xref: /openbmc/qemu/hw/i386/pc.c (revision e688df6b)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/i386/pc.h"
28 #include "hw/char/serial.h"
29 #include "hw/i386/apic.h"
30 #include "hw/i386/topology.h"
31 #include "sysemu/cpus.h"
32 #include "hw/block/fdc.h"
33 #include "hw/ide.h"
34 #include "hw/pci/pci.h"
35 #include "hw/pci/pci_bus.h"
36 #include "hw/nvram/fw_cfg.h"
37 #include "hw/timer/hpet.h"
38 #include "hw/smbios/smbios.h"
39 #include "hw/loader.h"
40 #include "elf.h"
41 #include "multiboot.h"
42 #include "hw/timer/mc146818rtc.h"
43 #include "hw/timer/i8254.h"
44 #include "hw/audio/pcspk.h"
45 #include "hw/pci/msi.h"
46 #include "hw/sysbus.h"
47 #include "sysemu/sysemu.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/kvm.h"
50 #include "sysemu/qtest.h"
51 #include "kvm_i386.h"
52 #include "hw/xen/xen.h"
53 #include "sysemu/block-backend.h"
54 #include "hw/block/block.h"
55 #include "ui/qemu-spice.h"
56 #include "exec/memory.h"
57 #include "exec/address-spaces.h"
58 #include "sysemu/arch_init.h"
59 #include "qemu/bitmap.h"
60 #include "qemu/config-file.h"
61 #include "qemu/error-report.h"
62 #include "hw/acpi/acpi.h"
63 #include "hw/acpi/cpu_hotplug.h"
64 #include "hw/boards.h"
65 #include "hw/pci/pci_host.h"
66 #include "acpi-build.h"
67 #include "hw/mem/pc-dimm.h"
68 #include "qapi/error.h"
69 #include "qapi/visitor.h"
70 #include "qapi-visit.h"
71 #include "qom/cpu.h"
72 #include "hw/nmi.h"
73 #include "hw/i386/intel_iommu.h"
74 #include "hw/net/ne2000-isa.h"
75 
76 /* debug PC/ISA interrupts */
77 //#define DEBUG_IRQ
78 
79 #ifdef DEBUG_IRQ
80 #define DPRINTF(fmt, ...)                                       \
81     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
82 #else
83 #define DPRINTF(fmt, ...)
84 #endif
85 
86 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
87 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
88 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
89 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
90 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
91 
92 #define E820_NR_ENTRIES		16
93 
94 struct e820_entry {
95     uint64_t address;
96     uint64_t length;
97     uint32_t type;
98 } QEMU_PACKED __attribute((__aligned__(4)));
99 
100 struct e820_table {
101     uint32_t count;
102     struct e820_entry entry[E820_NR_ENTRIES];
103 } QEMU_PACKED __attribute((__aligned__(4)));
104 
105 static struct e820_table e820_reserve;
106 static struct e820_entry *e820_table;
107 static unsigned e820_entries;
108 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
109 
110 void gsi_handler(void *opaque, int n, int level)
111 {
112     GSIState *s = opaque;
113 
114     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
115     if (n < ISA_NUM_IRQS) {
116         qemu_set_irq(s->i8259_irq[n], level);
117     }
118     qemu_set_irq(s->ioapic_irq[n], level);
119 }
120 
121 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
122                            unsigned size)
123 {
124 }
125 
126 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
127 {
128     return 0xffffffffffffffffULL;
129 }
130 
131 /* MSDOS compatibility mode FPU exception support */
132 static qemu_irq ferr_irq;
133 
134 void pc_register_ferr_irq(qemu_irq irq)
135 {
136     ferr_irq = irq;
137 }
138 
139 /* XXX: add IGNNE support */
140 void cpu_set_ferr(CPUX86State *s)
141 {
142     qemu_irq_raise(ferr_irq);
143 }
144 
145 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
146                            unsigned size)
147 {
148     qemu_irq_lower(ferr_irq);
149 }
150 
151 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
152 {
153     return 0xffffffffffffffffULL;
154 }
155 
156 /* TSC handling */
157 uint64_t cpu_get_tsc(CPUX86State *env)
158 {
159     return cpu_get_ticks();
160 }
161 
162 /* IRQ handling */
163 int cpu_get_pic_interrupt(CPUX86State *env)
164 {
165     X86CPU *cpu = x86_env_get_cpu(env);
166     int intno;
167 
168     if (!kvm_irqchip_in_kernel()) {
169         intno = apic_get_interrupt(cpu->apic_state);
170         if (intno >= 0) {
171             return intno;
172         }
173         /* read the irq from the PIC */
174         if (!apic_accept_pic_intr(cpu->apic_state)) {
175             return -1;
176         }
177     }
178 
179     intno = pic_read_irq(isa_pic);
180     return intno;
181 }
182 
183 static void pic_irq_request(void *opaque, int irq, int level)
184 {
185     CPUState *cs = first_cpu;
186     X86CPU *cpu = X86_CPU(cs);
187 
188     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
189     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
190         CPU_FOREACH(cs) {
191             cpu = X86_CPU(cs);
192             if (apic_accept_pic_intr(cpu->apic_state)) {
193                 apic_deliver_pic_intr(cpu->apic_state, level);
194             }
195         }
196     } else {
197         if (level) {
198             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
199         } else {
200             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
201         }
202     }
203 }
204 
205 /* PC cmos mappings */
206 
207 #define REG_EQUIPMENT_BYTE          0x14
208 
209 int cmos_get_fd_drive_type(FloppyDriveType fd0)
210 {
211     int val;
212 
213     switch (fd0) {
214     case FLOPPY_DRIVE_TYPE_144:
215         /* 1.44 Mb 3"5 drive */
216         val = 4;
217         break;
218     case FLOPPY_DRIVE_TYPE_288:
219         /* 2.88 Mb 3"5 drive */
220         val = 5;
221         break;
222     case FLOPPY_DRIVE_TYPE_120:
223         /* 1.2 Mb 5"5 drive */
224         val = 2;
225         break;
226     case FLOPPY_DRIVE_TYPE_NONE:
227     default:
228         val = 0;
229         break;
230     }
231     return val;
