1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/hw.h" 27 #include "hw/i386/pc.h" 28 #include "hw/char/serial.h" 29 #include "hw/i386/apic.h" 30 #include "hw/i386/topology.h" 31 #include "sysemu/cpus.h" 32 #include "hw/block/fdc.h" 33 #include "hw/ide.h" 34 #include "hw/pci/pci.h" 35 #include "hw/pci/pci_bus.h" 36 #include "hw/nvram/fw_cfg.h" 37 #include "hw/timer/hpet.h" 38 #include "hw/smbios/smbios.h" 39 #include "hw/loader.h" 40 #include "elf.h" 41 #include "multiboot.h" 42 #include "hw/timer/mc146818rtc.h" 43 #include "hw/timer/i8254.h" 44 #include "hw/audio/pcspk.h" 45 #include "hw/pci/msi.h" 46 #include "hw/sysbus.h" 47 #include "sysemu/sysemu.h" 48 #include "sysemu/numa.h" 49 #include "sysemu/kvm.h" 50 #include "sysemu/qtest.h" 51 #include "kvm_i386.h" 52 #include "hw/xen/xen.h" 53 #include "sysemu/block-backend.h" 54 #include "hw/block/block.h" 55 #include "ui/qemu-spice.h" 56 #include "exec/memory.h" 57 #include "exec/address-spaces.h" 58 #include "sysemu/arch_init.h" 59 #include "qemu/bitmap.h" 60 #include "qemu/config-file.h" 61 #include "qemu/error-report.h" 62 #include "hw/acpi/acpi.h" 63 #include "hw/acpi/cpu_hotplug.h" 64 #include "hw/boards.h" 65 #include "hw/pci/pci_host.h" 66 #include "acpi-build.h" 67 #include "hw/mem/pc-dimm.h" 68 #include "qapi/error.h" 69 #include "qapi/visitor.h" 70 #include "qapi-visit.h" 71 #include "qom/cpu.h" 72 #include "hw/nmi.h" 73 #include "hw/i386/intel_iommu.h" 74 #include "hw/net/ne2000-isa.h" 75 76 /* debug PC/ISA interrupts */ 77 //#define DEBUG_IRQ 78 79 #ifdef DEBUG_IRQ 80 #define DPRINTF(fmt, ...) \ 81 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 82 #else 83 #define DPRINTF(fmt, ...) 84 #endif 85 86 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 87 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 88 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 89 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 90 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 91 92 #define E820_NR_ENTRIES 16 93 94 struct e820_entry { 95 uint64_t address; 96 uint64_t length; 97 uint32_t type; 98 } QEMU_PACKED __attribute((__aligned__(4))); 99 100 struct e820_table { 101 uint32_t count; 102 struct e820_entry entry[E820_NR_ENTRIES]; 103 } QEMU_PACKED __attribute((__aligned__(4))); 104 105 static struct e820_table e820_reserve; 106 static struct e820_entry *e820_table; 107 static unsigned e820_entries; 108 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 109 110 void gsi_handler(void *opaque, int n, int level) 111 { 112 GSIState *s = opaque; 113 114 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 115 if (n < ISA_NUM_IRQS) { 116 qemu_set_irq(s->i8259_irq[n], level); 117 } 118 qemu_set_irq(s->ioapic_irq[n], level); 119 } 120 121 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 122 unsigned size) 123 { 124 } 125 126 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 127 { 128 return 0xffffffffffffffffULL; 129 } 130 131 /* MSDOS compatibility mode FPU exception support */ 132 static qemu_irq ferr_irq; 133 134 void pc_register_ferr_irq(qemu_irq irq) 135 { 136 ferr_irq = irq; 137 } 138 139 /* XXX: add IGNNE support */ 140 void cpu_set_ferr(CPUX86State *s) 141 { 142 qemu_irq_raise(ferr_irq); 143 } 144 145 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 146 unsigned size) 147 { 148 qemu_irq_lower(ferr_irq); 149 } 150 151 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 152 { 153 return 0xffffffffffffffffULL; 154 } 155 156 /* TSC handling */ 157 uint64_t cpu_get_tsc(CPUX86State *env) 158 { 159 return cpu_get_ticks(); 160 } 161 162 /* IRQ handling */ 163 int cpu_get_pic_interrupt(CPUX86State *env) 164 { 165 X86CPU *cpu = x86_env_get_cpu(env); 166 int intno; 167 168 if (!kvm_irqchip_in_kernel()) { 169 intno = apic_get_interrupt(cpu->apic_state); 170 if (intno >= 0) { 171 return intno; 172 } 173 /* read the irq from the PIC */ 174 if (!apic_accept_pic_intr(cpu->apic_state)) { 175 return -1; 176 } 177 } 178 179 intno = pic_read_irq(isa_pic); 180 return intno; 181 } 182 183 static void pic_irq_request(void *opaque, int irq, int level) 184 { 185 CPUState *cs = first_cpu; 186 X86CPU *cpu = X86_CPU(cs); 187 188 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 189 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 190 CPU_FOREACH(cs) { 191 cpu = X86_CPU(cs); 192 if (apic_accept_pic_intr(cpu->apic_state)) { 193 apic_deliver_pic_intr(cpu->apic_state, level); 194 } 195 } 196 } else { 197 if (level) { 198 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 199 } else { 200 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 201 } 202 } 203 } 204 205 /* PC cmos mappings */ 206 207 #define REG_EQUIPMENT_BYTE 0x14 208 209 int cmos_get_fd_drive_type(FloppyDriveType fd0) 210 { 211 int val; 212 213 switch (fd0) { 214 case FLOPPY_DRIVE_TYPE_144: 215 /* 1.44 Mb 3"5 drive */ 216 val = 4; 217 break; 218 case FLOPPY_DRIVE_TYPE_288: 219 /* 2.88 Mb 3"5 drive */ 220 val = 5; 221 break; 222 case FLOPPY_DRIVE_TYPE_120: 223 /* 1.2 Mb 5"5 drive */ 224 val = 2; 225 break; 226 case FLOPPY_DRIVE_TYPE_NONE: 227 default: 228 val = 0; 229 break; 230 } 231 return val; 232 } 233 234 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 235 int16_t cylinders, int8_t heads, int8_t sectors) 236 { 237 rtc_set_memory(s, type_ofs, 47); 238 rtc_set_memory(s, info_ofs, cylinders); 239 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 240 rtc_set_memory(s, info_ofs + 2, heads); 241 rtc_set_memory(s, info_ofs + 3, 0xff); 242 rtc_set_memory(s, info_ofs + 4, 0xff); 243 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 244 rtc_set_memory(s, info_ofs + 6, cylinders); 245 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 246 rtc_set_memory(s, info_ofs + 8, sectors); 247 } 248 249 /* convert boot_device letter to something recognizable by the bios */ 250 static int boot_device2nibble(char boot_device) 251 { 252 switch(boot_device) { 253 case 'a': 254 case 'b': 255 return 0x01; /* floppy boot */ 256 case 'c': 257 return 0x02; /* hard drive boot */ 258 case 'd': 259 return 0x03; /* CD-ROM boot */ 260 case 'n': 261 return 0x04; /* Network boot */ 262 } 263 return 0; 264 } 265 266 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 267 { 268 #define PC_MAX_BOOT_DEVICES 3 269 int nbds, bds[3] = { 0, }; 270 int i; 271 272 nbds = strlen(boot_device); 273 if (nbds > PC_MAX_BOOT_DEVICES) { 274 error_setg(errp, "Too many boot devices for PC"); 275 return; 276 } 277 for (i = 0; i < nbds; i++) { 278 bds[i] = boot_device2nibble(boot_device[i]); 279 if (bds[i] == 0) { 280 error_setg(errp, "Invalid boot device for PC: '%c'", 281 boot_device[i]); 282 return; 283 } 284 } 285 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 286 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 287 } 288 289 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 290 { 291 set_boot_dev(opaque, boot_device, errp); 292 } 293 294 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 295 { 296 int val, nb, i; 297 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 298 FLOPPY_DRIVE_TYPE_NONE }; 299 300 /* floppy type */ 301 if (floppy) { 302 for (i = 0; i < 2; i++) { 303 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 304 } 305 } 306 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 307 cmos_get_fd_drive_type(fd_type[1]); 308 rtc_set_memory(rtc_state, 0x10, val); 309 310 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 311 nb = 0; 312 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 313 nb++; 314 } 315 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 316 nb++; 317 } 318 switch (nb) { 319 case 0: 320 break; 321 case 1: 322 val |= 0x01; /* 1 drive, ready for boot */ 323 break; 324 case 2: 325 val |= 0x41; /* 2 drives, ready for boot */ 326 break; 327 } 328 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 329 } 330 331 typedef struct pc_cmos_init_late_arg { 332 ISADevice *rtc_state; 333 BusState *idebus[2]; 334 } pc_cmos_init_late_arg; 335 336 typedef struct check_fdc_state { 337 ISADevice *floppy; 338 bool multiple; 339 } CheckFdcState; 340 341 static int check_fdc(Object *obj, void *opaque) 342 { 343 CheckFdcState *state = opaque; 344 Object *fdc; 345 uint32_t iobase; 346 Error *local_err = NULL; 347 348 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 349 if (!fdc) { 350 return 0; 351 } 352 353 iobase = object_property_get_uint(obj, "iobase", &local_err); 354 if (local_err || iobase != 0x3f0) { 355 error_free(local_err); 356 return 0; 357 } 358 359 if (state->floppy) { 360 state->multiple = true; 361 } else { 362 state->floppy = ISA_DEVICE(obj); 363 } 364 return 0; 365 } 366 367 static const char * const fdc_container_path[] = { 368 "/unattached", "/peripheral", "/peripheral-anon" 369 }; 370 371 /* 372 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 373 * and ACPI objects. 