701     if (val > 65535)
702         val = 65535;
703     rtc_set_memory(s, 0x17, val);
704     rtc_set_memory(s, 0x18, val >> 8);
705     rtc_set_memory(s, 0x30, val);
706     rtc_set_memory(s, 0x31, val >> 8);
707     /* memory between 16MiB and 4GiB */
708     if (pcms->below_4g_mem_size > 16 * MiB) {
709         val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
710     } else {
711         val = 0;
712     }
713     if (val > 65535)
714         val = 65535;
715     rtc_set_memory(s, 0x34, val);
716     rtc_set_memory(s, 0x35, val >> 8);
717     /* memory above 4GiB */
718     val = pcms->above_4g_mem_size / 65536;
719     rtc_set_memory(s, 0x5b, val);
720     rtc_set_memory(s, 0x5c, val >> 8);
721     rtc_set_memory(s, 0x5d, val >> 16);
722 
723     object_property_add_link(OBJECT(pcms), "rtc_state",
724                              TYPE_ISA_DEVICE,
725                              (Object **)&pcms->rtc,
726                              object_property_allow_set_link,
727                              OBJ_PROP_LINK_STRONG, &error_abort);
728     object_property_set_link(OBJECT(pcms), OBJECT(s),
729                              "rtc_state", &error_abort);
730 
731     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
732 
733     val = 0;
734     val |= 0x02; /* FPU is there */
735     val |= 0x04; /* PS/2 mouse installed */
736     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
737 
738     /* hard drives and FDC */
739     arg.rtc_state = s;
740     arg.idebus[0] = idebus0;
741     arg.idebus[1] = idebus1;
742     qemu_register_reset(pc_cmos_init_late, &arg);
743 }
744 
745 #define TYPE_PORT92 "port92"
746 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
747 
748 /* port 92 stuff: could be split off */
749 typedef struct Port92State {
750     ISADevice parent_obj;
751 
752     MemoryRegion io;
753     uint8_t outport;
754     qemu_irq a20_out;
755 } Port92State;
756 
757 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
758                          unsigned size)
759 {
760     Port92State *s = opaque;
761     int oldval = s->outport;
762 
763     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
764     s->outport = val;
765     qemu_set_irq(s->a20_out, (val >> 1) & 1);
766     if ((val & 1) && !(oldval & 1)) {
767         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
768     }
769 }
770 
771 static uint64_t port92_read(void *opaque, hwaddr addr,
772                             unsigned size)
773 {
774     Port92State *s = opaque;
775     uint32_t ret;
776 
777     ret = s->outport;
778     DPRINTF("port92: read 0x%02x\n", ret);
779     return ret;
780 }
781 
782 static void port92_init(ISADevice *dev, qemu_irq a20_out)
783 {
784     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
785 }
786 
787 static const VMStateDescription vmstate_port92_isa = {
788     .name = "port92",
789     .version_id = 1,
790     .minimum_version_id = 1,
791     .fields = (VMStateField[]) {
792         VMSTATE_UINT8(outport, Port92State),
793         VMSTATE_END_OF_LIST()
794     }
795 };
796 
797 static void port92_reset(DeviceState *d)
798 {
799     Port92State *s = PORT92(d);
800 
801     s->outport &= ~1;
802 }
803 
804 static const MemoryRegionOps port92_ops = {
805     .read = port92_read,
806     .write = port92_write,
807     .impl = {
808         .min_access_size = 1,
809         .max_access_size = 1,
810     },
811     .endianness = DEVICE_LITTLE_ENDIAN,
812 };
813 
814 static void port92_initfn(Object *obj)
815 {
816     Port92State *s = PORT92(obj);
817 
818     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
819 
820     s->outport = 0;
821 
822     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
823 }
824 
825 static void port92_realizefn(DeviceState *dev, Error **errp)
826 {
827     ISADevice *isadev = ISA_DEVICE(dev);
828     Port92State *s = PORT92(dev);
829 
830     isa_register_ioport(isadev, &s->io, 0x92);
831 }
832 
833 static void port92_class_initfn(ObjectClass *klass, void *data)
834 {
835     DeviceClass *dc = DEVICE_CLASS(klass);
836 
837     dc->realize = port92_realizefn;
838     dc->reset = port92_reset;
839     dc->vmsd = &vmstate_port92_isa;
840     /*
841      * Reason: unlike ordinary ISA devices, this one needs additional
842      * wiring: its A20 output line needs to be wired up by
843      * port92_init().
844      */
845     dc->user_creatable = false;
846 }
847 
848 static const TypeInfo port92_info = {
849     .name          = TYPE_PORT92,
850     .parent        = TYPE_ISA_DEVICE,
851     .instance_size = sizeof(Port92State),
852     .instance_init = port92_initfn,
853     .class_init    = port92_class_initfn,
854 };
855 
856 static void port92_register_types(void)
857 {
858     type_register_static(&port92_info);
859 }
860 
861 type_init(port92_register_types)
862 
863 static void handle_a20_line_change(void *opaque, int irq, int level)
864 {
865     X86CPU *cpu = opaque;
866 
867     /* XXX: send to all CPUs ? */
868     /* XXX: add logic to handle multiple A20 line sources */
869     x86_cpu_set_a20(cpu, level);
870 }
871 
872 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
873 {
874     int index = le32_to_cpu(e820_reserve.count);
875     struct e820_entry *entry;
876 
877     if (type != E820_RAM) {
878         /* old FW_CFG_E820_TABLE entry -- reservations only */
879         if (index >= E820_NR_ENTRIES) {
880             return -EBUSY;
881         }
882         entry = &e820_reserve.entry[index++];
883 
884         entry->address = cpu_to_le64(address);
885         entry->length = cpu_to_le64(length);
886         entry->type = cpu_to_le32(type);
887 
888         e820_reserve.count = cpu_to_le32(index);
889     }
890 
891     /* new "etc/e820" file -- include ram too */
892     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
893     e820_table[e820_entries].address = cpu_to_le64(address);
894     e820_table[e820_entries].length = cpu_to_le64(length);
895     e820_table[e820_entries].type = cpu_to_le32(type);
896     e820_entries++;
897 
898     return e820_entries;
899 }
900 
901 int e820_get_num_entries(void)
902 {
903     return e820_entries;
904 }
905 
906 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
907 {
908     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
909         *address = le64_to_cpu(e820_table[idx].address);
910         *length = le64_to_cpu(e820_table[idx].length);
911         return true;
912     }
913     return false;
914 }
915 
916 /* Enables contiguous-apic-ID mode, for compatibility */
917 static bool compat_apic_id_mode;
918 
919 void enable_compat_apic_id_mode(void)
920 {
921     compat_apic_id_mode = true;
922 }
923 
924 /* Calculates initial APIC ID for a specific CPU index
925  *
926  * Currently we need to be able to calculate the APIC ID from the CPU index
927  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
928  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
929  * all CPUs up to max_cpus.
930  */
931 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
932 {
933     uint32_t correct_id;
934     static bool warned;
935 
936     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
937     if (compat_apic_id_mode) {
938         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
939             error_report("APIC IDs set in compatibility mode, "
940                          "CPU topology won't match the configuration");
941             warned = true;
942         }
943         return cpu_index;
944     } else {
945         return correct_id;
946     }
947 }
948 
949 static void pc_build_smbios(PCMachineState *pcms)
950 {
951     uint8_t *smbios_tables, *smbios_anchor;
952     size_t smbios_tables_len, smbios_anchor_len;
953     struct smbios_phys_mem_area *mem_array;
954     unsigned i, array_count;
955     MachineState *ms = MACHINE(pcms);
956     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
957 
958     /* tell smbios about cpuid version and features */
959     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
960 
961     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
962     if (smbios_tables) {
963         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
964                          smbios_tables, smbios_tables_len);
965     }
966 
967     /* build the array of physical mem area from e820 table */
968     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
969     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
970         uint64_t addr, len;
971 
972         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
973             mem_array[array_count].address = addr;
974             mem_array[array_count].length = len;
975             array_count++;
976         }
977     }
978     smbios_get_tables(mem_array, array_count,
979                       &smbios_tables, &smbios_tables_len,
980                       &smbios_anchor, &smbios_anchor_len);
981     g_free(mem_array);
982 
983     if (smbios_anchor) {
984         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
985                         smbios_tables, smbios_tables_len);
986         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
987                         smbios_anchor, smbios_anchor_len);
988     }
989 }
990 
991 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
992 {
993     FWCfgState *fw_cfg;
994     uint64_t *numa_fw_cfg;
995     int i;
996     const CPUArchIdList *cpus;
997     MachineClass *mc = MACHINE_GET_CLASS(pcms);
998 
999     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
1000     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1001 
1002     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1003      *
1004      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1005      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1006      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1007      * for CPU hotplug also uses APIC ID and not "CPU index".