374 */ 375 ISADevice *pc_find_fdc0(void) 376 { 377 int i; 378 Object *container; 379 CheckFdcState state = { 0 }; 380 381 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 382 container = container_get(qdev_get_machine(), fdc_container_path[i]); 383 object_child_foreach(container, check_fdc, &state); 384 } 385 386 if (state.multiple) { 387 warn_report("multiple floppy disk controllers with " 388 "iobase=0x3f0 have been found"); 389 error_printf("the one being picked for CMOS setup might not reflect " 390 "your intent"); 391 } 392 393 return state.floppy; 394 } 395 396 static void pc_cmos_init_late(void *opaque) 397 { 398 pc_cmos_init_late_arg *arg = opaque; 399 ISADevice *s = arg->rtc_state; 400 int16_t cylinders; 401 int8_t heads, sectors; 402 int val; 403 int i, trans; 404 405 val = 0; 406 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 407 &cylinders, &heads, §ors) >= 0) { 408 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 409 val |= 0xf0; 410 } 411 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 412 &cylinders, &heads, §ors) >= 0) { 413 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 414 val |= 0x0f; 415 } 416 rtc_set_memory(s, 0x12, val); 417 418 val = 0; 419 for (i = 0; i < 4; i++) { 420 /* NOTE: ide_get_geometry() returns the physical 421 geometry. It is always such that: 1 <= sects <= 63, 1 422 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 423 geometry can be different if a translation is done. */ 424 if (arg->idebus[i / 2] && 425 ide_get_geometry(arg->idebus[i / 2], i % 2, 426 &cylinders, &heads, §ors) >= 0) { 427 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 428 assert((trans & ~3) == 0); 429 val |= trans << (i * 2); 430 } 431 } 432 rtc_set_memory(s, 0x39, val); 433 434 pc_cmos_init_floppy(s, pc_find_fdc0()); 435 436 qemu_unregister_reset(pc_cmos_init_late, opaque); 437 } 438 439 void pc_cmos_init(PCMachineState *pcms, 440 BusState *idebus0, BusState *idebus1, 441 ISADevice *s) 442 { 443 int val; 444 static pc_cmos_init_late_arg arg; 445 446 /* various important CMOS locations needed by PC/Bochs bios */ 447 448 /* memory size */ 449 /* base memory (first MiB) */ 450 val = MIN(pcms->below_4g_mem_size / 1024, 640); 451 rtc_set_memory(s, 0x15, val); 452 rtc_set_memory(s, 0x16, val >> 8); 453 /* extended memory (next 64MiB) */ 454 if (pcms->below_4g_mem_size > 1024 * 1024) { 455 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024; 456 } else { 457 val = 0; 458 } 459 if (val > 65535) 460 val = 65535; 461 rtc_set_memory(s, 0x17, val); 462 rtc_set_memory(s, 0x18, val >> 8); 463 rtc_set_memory(s, 0x30, val); 464 rtc_set_memory(s, 0x31, val >> 8); 465 /* memory between 16MiB and 4GiB */ 466 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) { 467 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536; 468 } else { 469 val = 0; 470 } 471 if (val > 65535) 472 val = 65535; 473 rtc_set_memory(s, 0x34, val); 474 rtc_set_memory(s, 0x35, val >> 8); 475 /* memory above 4GiB */ 476 val = pcms->above_4g_mem_size / 65536; 477 rtc_set_memory(s, 0x5b, val); 478 rtc_set_memory(s, 0x5c, val >> 8); 479 rtc_set_memory(s, 0x5d, val >> 16); 480 481 object_property_add_link(OBJECT(pcms), "rtc_state", 482 TYPE_ISA_DEVICE, 483 (Object **)&pcms->rtc, 484 object_property_allow_set_link, 485 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort); 486 object_property_set_link(OBJECT(pcms), OBJECT(s), 487 "rtc_state", &error_abort); 488 489 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 490 491 val = 0; 492 val |= 0x02; /* FPU is there */ 493 val |= 0x04; /* PS/2 mouse installed */ 494 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 495 496 /* hard drives and FDC */ 497 arg.rtc_state = s; 498 arg.idebus[0] = idebus0; 499 arg.idebus[1] = idebus1; 500 qemu_register_reset(pc_cmos_init_late, &arg); 501 } 502 503 #define TYPE_PORT92 "port92" 504 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 505 506 /* port 92 stuff: could be split off */ 507 typedef struct Port92State { 508 ISADevice parent_obj; 509 510 MemoryRegion io; 511 uint8_t outport; 512 qemu_irq a20_out; 513 } Port92State; 514 515 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 516 unsigned size) 517 { 518 Port92State *s = opaque; 519 int oldval = s->outport; 520 521 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 522 s->outport = val; 523 qemu_set_irq(s->a20_out, (val >> 1) & 1); 524 if ((val & 1) && !(oldval & 1)) { 525 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 526 } 527 } 528 529 static uint64_t port92_read(void *opaque, hwaddr addr, 530 unsigned size) 531 { 532 Port92State *s = opaque; 533 uint32_t ret; 534 535 ret = s->outport; 536 DPRINTF("port92: read 0x%02x\n", ret); 537 return ret; 538 } 539 540 static void port92_init(ISADevice *dev, qemu_irq a20_out) 541 { 542 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 543 } 544 545 static const VMStateDescription vmstate_port92_isa = { 546 .name = "port92", 547 .version_id = 1, 548 .minimum_version_id = 1, 549 .fields = (VMStateField[]) { 550 VMSTATE_UINT8(outport, Port92State), 551 VMSTATE_END_OF_LIST() 552 } 553 }; 554 555 static void port92_reset(DeviceState *d) 556 { 557 Port92State *s = PORT92(d); 558 559 s->outport &= ~1; 560 } 561 562 static const MemoryRegionOps port92_ops = { 563 .read = port92_read, 564 .write = port92_write, 565 .impl = { 566 .min_access_size = 1, 567 .max_access_size = 1, 568 }, 569 .endianness = DEVICE_LITTLE_ENDIAN, 570 }; 571 572 static void port92_initfn(Object *obj) 573 { 574 Port92State *s = PORT92(obj); 575 576 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 577 578 s->outport = 0; 579 580 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 581 } 582 583 static void port92_realizefn(DeviceState *dev, Error **errp) 584 { 585 ISADevice *isadev = ISA_DEVICE(dev); 586 Port92State *s = PORT92(dev); 587 588 isa_register_ioport(isadev, &s->io, 0x92); 589 } 590 591 static void port92_class_initfn(ObjectClass *klass, void *data) 592 { 593 DeviceClass *dc = DEVICE_CLASS(klass); 594 595 dc->realize = port92_realizefn; 596 dc->reset = port92_reset; 597 dc->vmsd = &vmstate_port92_isa; 598 /* 599 * Reason: unlike ordinary ISA devices, this one needs additional 600 * wiring: its A20 output line needs to be wired up by 601 * port92_init(). 602 */ 603 dc->user_creatable = false; 604 } 605 606 static const TypeInfo port92_info = { 607 .name = TYPE_PORT92, 608 .parent = TYPE_ISA_DEVICE, 609 .instance_size = sizeof(Port92State), 610 .instance_init = port92_initfn, 611 .class_init = port92_class_initfn, 612 }; 613 614 static void port92_register_types(void) 615 { 616 type_register_static(&port92_info); 617 } 618 619 type_init(port92_register_types) 620 621 static void handle_a20_line_change(void *opaque, int irq, int level) 622 { 623 X86CPU *cpu = opaque; 624 625 /* XXX: send to all CPUs ? */ 626 /* XXX: add logic to handle multiple A20 line sources */ 627 x86_cpu_set_a20(cpu, level); 628 } 629 630 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 631 { 632 int index = le32_to_cpu(e820_reserve.count); 633 struct e820_entry *entry; 634 635 if (type != E820_RAM) { 636 /* old FW_CFG_E820_TABLE entry -- reservations only */ 637 if (index >= E820_NR_ENTRIES) { 638 return -EBUSY; 639 } 640 entry = &e820_reserve.entry[index++]; 641 642 entry->address = cpu_to_le64(address); 643 entry->length = cpu_to_le64(length); 644 entry->type = cpu_to_le32(type); 645 646 e820_reserve.count = cpu_to_le32(index); 647 } 648 649 /* new "etc/e820" file -- include ram too */ 650 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 651 e820_table[e820_entries].address = cpu_to_le64(address); 652 e820_table[e820_entries].length = cpu_to_le64(length); 653 e820_table[e820_entries].type = cpu_to_le32(type); 654 e820_entries++; 655 656 return e820_entries; 657 } 658 659 int e820_get_num_entries(void) 660 { 661 return e820_entries; 662 } 663 664 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 665 { 666 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 667 *address = le64_to_cpu(e820_table[idx].address); 668 *length = le64_to_cpu(e820_table[idx].length); 669 return true; 670 } 671 return false; 672 } 673 674 /* Enables contiguous-apic-ID mode, for compatibility */ 675 static bool compat_apic_id_mode; 676 677 void enable_compat_apic_id_mode(void) 678 { 679 compat_apic_id_mode = true; 680 } 681 682 /* Calculates initial APIC ID for a specific CPU index 683 * 684 * Currently we need to be able to calculate the APIC ID from the CPU index 685 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 686 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 687 * all CPUs up to max_cpus. 688 */ 689 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 690 { 691 uint32_t correct_id; 692 static bool warned; 693 694 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 695 if (compat_apic_id_mode) { 696 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 697 error_report("APIC IDs set in compatibility mode, " 698 "CPU topology won't match the configuration"); 699 warned = true; 700 } 701 return cpu_index; 702 } else { 703 return correct_id; 704 } 705 } 706 707 static void pc_build_smbios(PCMachineState *pcms) 708 { 709 uint8_t *smbios_tables, *smbios_anchor; 710 size_t smbios_tables_len, smbios_anchor_len; 711 struct smbios_phys_mem_area *mem_array; 712 unsigned i, array_count; 713 MachineState *ms = MACHINE(pcms); 714 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 715 716 /* tell smbios about cpuid version and features */ 717 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 718 719 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 720 if (smbios_tables) { 721 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 722 smbios_tables, smbios_tables_len); 723 } 724 725 /* build the array of physical mem area from e820 table */ 726 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 727 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 728 uint64_t addr, len; 729 730 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 731 mem_array[array_count].address = addr; 732 mem_array[array_count].length = len; 733 array_count++; 734 } 735 } 736 smbios_get_tables(mem_array, array_count, 737 &smbios_tables, &smbios_tables_len, 738 &smbios_anchor, &smbios_anchor_len); 739 g_free(mem_array); 740 741 if (smbios_anchor) { 742 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 743 smbios_tables, smbios_tables_len); 744 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 745 smbios_anchor, smbios_anchor_len); 746 } 747 } 748 749 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 750 { 751 FWCfgState *fw_cfg; 752 uint64_t *numa_fw_cfg; 753 int i; 754 const CPUArchIdList *cpus; 755 MachineClass *mc = MACHINE_GET_CLASS(pcms); 756 757 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 758 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 759 760 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 761 * 762 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 763 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 764 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 765 * for CPU hotplug also uses APIC ID and not "CPU index". 766 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 767 * but the "limit to the APIC ID values SeaBIOS may see". 768 * 769 * So for compatibility reasons with old BIOSes we are stuck with 770 * "etc/max-cpus" actually being apic_id_limit 771 */ 772 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 773 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 774 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 775 acpi_tables, acpi_tables_len); 776 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 777 778 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 779 &e820_reserve, sizeof(e820_reserve)); 780 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 781 sizeof(struct e820_entry) * e820_entries); 782 783 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 784 /* allocate memory for the NUMA channel: one (64bit) word for the number 785 * of nodes, one word for each VCPU->node and one word for each node to 786 * hold the amount of memory. 787 */ 788 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 789 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 790 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 791 for (i = 0; i < cpus->len; i++) { 792 unsigned int apic_id = cpus->cpus[i].arch_id; 793 assert(apic_id < pcms->apic_id_limit); 794 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 795 } 796 for (i = 0; i < nb_numa_nodes; i++) { 797 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 798 cpu_to_le64(numa_info[i].node_mem); 799 } 800 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 801 (1 + pcms->apic_id_limit + nb_numa_nodes) * 802 sizeof(*numa_fw_cfg)); 803 804 return fw_cfg; 805 } 806 807 static long get_file_size(FILE *f) 808 { 809 long where, size; 810 811 /* XXX: on Unix systems, using fstat() probably makes more sense */ 812 813 where = ftell(f); 814 fseek(f, 0, SEEK_END); 815 size = ftell(f); 816 fseek(f, where, SEEK_SET); 817 818 return size; 819 } 820 821 /* setup_data types */ 822 #define SETUP_NONE 0 823 #define SETUP_E820_EXT 1 824 #define SETUP_DTB 2 825 #define SETUP_PCI 3 826 #define SETUP_EFI 4 827 828 struct setup_data { 829 uint64_t next; 830 uint32_t type; 831 uint32_t len; 832 uint8_t data[0]; 833 } __attribute__((packed)); 834 835 static void load_linux(PCMachineState *pcms, 836 FWCfgState *fw_cfg) 837 { 838 uint16_t protocol; 839 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 840 int dtb_size, setup_data_offset; 841 uint32_t initrd_max; 842 uint8_t header[8192], *setup, *kernel, *initrd_data; 843 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 844 FILE *f; 845 char *vmode; 846 MachineState *machine = MACHINE(pcms); 847 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 848 struct setup_data *setup_data; 849 const char *kernel_filename = machine->kernel_filename; 850 const char *initrd_filename = machine->initrd_filename; 851 const char *dtb_filename = machine->dtb; 852 const char *kernel_cmdline = machine->kernel_cmdline; 853 854 /* Align to 16 bytes as a paranoia measure */ 855 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 856 857 /* load the kernel header */ 858 f = fopen(kernel_filename, "rb"); 859 if (!f || !(kernel_size = get_file_size(f)) || 860 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 861 MIN(ARRAY_SIZE(header), kernel_size)) { 862 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 863 kernel_filename, strerror(errno)); 864 exit(1); 865 } 866 867 /* kernel protocol version */ 868 #if 0 869 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 870 #endif 871 if (ldl_p(header+0x202) == 0x53726448) { 872 protocol = lduw_p(header+0x206); 873 } else { 874 /* This looks like a multiboot kernel. If it is, let's stop 875 treating it like a Linux kernel. */ 876 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 877 kernel_cmdline, kernel_size, header)) { 878 return; 879 } 880 protocol = 0; 881 } 882 883 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 884 /* Low kernel */ 885 real_addr = 0x90000; 886 cmdline_addr = 0x9a000 - cmdline_size; 887 prot_addr = 0x10000; 888 } else if (protocol < 0x202) { 889 /* High but ancient kernel */ 890 real_addr = 0x90000; 891 cmdline_addr = 0x9a000 - cmdline_size; 892 prot_addr = 0x100000; 893 } else { 894 /* High and recent kernel */ 895 real_addr = 0x10000; 896 cmdline_addr = 0x20000; 897 prot_addr = 0x100000; 898 } 899 900 #if 0 901 fprintf(stderr, 902 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 903 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 904 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 905 real_addr, 906 cmdline_addr, 907 prot_addr); 908 #endif 909 910 /* highest address for loading the initrd */ 911 if (protocol >= 0x203) { 912 initrd_max = ldl_p(header+0x22c); 913 } else { 914 initrd_max = 0x37ffffff; 915 } 916 917 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 918 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 919 } 920 921 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 922 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 923 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 924 925 if (protocol >= 0x202) { 926 stl_p(header+0x228, cmdline_addr); 927 } else { 928 stw_p(header+0x20, 0xA33F); 929 stw_p(header+0x22, cmdline_addr-real_addr); 930 } 931 932 /* handle vga= parameter */ 933 vmode = strstr(kernel_cmdline, "vga="); 934 if (vmode) { 935 unsigned int video_mode; 936 /* skip "vga=" */ 937 vmode += 4; 938 if (!strncmp(vmode, "normal", 6)) { 939 video_mode = 0xffff; 940 } else if (!strncmp(vmode, "ext", 3)) { 941 video_mode = 0xfffe; 942 } else if (!strncmp(vmode, "ask", 3)) { 943 video_mode = 0xfffd; 944 } else { 945 video_mode = strtol(vmode, NULL, 0); 946 } 947 stw_p(header+0x1fa, video_mode); 948 } 949 950 /* loader type */ 951 /* High nybble = B reserved for QEMU; low nybble is revision number. 