1008      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1009      * but the "limit to the APIC ID values SeaBIOS may see".
1010      *
1011      * So for compatibility reasons with old BIOSes we are stuck with
1012      * "etc/max-cpus" actually being apic_id_limit
1013      */
1014     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1015     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1016     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1017                      acpi_tables, acpi_tables_len);
1018     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1019 
1020     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1021                      &e820_reserve, sizeof(e820_reserve));
1022     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1023                     sizeof(struct e820_entry) * e820_entries);
1024 
1025     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1026     /* allocate memory for the NUMA channel: one (64bit) word for the number
1027      * of nodes, one word for each VCPU->node and one word for each node to
1028      * hold the amount of memory.
1029      */
1030     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1031     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1032     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1033     for (i = 0; i < cpus->len; i++) {
1034         unsigned int apic_id = cpus->cpus[i].arch_id;
1035         assert(apic_id < pcms->apic_id_limit);
1036         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1037     }
1038     for (i = 0; i < nb_numa_nodes; i++) {
1039         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1040             cpu_to_le64(numa_info[i].node_mem);
1041     }
1042     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1043                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
1044                      sizeof(*numa_fw_cfg));
1045 
1046     return fw_cfg;
1047 }
1048 
1049 static long get_file_size(FILE *f)
1050 {
1051     long where, size;
1052 
1053     /* XXX: on Unix systems, using fstat() probably makes more sense */
1054 
1055     where = ftell(f);
1056     fseek(f, 0, SEEK_END);
1057     size = ftell(f);
1058     fseek(f, where, SEEK_SET);
1059 
1060     return size;
1061 }
1062 
1063 struct setup_data {
1064     uint64_t next;
1065     uint32_t type;
1066     uint32_t len;
1067     uint8_t data[0];
1068 } __attribute__((packed));
1069 
1070 
1071 /*
1072  * The entry point into the kernel for PVH boot is different from
1073  * the native entry point.  The PVH entry is defined by the x86/HVM
1074  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1075  *
1076  * This function is passed to load_elf() when it is called from
1077  * load_elfboot() which then additionally checks for an ELF Note of
1078  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1079  * parse the PVH entry address from the ELF Note.
1080  *
1081  * Due to trickery in elf_opts.h, load_elf() is actually available as
1082  * load_elf32() or load_elf64() and this routine needs to be able
1083  * to deal with being called as 32 or 64 bit.
1084  *
1085  * The address of the PVH entry point is saved to the 'pvh_start_addr'
1086  * global variable.  (although the entry point is 32-bit, the kernel
1087  * binary can be either 32-bit or 64-bit).
1088  */
1089 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1090 {
1091     size_t *elf_note_data_addr;
1092 
1093     /* Check if ELF Note header passed in is valid */
1094     if (arg1 == NULL) {
1095         return 0;
1096     }
1097 
1098     if (is64) {
1099         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1100         uint64_t nhdr_size64 = sizeof(struct elf64_note);
1101         uint64_t phdr_align = *(uint64_t *)arg2;
1102         uint64_t nhdr_namesz = nhdr64->n_namesz;
1103 
1104         elf_note_data_addr =
1105             ((void *)nhdr64) + nhdr_size64 +
1106             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1107     } else {
1108         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1109         uint32_t nhdr_size32 = sizeof(struct elf32_note);
1110         uint32_t phdr_align = *(uint32_t *)arg2;
1111         uint32_t nhdr_namesz = nhdr32->n_namesz;
1112 
1113         elf_note_data_addr =
1114             ((void *)nhdr32) + nhdr_size32 +
1115             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1116     }
1117 
1118     pvh_start_addr = *elf_note_data_addr;
1119 
1120     return pvh_start_addr;
1121 }
1122 
1123 static bool load_elfboot(const char *kernel_filename,
1124                    int kernel_file_size,
1125                    uint8_t *header,
1126                    size_t pvh_xen_start_addr,
1127                    FWCfgState *fw_cfg)
1128 {
1129     uint32_t flags = 0;
1130     uint32_t mh_load_addr = 0;
1131     uint32_t elf_kernel_size = 0;
1132     uint64_t elf_entry;
1133     uint64_t elf_low, elf_high;
1134     int kernel_size;
1135 
1136     if (ldl_p(header) != 0x464c457f) {
1137         return false; /* no elfboot */
1138     }
1139 
1140     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1141     flags = elf_is64 ?
1142         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1143 
1144     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1145         error_report("elfboot unsupported flags = %x", flags);
1146         exit(1);
1147     }
1148 
1149     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1150     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1151                            NULL, &elf_note_type, &elf_entry,
1152                            &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1153                            0, 0);
1154 
1155     if (kernel_size < 0) {
1156         error_report("Error while loading elf kernel");
1157         exit(1);
1158     }
1159     mh_load_addr = elf_low;
1160     elf_kernel_size = elf_high - elf_low;
1161 
1162     if (pvh_start_addr == 0) {
1163         error_report("Error loading uncompressed kernel without PVH ELF Note");
1164         exit(1);
1165     }
1166     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1167     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1168     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1169 
1170     return true;
1171 }
1172 
1173 static void load_linux(PCMachineState *pcms,
1174                        FWCfgState *fw_cfg)
1175 {
1176     uint16_t protocol;
1177     int setup_size, kernel_size, cmdline_size;
1178     int dtb_size, setup_data_offset;
1179     uint32_t initrd_max;
1180     uint8_t header[8192], *setup, *kernel;
1181     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1182     FILE *f;
1183     char *vmode;
1184     MachineState *machine = MACHINE(pcms);
1185     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1186     struct setup_data *setup_data;
1187     const char *kernel_filename = machine->kernel_filename;
1188     const char *initrd_filename = machine->initrd_filename;
1189     const char *dtb_filename = machine->dtb;
1190     const char *kernel_cmdline = machine->kernel_cmdline;
1191 
1192     /* Align to 16 bytes as a paranoia measure */
1193     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1194 
1195     /* load the kernel header */
1196     f = fopen(kernel_filename, "rb");
1197     if (!f || !(kernel_size = get_file_size(f)) ||
1198         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1199         MIN(ARRAY_SIZE(header), kernel_size)) {
1200         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1201                 kernel_filename, strerror(errno));
1202         exit(1);
1203     }
1204 
1205     /* kernel protocol version */
1206 #if 0
1207     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1208 #endif
1209     if (ldl_p(header+0x202) == 0x53726448) {
1210         protocol = lduw_p(header+0x206);
1211     } else {
1212         /*
1213          * Check if the file is an uncompressed kernel file (ELF) and load it,
1214          * saving the PVH entry point used by the x86/HVM direct boot ABI.
1215          * If load_elfboot() is successful, populate the fw_cfg info.