952 If this code is substantially changed, you may want to consider 953 incrementing the revision. */ 954 if (protocol >= 0x200) { 955 header[0x210] = 0xB0; 956 } 957 /* heap */ 958 if (protocol >= 0x201) { 959 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 960 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 961 } 962 963 /* load initrd */ 964 if (initrd_filename) { 965 if (protocol < 0x200) { 966 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 967 exit(1); 968 } 969 970 initrd_size = get_image_size(initrd_filename); 971 if (initrd_size < 0) { 972 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 973 initrd_filename, strerror(errno)); 974 exit(1); 975 } 976 977 initrd_addr = (initrd_max-initrd_size) & ~4095; 978 979 initrd_data = g_malloc(initrd_size); 980 load_image(initrd_filename, initrd_data); 981 982 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 983 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 984 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 985 986 stl_p(header+0x218, initrd_addr); 987 stl_p(header+0x21c, initrd_size); 988 } 989 990 /* load kernel and setup */ 991 setup_size = header[0x1f1]; 992 if (setup_size == 0) { 993 setup_size = 4; 994 } 995 setup_size = (setup_size+1)*512; 996 if (setup_size > kernel_size) { 997 fprintf(stderr, "qemu: invalid kernel header\n"); 998 exit(1); 999 } 1000 kernel_size -= setup_size; 1001 1002 setup = g_malloc(setup_size); 1003 kernel = g_malloc(kernel_size); 1004 fseek(f, 0, SEEK_SET); 1005 if (fread(setup, 1, setup_size, f) != setup_size) { 1006 fprintf(stderr, "fread() failed\n"); 1007 exit(1); 1008 } 1009 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1010 fprintf(stderr, "fread() failed\n"); 1011 exit(1); 1012 } 1013 fclose(f); 1014 1015 /* append dtb to kernel */ 1016 if (dtb_filename) { 1017 if (protocol < 0x209) { 1018 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1019 exit(1); 1020 } 1021 1022 dtb_size = get_image_size(dtb_filename); 1023 if (dtb_size <= 0) { 1024 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1025 dtb_filename, strerror(errno)); 1026 exit(1); 1027 } 1028 1029 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1030 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1031 kernel = g_realloc(kernel, kernel_size); 1032 1033 stq_p(header+0x250, prot_addr + setup_data_offset); 1034 1035 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1036 setup_data->next = 0; 1037 setup_data->type = cpu_to_le32(SETUP_DTB); 1038 setup_data->len = cpu_to_le32(dtb_size); 1039 1040 load_image_size(dtb_filename, setup_data->data, dtb_size); 1041 } 1042 1043 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1044 1045 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1046 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1047 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1048 1049 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1050 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1051 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1052 1053 option_rom[nb_option_roms].bootindex = 0; 1054 option_rom[nb_option_roms].name = "linuxboot.bin"; 1055 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1056 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1057 } 1058 nb_option_roms++; 1059 } 1060 1061 #define NE2000_NB_MAX 6 1062 1063 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1064 0x280, 0x380 }; 1065 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1066 1067 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1068 { 1069 static int nb_ne2k = 0; 1070 1071 if (nb_ne2k == NE2000_NB_MAX) 1072 return; 1073 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1074 ne2000_irq[nb_ne2k], nd); 1075 nb_ne2k++; 1076 } 1077 1078 DeviceState *cpu_get_current_apic(void) 1079 { 1080 if (current_cpu) { 1081 X86CPU *cpu = X86_CPU(current_cpu); 1082 return cpu->apic_state; 1083 } else { 1084 return NULL; 1085 } 1086 } 1087 1088 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1089 { 1090 X86CPU *cpu = opaque; 1091 1092 if (level) { 1093 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1094 } 1095 } 1096 1097 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1098 { 1099 Object *cpu = NULL; 1100 Error *local_err = NULL; 1101 1102 cpu = object_new(typename); 1103 1104 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1105 object_property_set_bool(cpu, true, "realized", &local_err); 1106 1107 object_unref(cpu); 1108 error_propagate(errp, local_err); 1109 } 1110 1111 void pc_hot_add_cpu(const int64_t id, Error **errp) 1112 { 1113 MachineState *ms = MACHINE(qdev_get_machine()); 1114 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1115 Error *local_err = NULL; 1116 1117 if (id < 0) { 1118 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1119 return; 1120 } 1121 1122 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1123 error_setg(errp, "Unable to add CPU: %" PRIi64 1124 ", resulting APIC ID (%" PRIi64 ") is too large", 1125 id, apic_id); 1126 return; 1127 } 1128 1129 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1130 if (local_err) { 1131 error_propagate(errp, local_err); 1132 return; 1133 } 1134 } 1135 1136 void pc_cpus_init(PCMachineState *pcms) 1137 { 1138 int i; 1139 const CPUArchIdList *possible_cpus; 1140 MachineState *ms = MACHINE(pcms); 1141 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1142 1143 /* Calculates the limit to CPU APIC ID values 1144 * 1145 * Limit for the APIC ID value, so that all 1146 * CPU APIC IDs are < pcms->apic_id_limit. 1147 * 1148 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1149 */ 1150 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1151 possible_cpus = mc->possible_cpu_arch_ids(ms); 1152 for (i = 0; i < smp_cpus; i++) { 1153 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id, 1154 &error_fatal); 1155 } 1156 } 1157 1158 static void pc_build_feature_control_file(PCMachineState *pcms) 1159 { 1160 MachineState *ms = MACHINE(pcms); 1161 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1162 CPUX86State *env = &cpu->env; 1163 uint32_t unused, ecx, edx; 1164 uint64_t feature_control_bits = 0; 1165 uint64_t *val; 1166 1167 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1168 if (ecx & CPUID_EXT_VMX) { 1169 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1170 } 1171 1172 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1173 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1174 (env->mcg_cap & MCG_LMCE_P)) { 1175 feature_control_bits |= FEATURE_CONTROL_LMCE; 1176 } 1177 1178 if (!feature_control_bits) { 1179 return; 1180 } 1181 1182 val = g_malloc(sizeof(*val)); 1183 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1184 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1185 } 1186 1187 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1188 { 1189 if (cpus_count > 0xff) { 1190 /* If the number of CPUs can't be represented in 8 bits, the 1191 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1192 * to make old BIOSes fail more predictably. 1193 */ 1194 rtc_set_memory(rtc, 0x5f, 0); 1195 } else { 1196 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1197 } 1198 } 1199 1200 static 1201 void pc_machine_done(Notifier *notifier, void *data) 1202 { 1203 PCMachineState *pcms = container_of(notifier, 1204 PCMachineState, machine_done); 1205 PCIBus *bus = pcms->bus; 1206 1207 /* set the number of CPUs */ 1208 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1209 1210 if (bus) { 1211 int extra_hosts = 0; 1212 1213 QLIST_FOREACH(bus, &bus->child, sibling) { 1214 /* look for expander root buses */ 1215 if (pci_bus_is_root(bus)) { 1216 extra_hosts++; 1217 } 1218 } 1219 if (extra_hosts && pcms->fw_cfg) { 1220 uint64_t *val = g_malloc(sizeof(*val)); 1221 *val = cpu_to_le64(extra_hosts); 1222 fw_cfg_add_file(pcms->fw_cfg, 1223 "etc/extra-pci-roots", val, sizeof(*val)); 1224 } 1225 } 1226 1227 acpi_setup(); 1228 if (pcms->fw_cfg) { 1229 pc_build_smbios(pcms); 1230 pc_build_feature_control_file(pcms); 1231 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1232 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1233 } 1234 1235 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1236 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1237 1238 if (!iommu || !iommu->x86_iommu.intr_supported || 1239 iommu->intr_eim != ON_OFF_AUTO_ON) { 1240 error_report("current -smp configuration requires " 1241 "Extended Interrupt Mode enabled. " 1242 "You can add an IOMMU using: " 1243 "-device intel-iommu,intremap=on,eim=on"); 1244 exit(EXIT_FAILURE); 1245 } 1246 } 1247 } 1248 1249 void pc_guest_info_init(PCMachineState *pcms) 1250 { 1251 int i; 1252 1253 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1254 pcms->numa_nodes = nb_numa_nodes; 1255 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1256 sizeof *pcms->node_mem); 1257 for (i = 0; i < nb_numa_nodes; i++) { 1258 pcms->node_mem[i] = numa_info[i].node_mem; 1259 } 1260 1261 pcms->machine_done.notify = pc_machine_done; 1262 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1263 } 1264 1265 /* setup pci memory address space mapping into system address space */ 1266 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1267 MemoryRegion *pci_address_space) 1268 { 1269 /* Set to lower priority than RAM */ 1270 memory_region_add_subregion_overlap(system_memory, 0x0, 1271 pci_address_space, -1); 1272 } 1273 1274 void pc_acpi_init(const char *default_dsdt) 1275 { 1276 char *filename; 