1216          */
1217         if (pcmc->pvh_enabled &&
1218             load_elfboot(kernel_filename, kernel_size,
1219                          header, pvh_start_addr, fw_cfg)) {
1220             fclose(f);
1221 
1222             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1223                 strlen(kernel_cmdline) + 1);
1224             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1225 
1226             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1227             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1228                              header, sizeof(header));
1229 
1230             /* load initrd */
1231             if (initrd_filename) {
1232                 gsize initrd_size;
1233                 gchar *initrd_data;
1234                 GError *gerr = NULL;
1235 
1236                 if (!g_file_get_contents(initrd_filename, &initrd_data,
1237                             &initrd_size, &gerr)) {
1238                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1239                             initrd_filename, gerr->message);
1240                     exit(1);
1241                 }
1242 
1243                 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1244                 if (initrd_size >= initrd_max) {
1245                     fprintf(stderr, "qemu: initrd is too large, cannot support."
1246                             "(max: %"PRIu32", need %"PRId64")\n",
1247                             initrd_max, (uint64_t)initrd_size);
1248                     exit(1);
1249                 }
1250 
1251                 initrd_addr = (initrd_max - initrd_size) & ~4095;
1252 
1253                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1254                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1255                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1256                                  initrd_size);
1257             }
1258 
1259             option_rom[nb_option_roms].bootindex = 0;
1260             option_rom[nb_option_roms].name = "pvh.bin";
1261             nb_option_roms++;
1262 
1263             return;
1264         }
1265         /* This looks like a multiboot kernel. If it is, let's stop
1266            treating it like a Linux kernel. */
1267         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1268                            kernel_cmdline, kernel_size, header)) {
1269             return;
1270         }
1271         protocol = 0;
1272     }
1273 
1274     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1275         /* Low kernel */
1276         real_addr    = 0x90000;
1277         cmdline_addr = 0x9a000 - cmdline_size;
1278         prot_addr    = 0x10000;
1279     } else if (protocol < 0x202) {
1280         /* High but ancient kernel */
1281         real_addr    = 0x90000;
1282         cmdline_addr = 0x9a000 - cmdline_size;
1283         prot_addr    = 0x100000;
1284     } else {
1285         /* High and recent kernel */
1286         real_addr    = 0x10000;
1287         cmdline_addr = 0x20000;
1288         prot_addr    = 0x100000;
1289     }
1290 
1291 #if 0
1292     fprintf(stderr,
1293             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
1294             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
1295             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
1296             real_addr,
1297             cmdline_addr,
1298             prot_addr);
1299 #endif
1300 
1301     /* highest address for loading the initrd */
1302     if (protocol >= 0x20c &&
1303         lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1304         /*
1305          * Linux has supported initrd up to 4 GB for a very long time (2007,
1306          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1307          * though it only sets initrd_max to 2 GB to "work around bootloader
1308          * bugs". Luckily, QEMU firmware(which does something like bootloader)
1309          * has supported this.
1310          *
1311          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1312          * be loaded into any address.
1313          *
1314          * In addition, initrd_max is uint32_t simply because QEMU doesn't
1315          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1316          * field).
1317          *
1318          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1319          */
1320         initrd_max = UINT32_MAX;
1321     } else if (protocol >= 0x203) {
1322         initrd_max = ldl_p(header+0x22c);
1323     } else {
1324         initrd_max = 0x37ffffff;
1325     }
1326 
1327     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1328         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1329     }
1330 
1331     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1332     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1333     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1334 
1335     if (protocol >= 0x202) {
1336         stl_p(header+0x228, cmdline_addr);
1337     } else {
1338         stw_p(header+0x20, 0xA33F);
1339         stw_p(header+0x22, cmdline_addr-real_addr);
1340     }
1341 
1342     /* handle vga= parameter */
1343     vmode = strstr(kernel_cmdline, "vga=");
1344     if (vmode) {
1345         unsigned int video_mode;
1346         /* skip "vga=" */
1347         vmode += 4;
1348         if (!strncmp(vmode, "normal", 6)) {
1349             video_mode = 0xffff;
1350         } else if (!strncmp(vmode, "ext", 3)) {
1351             video_mode = 0xfffe;
1352         } else if (!strncmp(vmode, "ask", 3)) {
1353             video_mode = 0xfffd;
1354         } else {
1355             video_mode = strtol(vmode, NULL, 0);
1356         }
1357         stw_p(header+0x1fa, video_mode);
1358     }
1359 
1360     /* loader type */
1361     /* High nybble = B reserved for QEMU; low nybble is revision number.
1362        If this code is substantially changed, you may want to consider
1363        incrementing the revision. */
1364     if (protocol >= 0x200) {
1365         header[0x210] = 0xB0;
1366     }
1367     /* heap */
1368     if (protocol >= 0x201) {
1369         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
1370         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1371     }
1372 
1373     /* load initrd */
1374     if (initrd_filename) {
1375         gsize initrd_size;
1376         gchar *initrd_data;
1377         GError *gerr = NULL;
1378 
1379         if (protocol < 0x200) {
1380             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1381             exit(1);
1382         }
1383 
1384         if (!g_file_get_contents(initrd_filename, &initrd_data,
1385                                  &initrd_size, &gerr)) {
1386             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1387                     initrd_filename, gerr->message);
1388             exit(1);
1389         }
1390         if (initrd_size >= initrd_max) {
1391             fprintf(stderr, "qemu: initrd is too large, cannot support."
1392                     "(max: %"PRIu32", need %"PRId64")\n",
1393                     initrd_max, (uint64_t)initrd_size);
1394             exit(1);
1395         }
1396 
1397         initrd_addr = (initrd_max-initrd_size) & ~4095;
1398 
1399         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1400         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1401         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1402 
1403         stl_p(header+0x218, initrd_addr);
1404         stl_p(header+0x21c, initrd_size);
1405     }
1406 
1407     /* load kernel and setup */
1408     setup_size = header[0x1f1];
1409     if (setup_size == 0) {
1410         setup_size = 4;
1411     }
1412     setup_size = (setup_size+1)*512;
1413     if (setup_size > kernel_size) {
1414         fprintf(stderr, "qemu: invalid kernel header\n");
1415         exit(1);
1416     }
1417     kernel_size -= setup_size;
1418 
1419     setup  = g_malloc(setup_size);
1420     kernel = g_malloc(kernel_size);
1421     fseek(f, 0, SEEK_SET);
1422     if (fread(setup, 1, setup_size, f) != setup_size) {
1423         fprintf(stderr, "fread() failed\n");
1424         exit(1);
1425     }
1426     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1427         fprintf(stderr, "fread() failed\n");
1428         exit(1);
1429     }
1430     fclose(f);
1431 
1432     /* append dtb to kernel */
1433     if (dtb_filename) {
1434         if (protocol < 0x209) {
1435             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1436             exit(1);
1437         }
1438 
1439         dtb_size = get_image_size(dtb_filename);
1440         if (dtb_size <= 0) {
1441             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1442                     dtb_filename, strerror(errno));
1443             exit(1);
1444         }
1445 
1446         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1447         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1448         kernel = g_realloc(kernel, kernel_size);
1449 
1450         stq_p(header+0x250, prot_addr + setup_data_offset);
1451 
1452         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1453         setup_data->next = 0;
1454         setup_data->type = cpu_to_le32(SETUP_DTB);
1455         setup_data->len = cpu_to_le32(dtb_size);
1456 
1457         load_image_size(dtb_filename, setup_data->data, dtb_size);
1458     }
1459 
1460     memcpy(setup, header, MIN(sizeof(header), setup_size));
1461 
1462     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1463     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1464     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1465 
1466     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1467     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1468     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1469 
1470     option_rom[nb_option_roms].bootindex = 0;
1471     option_rom[nb_option_roms].name = "linuxboot.bin";
1472     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1473         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1474     }
1475     nb_option_roms++;
1476 }
1477 
1478 #define NE2000_NB_MAX 6
1479 
1480 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1481                                               0x280, 0x380 };
1482 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1483 
1484 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1485 {
1486     static int nb_ne2k = 0;
1487 
1488     if (nb_ne2k == NE2000_NB_MAX)
1489         return;
1490     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1491                     ne2000_irq[nb_ne2k], nd);
1492     nb_ne2k++;
1493 }
1494 
1495 DeviceState *cpu_get_current_apic(void)
1496 {
1497     if (current_cpu) {
1498         X86CPU *cpu = X86_CPU(current_cpu);
1499         return cpu->apic_state;
1500     } else {
1501         return NULL;
1502     }
1503 }
1504 
1505 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1506 {
1507     X86CPU *cpu = opaque;
1508 
1509     if (level) {
1510         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1511     }
1512 }
1513 
1514 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1515 {
1516     Object *cpu = NULL;
1517     Error *local_err = NULL;
1518 
1519     cpu = object_new(typename);
1520 
1521     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1522     object_property_set_bool(cpu, true, "realized", &local_err);
1523 
1524     object_unref(cpu);
1525     error_propagate(errp, local_err);
1526 }
1527 
1528 void pc_hot_add_cpu(const int64_t id, Error **errp)
1529 {
1530     MachineState *ms = MACHINE(qdev_get_machine());
1531     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1532     Error *local_err = NULL;
1533 
1534     if (id < 0) {
1535         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1536         return;
1537     }
1538 
1539     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1540         error_setg(errp, "Unable to add CPU: %" PRIi64
1541                    ", resulting APIC ID (%" PRIi64 ") is too large",
1542                    id, apic_id);
1543         return;
1544     }
1545 
1546     pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1547     if (local_err) {
1548         error_propagate(errp, local_err);
1549         return;
1550     }
1551 }
1552 
1553 void pc_cpus_init(PCMachineState *pcms)
1554 {
1555     int i;
1556     const CPUArchIdList *possible_cpus;
1557     MachineState *ms = MACHINE(pcms);
1558     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1559 
1560     /* Calculates the limit to CPU APIC ID values
1561      *
1562      * Limit for the APIC ID value, so that all
1563      * CPU APIC IDs are < pcms->apic_id_limit.