1277 1278 if (acpi_tables != NULL) { 1279 /* manually set via -acpitable, leave it alone */ 1280 return; 1281 } 1282 1283 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1284 if (filename == NULL) { 1285 warn_report("failed to find %s", default_dsdt); 1286 } else { 1287 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1288 &error_abort); 1289 Error *err = NULL; 1290 1291 qemu_opt_set(opts, "file", filename, &error_abort); 1292 1293 acpi_table_add_builtin(opts, &err); 1294 if (err) { 1295 warn_reportf_err(err, "failed to load %s: ", filename); 1296 } 1297 g_free(filename); 1298 } 1299 } 1300 1301 void xen_load_linux(PCMachineState *pcms) 1302 { 1303 int i; 1304 FWCfgState *fw_cfg; 1305 1306 assert(MACHINE(pcms)->kernel_filename != NULL); 1307 1308 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1309 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1310 rom_set_fw(fw_cfg); 1311 1312 load_linux(pcms, fw_cfg); 1313 for (i = 0; i < nb_option_roms; i++) { 1314 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1315 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1316 !strcmp(option_rom[i].name, "multiboot.bin")); 1317 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1318 } 1319 pcms->fw_cfg = fw_cfg; 1320 } 1321 1322 void pc_memory_init(PCMachineState *pcms, 1323 MemoryRegion *system_memory, 1324 MemoryRegion *rom_memory, 1325 MemoryRegion **ram_memory) 1326 { 1327 int linux_boot, i; 1328 MemoryRegion *ram, *option_rom_mr; 1329 MemoryRegion *ram_below_4g, *ram_above_4g; 1330 FWCfgState *fw_cfg; 1331 MachineState *machine = MACHINE(pcms); 1332 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1333 1334 assert(machine->ram_size == pcms->below_4g_mem_size + 1335 pcms->above_4g_mem_size); 1336 1337 linux_boot = (machine->kernel_filename != NULL); 1338 1339 /* Allocate RAM. We allocate it as a single memory region and use 1340 * aliases to address portions of it, mostly for backwards compatibility 1341 * with older qemus that used qemu_ram_alloc(). 1342 */ 1343 ram = g_malloc(sizeof(*ram)); 1344 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1345 machine->ram_size); 1346 *ram_memory = ram; 1347 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1348 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1349 0, pcms->below_4g_mem_size); 1350 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1351 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1352 if (pcms->above_4g_mem_size > 0) { 1353 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1354 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1355 pcms->below_4g_mem_size, 1356 pcms->above_4g_mem_size); 1357 memory_region_add_subregion(system_memory, 0x100000000ULL, 1358 ram_above_4g); 1359 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1360 } 1361 1362 if (!pcmc->has_reserved_memory && 1363 (machine->ram_slots || 1364 (machine->maxram_size > machine->ram_size))) { 1365 MachineClass *mc = MACHINE_GET_CLASS(machine); 1366 1367 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1368 mc->name); 1369 exit(EXIT_FAILURE); 1370 } 1371 1372 /* initialize hotplug memory address space */ 1373 if (pcmc->has_reserved_memory && 1374 (machine->ram_size < machine->maxram_size)) { 1375 ram_addr_t hotplug_mem_size = 1376 machine->maxram_size - machine->ram_size; 1377 1378 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1379 error_report("unsupported amount of memory slots: %"PRIu64, 1380 machine->ram_slots); 1381 exit(EXIT_FAILURE); 1382 } 1383 1384 if (QEMU_ALIGN_UP(machine->maxram_size, 1385 TARGET_PAGE_SIZE) != machine->maxram_size) { 1386 error_report("maximum memory size must by aligned to multiple of " 1387 "%d bytes", TARGET_PAGE_SIZE); 1388 exit(EXIT_FAILURE); 1389 } 1390 1391 pcms->hotplug_memory.base = 1392 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30); 1393 1394 if (pcmc->enforce_aligned_dimm) { 1395 /* size hotplug region assuming 1G page max alignment per slot */ 1396 hotplug_mem_size += (1ULL << 30) * machine->ram_slots; 1397 } 1398 1399 if ((pcms->hotplug_memory.base + hotplug_mem_size) < 1400 hotplug_mem_size) { 1401 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1402 machine->maxram_size); 1403 exit(EXIT_FAILURE); 1404 } 1405 1406 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms), 1407 "hotplug-memory", hotplug_mem_size); 1408 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base, 1409 &pcms->hotplug_memory.mr); 1410 } 1411 1412 /* Initialize PC system firmware */ 1413 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1414 1415 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1416 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1417 &error_fatal); 1418 if (pcmc->pci_enabled) { 1419 memory_region_set_readonly(option_rom_mr, true); 1420 } 1421 memory_region_add_subregion_overlap(rom_memory, 1422 PC_ROM_MIN_VGA, 1423 option_rom_mr, 1424 1); 1425 1426 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1427 1428 rom_set_fw(fw_cfg); 1429 1430 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) { 1431 uint64_t *val = g_malloc(sizeof(*val)); 1432 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1433 uint64_t res_mem_end = pcms->hotplug_memory.base; 1434 1435 if (!pcmc->broken_reserved_end) { 1436 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr); 1437 } 1438 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30)); 1439 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1440 } 1441 1442 if (linux_boot) { 1443 load_linux(pcms, fw_cfg); 1444 } 1445 1446 for (i = 0; i < nb_option_roms; i++) { 1447 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1448 } 1449 pcms->fw_cfg = fw_cfg; 1450 1451 /* Init default IOAPIC address space */ 1452 pcms->ioapic_as = &address_space_memory; 1453 } 1454 1455 /* 1456 * The 64bit pci hole starts after "above 4G RAM" and 1457 * potentially the space reserved for memory hotplug. 1458 */ 1459 uint64_t pc_pci_hole64_start(void) 1460 { 1461 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1462 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1463 uint64_t hole64_start = 0; 1464 1465 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) { 1466 hole64_start = pcms->hotplug_memory.base; 1467 if (!pcmc->broken_reserved_end) { 1468 hole64_start += memory_region_size(&pcms->hotplug_memory.mr); 1469 } 1470 } else { 1471 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1472 } 1473 1474 return ROUND_UP(hole64_start, 1ULL << 30); 1475 } 1476 1477 qemu_irq pc_allocate_cpu_irq(void) 1478 { 1479 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1480 } 1481 1482 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1483 { 1484 DeviceState *dev = NULL; 1485 1486 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1487 if (pci_bus) { 1488 PCIDevice *pcidev = pci_vga_init(pci_bus); 1489 dev = pcidev ? &pcidev->qdev : NULL; 1490 } else if (isa_bus) { 1491 ISADevice *isadev = isa_vga_init(isa_bus); 1492 dev = isadev ? DEVICE(isadev) : NULL; 1493 } 1494 rom_reset_order_override(); 1495 return dev; 1496 } 1497 1498 static const MemoryRegionOps ioport80_io_ops = { 1499 .write = ioport80_write, 1500 .read = ioport80_read, 1501 .endianness = DEVICE_NATIVE_ENDIAN, 1502 .impl = { 1503 .min_access_size = 1, 1504 .max_access_size = 1, 1505 }, 1506 }; 1507 1508 static const MemoryRegionOps ioportF0_io_ops = { 1509 .write = ioportF0_write, 1510 .read = ioportF0_read, 1511 .endianness = DEVICE_NATIVE_ENDIAN, 1512 .impl = { 1513 .min_access_size = 1, 1514 .max_access_size = 1, 1515 }, 1516 }; 1517 1518 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1519 ISADevice **rtc_state, 1520 bool create_fdctrl, 1521 bool no_vmport, 1522 bool has_pit, 1523 uint32_t hpet_irqs) 1524 { 1525 int i; 1526 DriveInfo *fd[MAX_FD]; 1527 DeviceState *hpet = NULL; 1528 int pit_isa_irq = 0; 1529 qemu_irq pit_alt_irq = NULL; 1530 qemu_irq rtc_irq = NULL; 1531 qemu_irq *a20_line; 1532 ISADevice *i8042, *port92, *vmmouse, *pit = NULL; 1533 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1534 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1535 1536 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1537 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1538 1539 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1540 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1541 1542 /* 1543 * Check if an HPET shall be created. 1544 * 1545 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1546 * when the HPET wants to take over. Thus we have to disable the latter. 1547 */ 1548 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1549 /* In order to set property, here not using sysbus_try_create_simple */ 1550 hpet = qdev_try_create(NULL, TYPE_HPET); 1551 if (hpet) { 1552 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1553 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1554 * IRQ8 and IRQ2. 