1564      *
1565      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1566      */
1567     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1568     possible_cpus = mc->possible_cpu_arch_ids(ms);
1569     for (i = 0; i < smp_cpus; i++) {
1570         pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1571                    &error_fatal);
1572     }
1573 }
1574 
1575 static void pc_build_feature_control_file(PCMachineState *pcms)
1576 {
1577     MachineState *ms = MACHINE(pcms);
1578     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1579     CPUX86State *env = &cpu->env;
1580     uint32_t unused, ecx, edx;
1581     uint64_t feature_control_bits = 0;
1582     uint64_t *val;
1583 
1584     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1585     if (ecx & CPUID_EXT_VMX) {
1586         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1587     }
1588 
1589     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1590         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1591         (env->mcg_cap & MCG_LMCE_P)) {
1592         feature_control_bits |= FEATURE_CONTROL_LMCE;
1593     }
1594 
1595     if (!feature_control_bits) {
1596         return;
1597     }
1598 
1599     val = g_malloc(sizeof(*val));
1600     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1601     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1602 }
1603 
1604 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1605 {
1606     if (cpus_count > 0xff) {
1607         /* If the number of CPUs can't be represented in 8 bits, the
1608          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1609          * to make old BIOSes fail more predictably.
1610          */
1611         rtc_set_memory(rtc, 0x5f, 0);
1612     } else {
1613         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1614     }
1615 }
1616 
1617 static
1618 void pc_machine_done(Notifier *notifier, void *data)
1619 {
1620     PCMachineState *pcms = container_of(notifier,
1621                                         PCMachineState, machine_done);
1622     PCIBus *bus = pcms->bus;
1623 
1624     /* set the number of CPUs */
1625     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1626 
1627     if (bus) {
1628         int extra_hosts = 0;
1629 
1630         QLIST_FOREACH(bus, &bus->child, sibling) {
1631             /* look for expander root buses */
1632             if (pci_bus_is_root(bus)) {
1633                 extra_hosts++;
1634             }
1635         }
1636         if (extra_hosts && pcms->fw_cfg) {
1637             uint64_t *val = g_malloc(sizeof(*val));
1638             *val = cpu_to_le64(extra_hosts);
1639             fw_cfg_add_file(pcms->fw_cfg,
1640                     "etc/extra-pci-roots", val, sizeof(*val));
1641         }
1642     }
1643 
1644     acpi_setup();
1645     if (pcms->fw_cfg) {
1646         pc_build_smbios(pcms);
1647         pc_build_feature_control_file(pcms);
1648         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1649         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1650     }
1651 
1652     if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1653         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1654 
1655         if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1656             iommu->intr_eim != ON_OFF_AUTO_ON) {
1657             error_report("current -smp configuration requires "
1658                          "Extended Interrupt Mode enabled. "
1659                          "You can add an IOMMU using: "
1660                          "-device intel-iommu,intremap=on,eim=on");
1661             exit(EXIT_FAILURE);
1662         }
1663     }
1664 }
1665 
1666 void pc_guest_info_init(PCMachineState *pcms)
1667 {
1668     int i;
1669 
1670     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1671     pcms->numa_nodes = nb_numa_nodes;
1672     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1673                                     sizeof *pcms->node_mem);
1674     for (i = 0; i < nb_numa_nodes; i++) {
1675         pcms->node_mem[i] = numa_info[i].node_mem;
1676     }
1677 
1678     pcms->machine_done.notify = pc_machine_done;
1679     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1680 }
1681 
1682 /* setup pci memory address space mapping into system address space */
1683 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1684                             MemoryRegion *pci_address_space)
1685 {
1686     /* Set to lower priority than RAM */
1687     memory_region_add_subregion_overlap(system_memory, 0x0,
1688                                         pci_address_space, -1);
1689 }
1690 
1691 void pc_acpi_init(const char *default_dsdt)
1692 {
1693     char *filename;
1694 
1695     if (acpi_tables != NULL) {
1696         /* manually set via -acpitable, leave it alone */
1697         return;
1698     }
1699 
1700     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1701     if (filename == NULL) {
1702         warn_report("failed to find %s", default_dsdt);
1703     } else {
1704         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1705                                           &error_abort);
1706         Error *err = NULL;
1707 
1708         qemu_opt_set(opts, "file", filename, &error_abort);
1709 
1710         acpi_table_add_builtin(opts, &err);
1711         if (err) {
1712             warn_reportf_err(err, "failed to load %s: ", filename);
1713         }
1714         g_free(filename);
1715     }
1716 }
1717 
1718 void xen_load_linux(PCMachineState *pcms)
1719 {
1720     int i;
1721     FWCfgState *fw_cfg;
1722 
1723     assert(MACHINE(pcms)->kernel_filename != NULL);
1724 
1725     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1726     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1727     rom_set_fw(fw_cfg);
1728 
1729     load_linux(pcms, fw_cfg);
1730     for (i = 0; i < nb_option_roms; i++) {
1731         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1732                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1733                !strcmp(option_rom[i].name, "pvh.bin") ||
1734                !strcmp(option_rom[i].name, "multiboot.bin"));
1735         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1736     }
1737     pcms->fw_cfg = fw_cfg;
1738 }
1739 
1740 void pc_memory_init(PCMachineState *pcms,
1741                     MemoryRegion *system_memory,
1742                     MemoryRegion *rom_memory,
1743                     MemoryRegion **ram_memory)
1744 {
1745     int linux_boot, i;
1746     MemoryRegion *ram, *option_rom_mr;
1747     MemoryRegion *ram_below_4g, *ram_above_4g;
1748     FWCfgState *fw_cfg;
1749     MachineState *machine = MACHINE(pcms);
1750     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1751 
1752     assert(machine->ram_size == pcms->below_4g_mem_size +
1753                                 pcms->above_4g_mem_size);
1754 
1755     linux_boot = (machine->kernel_filename != NULL);
1756 
1757     /* Allocate RAM.  We allocate it as a single memory region and use
1758      * aliases to address portions of it, mostly for backwards compatibility
1759      * with older qemus that used qemu_ram_alloc().