1555 */ 1556 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1557 HPET_INTCAP, NULL); 1558 if (!compat) { 1559 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1560 } 1561 qdev_init_nofail(hpet); 1562 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1563 1564 for (i = 0; i < GSI_NUM_PINS; i++) { 1565 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1566 } 1567 pit_isa_irq = -1; 1568 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1569 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1570 } 1571 } 1572 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 1573 1574 qemu_register_boot_set(pc_boot_set, *rtc_state); 1575 1576 if (!xen_enabled() && has_pit) { 1577 if (kvm_pit_in_kernel()) { 1578 pit = kvm_pit_init(isa_bus, 0x40); 1579 } else { 1580 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1581 } 1582 if (hpet) { 1583 /* connect PIT to output control line of the HPET */ 1584 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1585 } 1586 pcspk_init(isa_bus, pit); 1587 } 1588 1589 serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS); 1590 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1591 1592 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1593 i8042 = isa_create_simple(isa_bus, "i8042"); 1594 i8042_setup_a20_line(i8042, a20_line[0]); 1595 if (!no_vmport) { 1596 vmport_init(isa_bus); 1597 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1598 } else { 1599 vmmouse = NULL; 1600 } 1601 if (vmmouse) { 1602 DeviceState *dev = DEVICE(vmmouse); 1603 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1604 qdev_init_nofail(dev); 1605 } 1606 port92 = isa_create_simple(isa_bus, "port92"); 1607 port92_init(port92, a20_line[1]); 1608 g_free(a20_line); 1609 1610 DMA_init(isa_bus, 0); 1611 1612 for(i = 0; i < MAX_FD; i++) { 1613 fd[i] = drive_get(IF_FLOPPY, 0, i); 1614 create_fdctrl |= !!fd[i]; 1615 } 1616 if (create_fdctrl) { 1617 fdctrl_init_isa(isa_bus, fd); 1618 } 1619 } 1620 1621 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) 1622 { 1623 int i; 1624 1625 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1626 for (i = 0; i < nb_nics; i++) { 1627 NICInfo *nd = &nd_table[i]; 1628 1629 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { 1630 pc_init_ne2k_isa(isa_bus, nd); 1631 } else { 1632 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL); 1633 } 1634 } 1635 rom_reset_order_override(); 1636 } 1637 1638 void pc_pci_device_init(PCIBus *pci_bus) 1639 { 1640 int max_bus; 1641 int bus; 1642 1643 /* Note: if=scsi is deprecated with PC machine types */ 1644 max_bus = drive_get_max_bus(IF_SCSI); 1645 for (bus = 0; bus <= max_bus; bus++) { 1646 pci_create_simple(pci_bus, -1, "lsi53c895a"); 1647 /* 1648 * By not creating frontends here, we make 1649 * scsi_legacy_handle_cmdline() create them, and warn that 1650 * this usage is deprecated. 1651 */ 1652 } 1653 } 1654 1655 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1656 { 1657 DeviceState *dev; 1658 SysBusDevice *d; 1659 unsigned int i; 1660 1661 if (kvm_ioapic_in_kernel()) { 1662 dev = qdev_create(NULL, "kvm-ioapic"); 1663 } else { 1664 dev = qdev_create(NULL, "ioapic"); 1665 } 1666 if (parent_name) { 1667 object_property_add_child(object_resolve_path(parent_name, NULL), 1668 "ioapic", OBJECT(dev), NULL); 1669 } 1670 qdev_init_nofail(dev); 1671 d = SYS_BUS_DEVICE(dev); 1672 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1673 1674 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1675 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1676 } 1677 } 1678 1679 static void pc_dimm_plug(HotplugHandler *hotplug_dev, 1680 DeviceState *dev, Error **errp) 1681 { 1682 HotplugHandlerClass *hhc; 1683 Error *local_err = NULL; 1684 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1685 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1686 PCDIMMDevice *dimm = PC_DIMM(dev); 1687 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1688 MemoryRegion *mr; 1689 uint64_t align = TARGET_PAGE_SIZE; 1690 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1691 1692 mr = ddc->get_memory_region(dimm, &local_err); 1693 if (local_err) { 1694 goto out; 1695 } 1696 1697 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) { 1698 align = memory_region_get_alignment(mr); 1699 } 1700 1701 /* 1702 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1703 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1704 * addition to cover this case. 1705 */ 1706 if (!pcms->acpi_dev || !acpi_enabled) { 1707 error_setg(&local_err, 1708 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1709 goto out; 1710 } 1711 1712 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) { 1713 error_setg(&local_err, 1714 "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1715 goto out; 1716 } 1717 1718 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err); 1719 if (local_err) { 1720 goto out; 1721 } 1722 1723 if (is_nvdimm) { 1724 nvdimm_plug(&pcms->acpi_nvdimm_state); 1725 } 1726 1727 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1728 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1729 out: 1730 error_propagate(errp, local_err); 1731 } 1732 1733 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev, 1734 DeviceState *dev, Error **errp) 1735 { 1736 HotplugHandlerClass *hhc; 1737 Error *local_err = NULL; 1738 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1739 1740 /* 1741 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1742 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1743 * addition to cover this case. 1744 */ 1745 if (!pcms->acpi_dev || !acpi_enabled) { 1746 error_setg(&local_err, 1747 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1748 goto out; 1749 } 1750 1751 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1752 error_setg(&local_err, 1753 "nvdimm device hot unplug is not supported yet."); 1754 goto out; 1755 } 1756 1757 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1758 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1759 1760 out: 1761 error_propagate(errp, local_err); 1762 } 1763 1764 static void pc_dimm_unplug(HotplugHandler *hotplug_dev, 1765 DeviceState *dev, Error **errp) 1766 { 1767 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1768 PCDIMMDevice *dimm = PC_DIMM(dev); 1769 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1770 MemoryRegion *mr; 1771 HotplugHandlerClass *hhc; 1772 Error *local_err = NULL; 1773 1774 mr = ddc->get_memory_region(dimm, &local_err); 1775 if (local_err) { 1776 goto out; 1777 } 1778 1779 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1780 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1781 1782 if (local_err) { 1783 goto out; 1784 } 1785 1786 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr); 1787 object_unparent(OBJECT(dev)); 1788 1789 out: 1790 error_propagate(errp, local_err); 1791 } 1792 1793 static int pc_apic_cmp(const void *a, const void *b) 1794 { 1795 CPUArchId *apic_a = (CPUArchId *)a; 1796 CPUArchId *apic_b = (CPUArchId *)b; 1797 1798 return apic_a->arch_id - apic_b->arch_id; 1799 } 1800 1801 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1802 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1803 * entry corresponding to CPU's apic_id returns NULL. 1804 */ 1805 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1806 { 1807 CPUArchId apic_id, *found_cpu; 1808 1809 apic_id.arch_id = id; 1810 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1811 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1812 pc_apic_cmp); 1813 if (found_cpu && idx) { 1814 *idx = found_cpu - ms->possible_cpus->cpus; 1815 } 1816 return found_cpu; 1817 } 1818 1819 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1820 DeviceState *dev, Error **errp) 1821 { 1822 CPUArchId *found_cpu; 1823 HotplugHandlerClass *hhc; 1824 Error *local_err = NULL; 1825 X86CPU *cpu = X86_CPU(dev); 1826 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1827 1828 if (pcms->acpi_dev) { 1829 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1830 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1831 if (local_err) { 1832 goto out; 1833 } 1834 } 1835 1836 /* increment the number of CPUs */ 1837 pcms->boot_cpus++; 1838 if (pcms->rtc) { 1839 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1840 } 1841 if (pcms->fw_cfg) { 1842 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1843 } 1844 1845 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1846 found_cpu->cpu = OBJECT(dev); 1847 out: 1848 error_propagate(errp, local_err); 1849 } 1850 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1851 DeviceState *dev, Error **errp) 1852 { 1853 int idx = -1; 1854 HotplugHandlerClass *hhc; 1855 Error *local_err = NULL; 1856 X86CPU *cpu = X86_CPU(dev); 1857 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1858 1859 if (!pcms->acpi_dev) { 