1760      */
1761     ram = g_malloc(sizeof(*ram));
1762     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1763                                          machine->ram_size);
1764     *ram_memory = ram;
1765     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1766     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1767                              0, pcms->below_4g_mem_size);
1768     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1769     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1770     if (pcms->above_4g_mem_size > 0) {
1771         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1772         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1773                                  pcms->below_4g_mem_size,
1774                                  pcms->above_4g_mem_size);
1775         memory_region_add_subregion(system_memory, 0x100000000ULL,
1776                                     ram_above_4g);
1777         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1778     }
1779 
1780     if (!pcmc->has_reserved_memory &&
1781         (machine->ram_slots ||
1782          (machine->maxram_size > machine->ram_size))) {
1783         MachineClass *mc = MACHINE_GET_CLASS(machine);
1784 
1785         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1786                      mc->name);
1787         exit(EXIT_FAILURE);
1788     }
1789 
1790     /* always allocate the device memory information */
1791     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1792 
1793     /* initialize device memory address space */
1794     if (pcmc->has_reserved_memory &&
1795         (machine->ram_size < machine->maxram_size)) {
1796         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1797 
1798         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1799             error_report("unsupported amount of memory slots: %"PRIu64,
1800                          machine->ram_slots);
1801             exit(EXIT_FAILURE);
1802         }
1803 
1804         if (QEMU_ALIGN_UP(machine->maxram_size,
1805                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1806             error_report("maximum memory size must by aligned to multiple of "
1807                          "%d bytes", TARGET_PAGE_SIZE);
1808             exit(EXIT_FAILURE);
1809         }
1810 
1811         machine->device_memory->base =
1812             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1813 
1814         if (pcmc->enforce_aligned_dimm) {
1815             /* size device region assuming 1G page max alignment per slot */
1816             device_mem_size += (1 * GiB) * machine->ram_slots;
1817         }
1818 
1819         if ((machine->device_memory->base + device_mem_size) <
1820             device_mem_size) {
1821             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1822                          machine->maxram_size);
1823             exit(EXIT_FAILURE);
1824         }
1825 
1826         memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1827                            "device-memory", device_mem_size);
1828         memory_region_add_subregion(system_memory, machine->device_memory->base,
1829                                     &machine->device_memory->mr);
1830     }
1831 
1832     /* Initialize PC system firmware */
1833     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1834 
1835     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1836     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1837                            &error_fatal);
1838     if (pcmc->pci_enabled) {
1839         memory_region_set_readonly(option_rom_mr, true);
1840     }
1841     memory_region_add_subregion_overlap(rom_memory,
1842                                         PC_ROM_MIN_VGA,
1843                                         option_rom_mr,
1844                                         1);
1845 
1846     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1847 
1848     rom_set_fw(fw_cfg);
1849 
1850     if (pcmc->has_reserved_memory && machine->device_memory->base) {
1851         uint64_t *val = g_malloc(sizeof(*val));
1852         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1853         uint64_t res_mem_end = machine->device_memory->base;
1854 
1855         if (!pcmc->broken_reserved_end) {
1856             res_mem_end += memory_region_size(&machine->device_memory->mr);
1857         }
1858         *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1859         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1860     }
1861 
1862     if (linux_boot) {
1863         load_linux(pcms, fw_cfg);
1864     }
1865 
1866     for (i = 0; i < nb_option_roms; i++) {
1867         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1868     }
1869     pcms->fw_cfg = fw_cfg;
1870 
1871     /* Init default IOAPIC address space */
1872     pcms->ioapic_as = &address_space_memory;
1873 }
1874 
1875 /*
1876  * The 64bit pci hole starts after "above 4G RAM" and
1877  * potentially the space reserved for memory hotplug.
1878  */
1879 uint64_t pc_pci_hole64_start(void)
1880 {
1881     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1882     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1883     MachineState *ms = MACHINE(pcms);
1884     uint64_t hole64_start = 0;
1885 
1886     if (pcmc->has_reserved_memory && ms->device_memory->base) {
1887         hole64_start = ms->device_memory->base;
1888         if (!pcmc->broken_reserved_end) {
1889             hole64_start += memory_region_size(&ms->device_memory->mr);
1890         }
1891     } else {
1892         hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1893     }
1894 
1895     return ROUND_UP(hole64_start, 1 * GiB);
1896 }
1897 
1898 qemu_irq pc_allocate_cpu_irq(void)
1899 {
1900     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1901 }
1902 
1903 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1904 {
1905     DeviceState *dev = NULL;
1906 
1907     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1908     if (pci_bus) {
1909         PCIDevice *pcidev = pci_vga_init(pci_bus);
1910         dev = pcidev ? &pcidev->qdev : NULL;
1911     } else if (isa_bus) {
1912         ISADevice *isadev = isa_vga_init(isa_bus);
1913         dev = isadev ? DEVICE(isadev) : NULL;
1914     }
1915     rom_reset_order_override();
1916     return dev;
1917 }
1918 
1919 static const MemoryRegionOps ioport80_io_ops = {
1920     .write = ioport80_write,
1921     .read = ioport80_read,
1922     .endianness = DEVICE_NATIVE_ENDIAN,
1923     .impl = {
1924         .min_access_size = 1,
1925         .max_access_size = 1,
1926     },
1927 };
1928 
1929 static const MemoryRegionOps ioportF0_io_ops = {
1930     .write = ioportF0_write,
1931     .read = ioportF0_read,
1932     .endianness = DEVICE_NATIVE_ENDIAN,
1933     .impl = {
1934         .min_access_size = 1,
1935         .max_access_size = 1,
1936     },
1937 };
1938 
1939 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1940 {
1941     int i;
1942     DriveInfo *fd[MAX_FD];
1943     qemu_irq *a20_line;
1944     ISADevice *i8042, *port92, *vmmouse;
1945 
1946     serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1947     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1948 
1949     for (i = 0; i < MAX_FD; i++) {
1950         fd[i] = drive_get(IF_FLOPPY, 0, i);
1951         create_fdctrl |= !!fd[i];
1952     }
1953     if (create_fdctrl) {
1954         fdctrl_init_isa(isa_bus, fd);
1955     }
1956 
1957     i8042 = isa_create_simple(isa_bus, "i8042");
1958     if (!no_vmport) {
1959         vmport_init(isa_bus);
1960         vmmouse = isa_try_create(isa_bus, "vmmouse");
1961     } else {
1962         vmmouse = NULL;
1963     }
1964     if (vmmouse) {
1965         DeviceState *dev = DEVICE(vmmouse);
1966         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1967         qdev_init_nofail(dev);
1968     }
1969     port92 = isa_create_simple(isa_bus, "port92");
1970 
1971     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1972     i8042_setup_a20_line(i8042, a20_line[0]);
1973     port92_init(port92, a20_line[1]);
1974     g_free(a20_line);
1975 }
1976 
1977 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1978                           ISADevice **rtc_state,
1979                           bool create_fdctrl,
1980                           bool no_vmport,
1981                           bool has_pit,
1982                           uint32_t hpet_irqs)
1983 {
1984     int i;
1985     DeviceState *hpet = NULL;
1986     int pit_isa_irq = 0;
1987     qemu_irq pit_alt_irq = NULL;
1988     qemu_irq rtc_irq = NULL;
1989     ISADevice *pit = NULL;
1990     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1991     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1992 
1993     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1994     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1995 
1996     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1997     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1998 
1999     /*
2000      * Check if an HPET shall be created.
2001      *
2002      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
2003      * when the HPET wants to take over. Thus we have to disable the latter.
2004      */
2005     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
2006         /* In order to set property, here not using sysbus_try_create_simple */
2007         hpet = qdev_try_create(NULL, TYPE_HPET);
2008         if (hpet) {
2009             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
2010              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
2011              * IRQ8 and IRQ2.
2012              */
2013             uint8_t compat = object_property_get_uint(OBJECT(hpet),
2014                     HPET_INTCAP, NULL);
2015             if (!compat) {
2016                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
2017             }
2018             qdev_init_nofail(hpet);
2019             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
2020 
2021             for (i = 0; i < GSI_NUM_PINS; i++) {
2022                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
2023             }
2024             pit_isa_irq = -1;
2025             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2026             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2027         }
2028     }
2029     *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2030 
2031     qemu_register_boot_set(pc_boot_set, *rtc_state);
2032 
2033     if (!xen_enabled() && has_pit) {
2034         if (kvm_pit_in_kernel()) {
2035             pit = kvm_pit_init(isa_bus, 0x40);
2036         } else {
2037             pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2038         }
2039         if (hpet) {
2040             /* connect PIT to output control line of the HPET */
2041             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2042         }
2043         pcspk_init(isa_bus, pit);
2044     }
2045 
2046     i8257_dma_init(isa_bus, 0);
2047 
2048     /* Super I/O */
2049     pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2050 }
2051 
2052 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2053 {
2054     int i;
2055 
2056     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2057     for (i = 0; i < nb_nics; i++) {
2058         NICInfo *nd = &nd_table[i];
2059         const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2060 
2061         if (g_str_equal(model, "ne2k_isa")) {
2062             pc_init_ne2k_isa(isa_bus, nd);
2063         } else {
2064             pci_nic_init_nofail(nd, pci_bus, model, NULL);
2065         }
2066     }
2067     rom_reset_order_override();
2068 }
2069 
2070 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2071 {
2072     DeviceState *dev;
2073     SysBusDevice *d;
2074     unsigned int i;
2075 
2076     if (kvm_ioapic_in_kernel()) {
2077         dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2078     } else {
2079         dev = qdev_create(NULL, TYPE_IOAPIC);
2080     }
2081     if (parent_name) {
2082         object_property_add_child(object_resolve_path(parent_name, NULL),
2083                                   "ioapic", OBJECT(dev), NULL);
2084     }
2085     qdev_init_nofail(dev);
2086     d = SYS_BUS_DEVICE(dev);
2087     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2088 
2089     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2090         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2091     }
2092 }
2093 
2094 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2095                                Error **errp)
2096 {
2097     const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2098     const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2099     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2100     const uint64_t legacy_align = TARGET_PAGE_SIZE;
2101 
2102     /*
2103      * When -no-acpi is used with Q35 machine type, no ACPI is built,
2104      * but pcms->acpi_dev is still created. Check !acpi_enabled in
2105      * addition to cover this case.
2106      */
2107     if (!pcms->acpi_dev || !acpi_enabled) {
2108         error_setg(errp,
2109                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
2110         return;
2111     }
2112 
2113     if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
2114         error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2115         return;
2116     }
2117 
2118     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2119                      pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2120 }
2121 
2122 static void pc_memory_plug(HotplugHandler *hotplug_dev,
2123                            DeviceState *dev, Error **errp)
2124 {
2125     Error *local_err = NULL;
2126     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2127     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2128 
2129     pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2130     if (local_err) {
2131         goto out;
2132     }
2133 
2134     if (is_nvdimm) {
2135         nvdimm_plug(&pcms->acpi_nvdimm_state);
2136     }
2137 
2138     hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2139 out:
2140     error_propagate(errp, local_err);
2141 }
2142 
2143 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2144                                      DeviceState *dev, Error **errp)
2145 {
2146     Error *local_err = NULL;
2147     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2148 
2149     /*
2150      * When -no-acpi is used with Q35 machine type, no ACPI is built,
2151      * but pcms->acpi_dev is still created. Check !acpi_enabled in
2152      * addition to cover this case.
2153      */
2154     if (!pcms->acpi_dev || !acpi_enabled) {
2155         error_setg(&local_err,
2156                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
2157         goto out;
2158     }
2159 
2160     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2161         error_setg(&local_err,
2162                    "nvdimm device hot unplug is not supported yet.");
2163         goto out;
2164     }
2165 
2166     hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2167                                    &local_err);
2168 out:
2169     error_propagate(errp, local_err);
2170 }
2171 
2172 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2173                              DeviceState *dev, Error **errp)
2174 {
2175     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2176     Error *local_err = NULL;
2177 
2178     hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2179     if (local_err) {
2180         goto out;
2181     }
2182 
2183     pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2184     object_unparent(OBJECT(dev));
2185 
2186  out:
2187     error_propagate(errp, local_err);
2188 }
2189 
2190 static int pc_apic_cmp(const void *a, const void *b)
2191 {
2192    CPUArchId *apic_a = (CPUArchId *)a;
2193    CPUArchId *apic_b = (CPUArchId *)b;
2194 
2195    return apic_a->arch_id - apic_b->arch_id;
2196 }
2197 
2198 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2199  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2200  * entry corresponding to CPU's apic_id returns NULL.
2201  */
2202 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2203 {
2204     CPUArchId apic_id, *found_cpu;
2205 
2206     apic_id.arch_id = id;
2207     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2208         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2209         pc_apic_cmp);
2210     if (found_cpu && idx) {
2211         *idx = found_cpu - ms->possible_cpus->cpus;
2212     }
2213     return found_cpu;
2214 }
2215 
2216 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2217                         DeviceState *dev, Error **errp)
2218 {
2219     CPUArchId *found_cpu;
2220     Error *local_err = NULL;
2221     X86CPU *cpu = X86_CPU(dev);
2222     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2223 
2224     if (pcms->acpi_dev) {
2225         hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2226         if (local_err) {
2227             goto out;
2228         }
2229     }
2230 
2231     /* increment the number of CPUs */
2232     pcms->boot_cpus++;
2233     if (pcms->rtc) {
2234         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2235     }
2236     if (pcms->fw_cfg) {
2237         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2238     }
2239 
2240     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2241     found_cpu->cpu = OBJECT(dev);
2242 out:
2243     error_propagate(errp, local_err);
2244 }
2245 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2246                                      DeviceState *dev, Error **errp)
2247 {
2248     int idx = -1;
2249     Error *local_err = NULL;
2250     X86CPU *cpu = X86_CPU(dev);
2251     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2252 
2253     if (!pcms->acpi_dev) {
2254         error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2255         goto out;
2256     }
2257 
2258     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2259     assert(idx != -1);
2260     if (idx == 0) {
2261         error_setg(&local_err, "Boot CPU is unpluggable");
2262         goto out;
2263     }
2264 
2265     hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2266                                    &local_err);
2267     if (local_err) {
2268         goto out;
2269     }
2270 
2271  out:
2272     error_propagate(errp, local_err);
2273 
2274 }
2275 
2276 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2277                              DeviceState *dev, Error **errp)
2278 {
2279     CPUArchId *found_cpu;
2280     Error *local_err = NULL;
2281     X86CPU *cpu = X86_CPU(dev);
2282     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2283 
2284     hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2285     if (local_err) {
2286         goto out;
2287     }
2288 
2289     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2290     found_cpu->cpu = NULL;
2291     object_unparent(OBJECT(dev));
2292 
2293     /* decrement the number of CPUs */
2294     pcms->boot_cpus--;
2295     /* Update the number of CPUs in CMOS */
2296     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2297     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2298  out:
2299     error_propagate(errp, local_err);
2300 }
2301 
2302 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2303                             DeviceState *dev, Error **errp)
2304 {
2305     int idx;
2306     CPUState *cs;
2307     CPUArchId *cpu_slot;
2308     X86CPUTopoInfo topo;
2309     X86CPU *cpu = X86_CPU(dev);
2310     MachineState *ms = MACHINE(hotplug_dev);
2311     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2312 
2313     if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2314         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2315                    ms->cpu_type);
2316         return;
2317     }
2318 
2319     /* if APIC ID is not set, set it based on socket/core/thread properties */
2320     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2321         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2322 
2323         if (cpu->socket_id < 0) {
2324             error_setg(errp, "CPU socket-id is not set");
2325             return;
2326         } else if (cpu->socket_id > max_socket) {
2327             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2328                        cpu->socket_id, max_socket);
2329             return;
2330         }
2331         if (cpu->core_id < 0) {
2332             error_setg(errp, "CPU core-id is not set");
2333             return;
2334         } else if (cpu->core_id > (smp_cores - 1)) {
2335             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2336                        cpu->core_id, smp_cores - 1);
2337             return;
2338         }
2339         if (cpu->thread_id < 0) {
2340             error_setg(errp, "CPU thread-id is not set");
2341             return;
2342         } else if (cpu->thread_id > (smp_threads - 1)) {
2343             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2344                        cpu->thread_id, smp_threads - 1);