1860 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 1861 goto out; 1862 } 1863 1864 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1865 assert(idx != -1); 1866 if (idx == 0) { 1867 error_setg(&local_err, "Boot CPU is unpluggable"); 1868 goto out; 1869 } 1870 1871 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1872 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1873 1874 if (local_err) { 1875 goto out; 1876 } 1877 1878 out: 1879 error_propagate(errp, local_err); 1880 1881 } 1882 1883 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1884 DeviceState *dev, Error **errp) 1885 { 1886 CPUArchId *found_cpu; 1887 HotplugHandlerClass *hhc; 1888 Error *local_err = NULL; 1889 X86CPU *cpu = X86_CPU(dev); 1890 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1891 1892 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1893 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1894 1895 if (local_err) { 1896 goto out; 1897 } 1898 1899 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1900 found_cpu->cpu = NULL; 1901 object_unparent(OBJECT(dev)); 1902 1903 /* decrement the number of CPUs */ 1904 pcms->boot_cpus--; 1905 /* Update the number of CPUs in CMOS */ 1906 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1907 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1908 out: 1909 error_propagate(errp, local_err); 1910 } 1911 1912 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 1913 DeviceState *dev, Error **errp) 1914 { 1915 int idx; 1916 CPUState *cs; 1917 CPUArchId *cpu_slot; 1918 X86CPUTopoInfo topo; 1919 X86CPU *cpu = X86_CPU(dev); 1920 MachineState *ms = MACHINE(hotplug_dev); 1921 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1922 1923 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 1924 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 1925 ms->cpu_type); 1926 return; 1927 } 1928 1929 /* if APIC ID is not set, set it based on socket/core/thread properties */ 1930 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 1931 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 1932 1933 if (cpu->socket_id < 0) { 1934 error_setg(errp, "CPU socket-id is not set"); 1935 return; 1936 } else if (cpu->socket_id > max_socket) { 1937 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 1938 cpu->socket_id, max_socket); 1939 return; 1940 } 1941 if (cpu->core_id < 0) { 1942 error_setg(errp, "CPU core-id is not set"); 1943 return; 1944 } else if (cpu->core_id > (smp_cores - 1)) { 1945 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 1946 cpu->core_id, smp_cores - 1); 1947 return; 1948 } 1949 if (cpu->thread_id < 0) { 1950 error_setg(errp, "CPU thread-id is not set"); 1951 return; 1952 } else if (cpu->thread_id > (smp_threads - 1)) { 1953 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 1954 cpu->thread_id, smp_threads - 1); 1955 return; 1956 } 1957 1958 topo.pkg_id = cpu->socket_id; 1959 topo.core_id = cpu->core_id; 1960 topo.smt_id = cpu->thread_id; 1961 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 1962 } 1963 1964 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1965 if (!cpu_slot) { 1966 MachineState *ms = MACHINE(pcms); 1967 1968 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1969 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 1970 " APIC ID %" PRIu32 ", valid index range 0:%d", 1971 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 1972 ms->possible_cpus->len - 1); 1973 return; 1974 } 1975 1976 if (cpu_slot->cpu) { 1977 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 1978 idx, cpu->apic_id); 1979 return; 1980 } 1981 1982 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 1983 * so that machine_query_hotpluggable_cpus would show correct values 1984 */ 1985 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 1986 * once -smp refactoring is complete and there will be CPU private 1987 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 1988 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1989 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 1990 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 1991 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 1992 return; 1993 } 1994 cpu->socket_id = topo.pkg_id; 1995 1996 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 1997 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 1998 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 1999 return; 2000 } 2001 cpu->core_id = topo.core_id; 2002 2003 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 2004 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 2005 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 2006 return; 2007 } 2008 cpu->thread_id = topo.smt_id; 2009 2010 cs = CPU(cpu); 2011 cs->cpu_index = idx; 2012 2013 numa_cpu_pre_plug(cpu_slot, dev, errp); 2014 } 2015 2016 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2017 DeviceState *dev, Error **errp) 2018 { 2019 if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2020 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2021 } 2022 } 2023 2024 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2025 DeviceState *dev, Error **errp) 2026 { 2027 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2028 pc_dimm_plug(hotplug_dev, dev, errp); 2029 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2030 pc_cpu_plug(hotplug_dev, dev, errp); 2031 } 2032 } 2033 2034 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2035 DeviceState *dev, Error **errp) 2036 { 2037 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2038 pc_dimm_unplug_request(hotplug_dev, dev, errp); 2039 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2040 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2041 } else { 2042 error_setg(errp, "acpi: device unplug request for not supported device" 2043 " type: %s", object_get_typename(OBJECT(dev))); 2044 } 2045 } 2046 2047 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2048 DeviceState *dev, Error **errp) 2049 { 2050 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2051 pc_dimm_unplug(hotplug_dev, dev, errp); 2052 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2053 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2054 } else { 2055 error_setg(errp, "acpi: device unplug for not supported device" 2056 " type: %s", object_get_typename(OBJECT(dev))); 2057 } 2058 } 2059 2060 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2061 DeviceState *dev) 2062 { 2063 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine); 2064 2065 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2066 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2067 return HOTPLUG_HANDLER(machine); 2068 } 2069 2070 return pcmc->get_hotplug_handler ? 2071 pcmc->get_hotplug_handler(machine, dev) : NULL; 2072 } 2073 2074 static void 2075 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, 2076 const char *name, void *opaque, 2077 Error **errp) 2078 { 2079 PCMachineState *pcms = PC_MACHINE(obj); 2080 int64_t value = memory_region_size(&pcms->hotplug_memory.mr); 2081 2082 visit_type_int(v, name, &value, errp); 2083 } 2084 2085 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2086 const char *name, void *opaque, 2087 Error **errp) 2088 { 2089 PCMachineState *pcms = PC_MACHINE(obj); 2090 uint64_t value = pcms->max_ram_below_4g; 2091 2092 visit_type_size(v, name, &value, errp); 2093 } 2094 2095 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2096 const char *name, void *opaque, 2097 Error **errp) 2098 { 2099 PCMachineState *pcms = PC_MACHINE(obj); 2100 Error *error = NULL; 2101 uint64_t value; 2102 2103 visit_type_size(v, name, &value, &error); 2104 if (error) { 2105 error_propagate(errp, error); 2106 return; 2107 } 2108 if (value > (1ULL << 32)) { 2109 error_setg(&error, 2110 "Machine option 'max-ram-below-4g=%"PRIu64 2111 "' expects size less than or equal to 4G", value); 2112 error_propagate(errp, error); 2113 return; 2114 } 2115 2116 if (value < (1ULL << 20)) { 2117 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2118 "BIOS may not work with less than 1MiB", value); 2119 } 2120 2121 pcms->max_ram_below_4g = value; 2122 } 2123 2124 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2125 void *opaque, Error **errp) 2126 { 2127 PCMachineState *pcms = PC_MACHINE(obj); 2128 OnOffAuto vmport = pcms->vmport; 2129 2130 visit_type_OnOffAuto(v, name, &vmport, errp); 2131 } 2132 2133 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2134 void *opaque, Error **errp) 2135 { 2136 PCMachineState *pcms = PC_MACHINE(obj); 2137 2138 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2139 } 2140 2141 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2142 { 2143 bool smm_available = false; 2144 2145 if (pcms->smm == ON_OFF_AUTO_OFF) { 2146 return false; 2147 } 2148 2149 if (tcg_enabled() || qtest_enabled()) { 2150 smm_available = true; 