2345             return;
2346         }
2347 
2348         topo.pkg_id = cpu->socket_id;
2349         topo.core_id = cpu->core_id;
2350         topo.smt_id = cpu->thread_id;
2351         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2352     }
2353 
2354     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2355     if (!cpu_slot) {
2356         MachineState *ms = MACHINE(pcms);
2357 
2358         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2359         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2360                   " APIC ID %" PRIu32 ", valid index range 0:%d",
2361                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2362                    ms->possible_cpus->len - 1);
2363         return;
2364     }
2365 
2366     if (cpu_slot->cpu) {
2367         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2368                    idx, cpu->apic_id);
2369         return;
2370     }
2371 
2372     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2373      * so that machine_query_hotpluggable_cpus would show correct values
2374      */
2375     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2376      * once -smp refactoring is complete and there will be CPU private
2377      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2378     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2379     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2380         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2381             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2382         return;
2383     }
2384     cpu->socket_id = topo.pkg_id;
2385 
2386     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2387         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2388             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2389         return;
2390     }
2391     cpu->core_id = topo.core_id;
2392 
2393     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2394         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2395             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2396         return;
2397     }
2398     cpu->thread_id = topo.smt_id;
2399 
2400     if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2401         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2402         return;
2403     }
2404 
2405     cs = CPU(cpu);
2406     cs->cpu_index = idx;
2407 
2408     numa_cpu_pre_plug(cpu_slot, dev, errp);
2409 }
2410 
2411 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2412                                           DeviceState *dev, Error **errp)
2413 {
2414     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2415         pc_memory_pre_plug(hotplug_dev, dev, errp);
2416     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2417         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2418     }
2419 }
2420 
2421 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2422                                       DeviceState *dev, Error **errp)
2423 {
2424     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2425         pc_memory_plug(hotplug_dev, dev, errp);
2426     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2427         pc_cpu_plug(hotplug_dev, dev, errp);
2428     }
2429 }
2430 
2431 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2432                                                 DeviceState *dev, Error **errp)
2433 {
2434     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2435         pc_memory_unplug_request(hotplug_dev, dev, errp);
2436     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2437         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2438     } else {
2439         error_setg(errp, "acpi: device unplug request for not supported device"
2440                    " type: %s", object_get_typename(OBJECT(dev)));
2441     }
2442 }
2443 
2444 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2445                                         DeviceState *dev, Error **errp)
2446 {
2447     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2448         pc_memory_unplug(hotplug_dev, dev, errp);
2449     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2450         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2451     } else {
2452         error_setg(errp, "acpi: device unplug for not supported device"
2453                    " type: %s", object_get_typename(OBJECT(dev)));
2454     }
2455 }
2456 
2457 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2458                                              DeviceState *dev)
2459 {
2460     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2461         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2462         return HOTPLUG_HANDLER(machine);
2463     }
2464 
2465     return NULL;
2466 }
2467 
2468 static void
2469 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2470                                          const char *name, void *opaque,
2471                                          Error **errp)
2472 {
2473     MachineState *ms = MACHINE(obj);
2474     int64_t value = memory_region_size(&ms->device_memory->mr);
2475 
2476     visit_type_int(v, name, &value, errp);
2477 }
2478 
2479 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2480                                             const char *name, void *opaque,
2481                                             Error **errp)
2482 {
2483     PCMachineState *pcms = PC_MACHINE(obj);
2484     uint64_t value = pcms->max_ram_below_4g;
2485 
2486     visit_type_size(v, name, &value, errp);
2487 }
2488 
2489 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2490                                             const char *name, void *opaque,
2491                                             Error **errp)
2492 {
2493     PCMachineState *pcms = PC_MACHINE(obj);
2494     Error *error = NULL;
2495     uint64_t value;
2496 
2497     visit_type_size(v, name, &value, &error);
2498     if (error) {
2499         error_propagate(errp, error);
2500         return;
2501     }
2502     if (value > 4 * GiB) {
2503         error_setg(&error,
2504                    "Machine option 'max-ram-below-4g=%"PRIu64
2505                    "' expects size less than or equal to 4G", value);
2506         error_propagate(errp, error);
2507         return;
2508     }
2509 
2510     if (value < 1 * MiB) {
2511         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2512                     "BIOS may not work with less than 1MiB", value);
2513     }
2514 
2515     pcms->max_ram_below_4g = value;
2516 }
2517 
2518 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2519                                   void *opaque, Error **errp)
2520 {
2521     PCMachineState *pcms = PC_MACHINE(obj);
2522     OnOffAuto vmport = pcms->vmport;
2523 
2524     visit_type_OnOffAuto(v, name, &vmport, errp);
2525 }
2526 
2527 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2528                                   void *opaque, Error **errp)
2529 {
2530     PCMachineState *pcms = PC_MACHINE(obj);
2531 
2532     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2533 }
2534 
2535 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2536 {
2537     bool smm_available = false;
2538 
2539     if (pcms->smm == ON_OFF_AUTO_OFF) {
2540         return false;
2541     }
2542 
2543     if (tcg_enabled() || qtest_enabled()) {
2544         smm_available = true;
2545     } else if (kvm_enabled()) {
2546         smm_available = kvm_has_smm();
2547     }
2548 
2549     if (smm_available) {
2550         return true;
2551     }
2552 
2553     if (pcms->smm == ON_OFF_AUTO_ON) {
2554         error_report("System Management Mode not supported by this hypervisor.");
2555         exit(1);
2556     }
2557     return false;
2558 }
2559 
2560 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2561                                void *opaque, Error **errp)
2562 {
2563     PCMachineState *pcms = PC_MACHINE(obj);
2564     OnOffAuto smm = pcms->smm;
2565 
2566     visit_type_OnOffAuto(v, name, &smm, errp);
2567 }
2568 
2569 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2570                                void *opaque, Error **errp)
2571 {
2572     PCMachineState *pcms = PC_MACHINE(obj);
2573 
2574     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2575 }
2576 
2577 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2578 {
2579     PCMachineState *pcms = PC_MACHINE(obj);
2580 
2581     return pcms->acpi_nvdimm_state.is_enabled;
2582 }
2583 
2584 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2585 {
2586     PCMachineState *pcms = PC_MACHINE(obj);
2587 
2588     pcms->acpi_nvdimm_state.is_enabled = value;
2589 }
2590 
2591 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2592 {
2593     PCMachineState *pcms = PC_MACHINE(obj);
2594 
2595     return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2596 }
2597 
2598 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2599                                                Error **errp)
2600 {
2601     PCMachineState *pcms = PC_MACHINE(obj);
2602     AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2603 
2604     if (strcmp(value, "cpu") == 0)
2605         nvdimm_state->persistence = 3;
2606     else if (strcmp(value, "mem-ctrl") == 0)
2607         nvdimm_state->persistence = 2;
2608     else {
2609         error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option",
2610                    value);
2611         return;
2612     }
2613 
2614     g_free(nvdimm_state->persistence_string);
2615     nvdimm_state->persistence_string = g_strdup(value);
2616 }
2617 
2618 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2619 {
2620     PCMachineState *pcms = PC_MACHINE(obj);
2621 
2622     return pcms->smbus_enabled;
2623 }
2624 
2625 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2626 {
2627     PCMachineState *pcms = PC_MACHINE(obj);
2628 
2629     pcms->smbus_enabled = value;
2630 }
2631 
2632 static bool pc_machine_get_sata(Object *obj, Error **errp)
2633 {
2634     PCMachineState *pcms = PC_MACHINE(obj);
2635 
2636     return pcms->sata_enabled;
2637 }
2638 
2639 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2640 {
2641     PCMachineState *pcms = PC_MACHINE(obj);
2642 
2643     pcms->sata_enabled = value;
2644 }
2645 
2646 static bool pc_machine_get_pit(Object *obj, Error **errp)
2647 {
2648     PCMachineState *pcms = PC_MACHINE(obj);
2649 
2650     return pcms->pit_enabled;
2651 }
2652 
2653 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2654 {
2655     PCMachineState *pcms = PC_MACHINE(obj);
2656 
2657     pcms->pit_enabled = value;
2658 }
2659 
2660 static void pc_machine_initfn(Object *obj)
2661 {
2662     PCMachineState *pcms = PC_MACHINE(obj);
2663 
2664     pcms->max_ram_below_4g = 0; /* use default */
2665     pcms->smm = ON_OFF_AUTO_AUTO;
2666     pcms->vmport = ON_OFF_AUTO_AUTO;
2667     /* nvdimm is disabled on default. */
2668     pcms->acpi_nvdimm_state.is_enabled = false;
2669     /* acpi build is enabled by default if machine supports it */
2670     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2671     pcms->smbus_enabled = true;
2672     pcms->sata_enabled = true;
2673     pcms->pit_enabled = true;
2674 }
2675 
2676 static void pc_machine_reset(void)
2677 {
2678     CPUState *cs;
2679     X86CPU *cpu;
2680 
2681     qemu_devices_reset();
2682 
2683     /* Reset APIC after devices have been reset to cancel
2684      * any changes that qemu_devices_reset() might have done.