2151 } else if (kvm_enabled()) { 2152 smm_available = kvm_has_smm(); 2153 } 2154 2155 if (smm_available) { 2156 return true; 2157 } 2158 2159 if (pcms->smm == ON_OFF_AUTO_ON) { 2160 error_report("System Management Mode not supported by this hypervisor."); 2161 exit(1); 2162 } 2163 return false; 2164 } 2165 2166 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2167 void *opaque, Error **errp) 2168 { 2169 PCMachineState *pcms = PC_MACHINE(obj); 2170 OnOffAuto smm = pcms->smm; 2171 2172 visit_type_OnOffAuto(v, name, &smm, errp); 2173 } 2174 2175 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2176 void *opaque, Error **errp) 2177 { 2178 PCMachineState *pcms = PC_MACHINE(obj); 2179 2180 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2181 } 2182 2183 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2184 { 2185 PCMachineState *pcms = PC_MACHINE(obj); 2186 2187 return pcms->acpi_nvdimm_state.is_enabled; 2188 } 2189 2190 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2191 { 2192 PCMachineState *pcms = PC_MACHINE(obj); 2193 2194 pcms->acpi_nvdimm_state.is_enabled = value; 2195 } 2196 2197 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2198 { 2199 PCMachineState *pcms = PC_MACHINE(obj); 2200 2201 return pcms->smbus; 2202 } 2203 2204 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2205 { 2206 PCMachineState *pcms = PC_MACHINE(obj); 2207 2208 pcms->smbus = value; 2209 } 2210 2211 static bool pc_machine_get_sata(Object *obj, Error **errp) 2212 { 2213 PCMachineState *pcms = PC_MACHINE(obj); 2214 2215 return pcms->sata; 2216 } 2217 2218 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2219 { 2220 PCMachineState *pcms = PC_MACHINE(obj); 2221 2222 pcms->sata = value; 2223 } 2224 2225 static bool pc_machine_get_pit(Object *obj, Error **errp) 2226 { 2227 PCMachineState *pcms = PC_MACHINE(obj); 2228 2229 return pcms->pit; 2230 } 2231 2232 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2233 { 2234 PCMachineState *pcms = PC_MACHINE(obj); 2235 2236 pcms->pit = value; 2237 } 2238 2239 static void pc_machine_initfn(Object *obj) 2240 { 2241 PCMachineState *pcms = PC_MACHINE(obj); 2242 2243 pcms->max_ram_below_4g = 0; /* use default */ 2244 pcms->smm = ON_OFF_AUTO_AUTO; 2245 pcms->vmport = ON_OFF_AUTO_AUTO; 2246 /* nvdimm is disabled on default. */ 2247 pcms->acpi_nvdimm_state.is_enabled = false; 2248 /* acpi build is enabled by default if machine supports it */ 2249 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2250 pcms->smbus = true; 2251 pcms->sata = true; 2252 pcms->pit = true; 2253 } 2254 2255 static void pc_machine_reset(void) 2256 { 2257 CPUState *cs; 2258 X86CPU *cpu; 2259 2260 qemu_devices_reset(); 2261 2262 /* Reset APIC after devices have been reset to cancel 2263 * any changes that qemu_devices_reset() might have done. 2264 */ 2265 CPU_FOREACH(cs) { 2266 cpu = X86_CPU(cs); 2267 2268 if (cpu->apic_state) { 2269 device_reset(cpu->apic_state); 2270 } 2271 } 2272 } 2273 2274 static CpuInstanceProperties 2275 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2276 { 2277 MachineClass *mc = MACHINE_GET_CLASS(ms); 2278 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2279 2280 assert(cpu_index < possible_cpus->len); 2281 return possible_cpus->cpus[cpu_index].props; 2282 } 2283 2284 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2285 { 2286 X86CPUTopoInfo topo; 2287 2288 assert(idx < ms->possible_cpus->len); 2289 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2290 smp_cores, smp_threads, &topo); 2291 return topo.pkg_id % nb_numa_nodes; 2292 } 2293 2294 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2295 { 2296 int i; 2297 2298 if (ms->possible_cpus) { 2299 /* 2300 * make sure that max_cpus hasn't changed since the first use, i.e. 2301 * -smp hasn't been parsed after it 2302 */ 2303 assert(ms->possible_cpus->len == max_cpus); 2304 return ms->possible_cpus; 2305 } 2306 2307 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2308 sizeof(CPUArchId) * max_cpus); 2309 ms->possible_cpus->len = max_cpus; 2310 for (i = 0; i < ms->possible_cpus->len; i++) { 2311 X86CPUTopoInfo topo; 2312 2313 ms->possible_cpus->cpus[i].type = ms->cpu_type; 2314 ms->possible_cpus->cpus[i].vcpus_count = 1; 2315 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2316 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2317 smp_cores, smp_threads, &topo); 2318 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2319 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2320 ms->possible_cpus->cpus[i].props.has_core_id = true; 2321 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2322 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2323 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2324 } 2325 return ms->possible_cpus; 2326 } 2327 2328 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2329 { 2330 /* cpu index isn't used */ 2331 CPUState *cs; 2332 2333 CPU_FOREACH(cs) { 2334 X86CPU *cpu = X86_CPU(cs); 2335 2336 if (!cpu->apic_state) { 2337 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2338 } else { 2339 apic_deliver_nmi(cpu->apic_state); 2340 } 2341 } 2342 } 2343 2344 static void pc_machine_class_init(ObjectClass *oc, void *data) 2345 { 2346 MachineClass *mc = MACHINE_CLASS(oc); 2347 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2348 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2349 NMIClass *nc = NMI_CLASS(oc); 2350 2351 pcmc->get_hotplug_handler = mc->get_hotplug_handler; 2352 pcmc->pci_enabled = true; 2353 pcmc->has_acpi_build = true; 2354 pcmc->rsdp_in_ram = true; 2355 pcmc->smbios_defaults = true; 2356 pcmc->smbios_uuid_encoded = true; 2357 pcmc->gigabyte_align = true; 2358 pcmc->has_reserved_memory = true; 2359 pcmc->kvmclock_enabled = true; 2360 pcmc->enforce_aligned_dimm = true; 2361 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2362 * to be used at the moment, 32K should be enough for a while. */ 2363 pcmc->acpi_data_size = 0x20000 + 0x8000; 2364 pcmc->save_tsc_khz = true; 2365 pcmc->linuxboot_dma_enabled = true; 2366 mc->get_hotplug_handler = pc_get_hotpug_handler; 2367 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2368 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2369 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2370 mc->auto_enable_numa_with_memhp = true; 2371 mc->has_hotpluggable_cpus = true; 2372 mc->default_boot_order = "cad"; 2373 mc->hot_add_cpu = pc_hot_add_cpu; 2374 mc->block_default_type = IF_IDE; 2375 mc->max_cpus = 255; 2376 mc->reset = pc_machine_reset; 2377 hc->pre_plug = pc_machine_device_pre_plug_cb; 2378 hc->plug = pc_machine_device_plug_cb; 2379 hc->unplug_request = pc_machine_device_unplug_request_cb; 2380 hc->unplug = pc_machine_device_unplug_cb; 2381 nc->nmi_monitor_handler = x86_nmi; 2382 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2383 2384 object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int", 2385 pc_machine_get_hotplug_memory_region_size, NULL, 2386 NULL, NULL, &error_abort); 2387 2388 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2389 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2390 NULL, NULL, &error_abort); 2391 2392 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2393 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2394 2395 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2396 pc_machine_get_smm, pc_machine_set_smm, 2397 NULL, NULL, &error_abort); 2398 object_class_property_set_description(oc, PC_MACHINE_SMM, 2399 "Enable SMM (pc & q35)", &error_abort); 2400 2401 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2402 pc_machine_get_vmport, pc_machine_set_vmport, 2403 NULL, NULL, &error_abort); 2404 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2405 "Enable vmport (pc & q35)", &error_abort); 2406 2407 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2408 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2409 2410 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2411 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2412 2413 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2414 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2415 2416 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2417 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2418 } 2419 2420 static const TypeInfo pc_machine_info = { 2421 .name = TYPE_PC_MACHINE, 2422 .parent = TYPE_MACHINE, 2423 .abstract = true, 2424 .instance_size = sizeof(PCMachineState), 2425 .instance_init = pc_machine_initfn, 2426 .class_size = sizeof(PCMachineClass), 2427 .class_init = pc_machine_class_init, 2428 .interfaces = (InterfaceInfo[]) { 2429 { TYPE_HOTPLUG_HANDLER }, 2430 { TYPE_NMI }, 2431 { } 2432 }, 2433 }; 2434 2435 static void pc_machine_register_types(void) 2436 { 2437 type_register_static(&pc_machine_info); 2438 } 2439 2440 type_init(pc_machine_register_types) 2441