2685      */
2686     CPU_FOREACH(cs) {
2687         cpu = X86_CPU(cs);
2688 
2689         if (cpu->apic_state) {
2690             device_reset(cpu->apic_state);
2691         }
2692     }
2693 }
2694 
2695 static CpuInstanceProperties
2696 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2697 {
2698     MachineClass *mc = MACHINE_GET_CLASS(ms);
2699     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2700 
2701     assert(cpu_index < possible_cpus->len);
2702     return possible_cpus->cpus[cpu_index].props;
2703 }
2704 
2705 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2706 {
2707    X86CPUTopoInfo topo;
2708 
2709    assert(idx < ms->possible_cpus->len);
2710    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2711                             smp_cores, smp_threads, &topo);
2712    return topo.pkg_id % nb_numa_nodes;
2713 }
2714 
2715 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2716 {
2717     int i;
2718 
2719     if (ms->possible_cpus) {
2720         /*
2721          * make sure that max_cpus hasn't changed since the first use, i.e.
2722          * -smp hasn't been parsed after it
2723         */
2724         assert(ms->possible_cpus->len == max_cpus);
2725         return ms->possible_cpus;
2726     }
2727 
2728     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2729                                   sizeof(CPUArchId) * max_cpus);
2730     ms->possible_cpus->len = max_cpus;
2731     for (i = 0; i < ms->possible_cpus->len; i++) {
2732         X86CPUTopoInfo topo;
2733 
2734         ms->possible_cpus->cpus[i].type = ms->cpu_type;
2735         ms->possible_cpus->cpus[i].vcpus_count = 1;
2736         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2737         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2738                                  smp_cores, smp_threads, &topo);
2739         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2740         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2741         ms->possible_cpus->cpus[i].props.has_core_id = true;
2742         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2743         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2744         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2745     }
2746     return ms->possible_cpus;
2747 }
2748 
2749 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2750 {
2751     /* cpu index isn't used */
2752     CPUState *cs;
2753 
2754     CPU_FOREACH(cs) {
2755         X86CPU *cpu = X86_CPU(cs);
2756 
2757         if (!cpu->apic_state) {
2758             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2759         } else {
2760             apic_deliver_nmi(cpu->apic_state);
2761         }
2762     }
2763 }
2764 
2765 static void pc_machine_class_init(ObjectClass *oc, void *data)
2766 {
2767     MachineClass *mc = MACHINE_CLASS(oc);
2768     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2769     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2770     NMIClass *nc = NMI_CLASS(oc);
2771 
2772     pcmc->pci_enabled = true;
2773     pcmc->has_acpi_build = true;
2774     pcmc->rsdp_in_ram = true;
2775     pcmc->smbios_defaults = true;
2776     pcmc->smbios_uuid_encoded = true;
2777     pcmc->gigabyte_align = true;
2778     pcmc->has_reserved_memory = true;
2779     pcmc->kvmclock_enabled = true;
2780     pcmc->enforce_aligned_dimm = true;
2781     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2782      * to be used at the moment, 32K should be enough for a while.  */
2783     pcmc->acpi_data_size = 0x20000 + 0x8000;
2784     pcmc->save_tsc_khz = true;
2785     pcmc->linuxboot_dma_enabled = true;
2786     pcmc->pvh_enabled = true;
2787     assert(!mc->get_hotplug_handler);
2788     mc->get_hotplug_handler = pc_get_hotplug_handler;
2789     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2790     mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2791     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2792     mc->auto_enable_numa_with_memhp = true;
2793     mc->has_hotpluggable_cpus = true;
2794     mc->default_boot_order = "cad";
2795     mc->hot_add_cpu = pc_hot_add_cpu;
2796     mc->block_default_type = IF_IDE;
2797     mc->max_cpus = 255;
2798     mc->reset = pc_machine_reset;
2799     hc->pre_plug = pc_machine_device_pre_plug_cb;
2800     hc->plug = pc_machine_device_plug_cb;
2801     hc->unplug_request = pc_machine_device_unplug_request_cb;
2802     hc->unplug = pc_machine_device_unplug_cb;
2803     nc->nmi_monitor_handler = x86_nmi;
2804     mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2805 
2806     object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2807         pc_machine_get_device_memory_region_size, NULL,
2808         NULL, NULL, &error_abort);
2809 
2810     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2811         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2812         NULL, NULL, &error_abort);
2813 
2814     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2815         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2816 
2817     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2818         pc_machine_get_smm, pc_machine_set_smm,
2819         NULL, NULL, &error_abort);
2820     object_class_property_set_description(oc, PC_MACHINE_SMM,
2821         "Enable SMM (pc & q35)", &error_abort);
2822 
2823     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2824         pc_machine_get_vmport, pc_machine_set_vmport,
2825         NULL, NULL, &error_abort);
2826     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2827         "Enable vmport (pc & q35)", &error_abort);
2828 
2829     object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2830         pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2831 
2832     object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2833         pc_machine_get_nvdimm_persistence,
2834         pc_machine_set_nvdimm_persistence, &error_abort);
2835 
2836     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2837         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2838 
2839     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2840         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2841 
2842     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2843         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2844 }
2845 
2846 static const TypeInfo pc_machine_info = {
2847     .name = TYPE_PC_MACHINE,
2848     .parent = TYPE_MACHINE,
2849     .abstract = true,
2850     .instance_size = sizeof(PCMachineState),
2851     .instance_init = pc_machine_initfn,
2852     .class_size = sizeof(PCMachineClass),
2853     .class_init = pc_machine_class_init,
2854     .interfaces = (InterfaceInfo[]) {
2855          { TYPE_HOTPLUG_HANDLER },
2856          { TYPE_NMI },
2857          { }
2858     },
2859 };
2860 
2861 static void pc_machine_register_types(void)
2862 {
2863     type_register_static(&pc_machine_info);
2864 }
2865 
2866 type_init(pc_machine_register_types)
2867