232 }
233 
234 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
235                          int16_t cylinders, int8_t heads, int8_t sectors)
236 {
237     rtc_set_memory(s, type_ofs, 47);
238     rtc_set_memory(s, info_ofs, cylinders);
239     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
240     rtc_set_memory(s, info_ofs + 2, heads);
241     rtc_set_memory(s, info_ofs + 3, 0xff);
242     rtc_set_memory(s, info_ofs + 4, 0xff);
243     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
244     rtc_set_memory(s, info_ofs + 6, cylinders);
245     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
246     rtc_set_memory(s, info_ofs + 8, sectors);
247 }
248 
249 /* convert boot_device letter to something recognizable by the bios */
250 static int boot_device2nibble(char boot_device)
251 {
252     switch(boot_device) {
253     case 'a':
254     case 'b':
255         return 0x01; /* floppy boot */
256     case 'c':
257         return 0x02; /* hard drive boot */
258     case 'd':
259         return 0x03; /* CD-ROM boot */
260     case 'n':
261         return 0x04; /* Network boot */
262     }
263     return 0;
264 }
265 
266 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
267 {
268 #define PC_MAX_BOOT_DEVICES 3
269     int nbds, bds[3] = { 0, };
270     int i;
271 
272     nbds = strlen(boot_device);
273     if (nbds > PC_MAX_BOOT_DEVICES) {
274         error_setg(errp, "Too many boot devices for PC");
275         return;
276     }
277     for (i = 0; i < nbds; i++) {
278         bds[i] = boot_device2nibble(boot_device[i]);
279         if (bds[i] == 0) {
280             error_setg(errp, "Invalid boot device for PC: '%c'",
281                        boot_device[i]);
282             return;
283         }
284     }
285     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
286     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
287 }
288 
289 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
290 {
291     set_boot_dev(opaque, boot_device, errp);
292 }
293 
294 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
295 {
296     int val, nb, i;
297     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
298                                    FLOPPY_DRIVE_TYPE_NONE };
299 
300     /* floppy type */
301     if (floppy) {
302         for (i = 0; i < 2; i++) {
303             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
304         }
305     }
306     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
307         cmos_get_fd_drive_type(fd_type[1]);
308     rtc_set_memory(rtc_state, 0x10, val);
309 
310     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
311     nb = 0;
312     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
313         nb++;
314     }
315     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
316         nb++;
317     }
318     switch (nb) {
319     case 0:
320         break;
321     case 1:
322         val |= 0x01; /* 1 drive, ready for boot */
323         break;
324     case 2:
325         val |= 0x41; /* 2 drives, ready for boot */
326         break;
327     }
328     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
329 }
330 
331 typedef struct pc_cmos_init_late_arg {
332     ISADevice *rtc_state;
333     BusState *idebus[2];
334 } pc_cmos_init_late_arg;
335 
336 typedef struct check_fdc_state {
337     ISADevice *floppy;
338     bool multiple;
339 } CheckFdcState;
340 
341 static int check_fdc(Object *obj, void *opaque)
342 {
343     CheckFdcState *state = opaque;
344     Object *fdc;
345     uint32_t iobase;
346     Error *local_err = NULL;
347 
348     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
349     if (!fdc) {
350         return 0;
351     }
352 
353     iobase = object_property_get_uint(obj, "iobase", &local_err);
354     if (local_err || iobase != 0x3f0) {
355         error_free(local_err);
356         return 0;
357     }
358 
359     if (state->floppy) {
360         state->multiple = true;
361     } else {
362         state->floppy = ISA_DEVICE(obj);
363     }
364     return 0;
365 }
366 
367 static const char * const fdc_container_path[] = {
368     "/unattached", "/peripheral", "/peripheral-anon"
369 };
370 
371 /*
372  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
373  * and ACPI objects.
374  */
375 ISADevice *pc_find_fdc0(void)
376 {
377     int i;
378     Object *container;
379     CheckFdcState state = { 0 };
380 
381     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
382         container = container_get(qdev_get_machine(), fdc_container_path[i]);
383         object_child_foreach(container, check_fdc, &state);
384     }
385 
386     if (state.multiple) {
387         warn_report("multiple floppy disk controllers with "
388                     "iobase=0x3f0 have been found");
389         error_printf("the one being picked for CMOS setup might not reflect "
390                      "your intent");
391     }
392 
393     return state.floppy;
394 }
395 
396 static void pc_cmos_init_late(void *opaque)
397 {
398     pc_cmos_init_late_arg *arg = opaque;
399     ISADevice *s = arg->rtc_state;
400     int16_t cylinders;
401     int8_t heads, sectors;
402     int val;
403     int i, trans;
404 
405     val = 0;
406     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
407                                            &cylinders, &heads, &sectors) >= 0) {
408         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
409         val |= 0xf0;
410     }
411     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
412                                            &cylinders, &heads, &sectors) >= 0) {
413         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
414         val |= 0x0f;
415     }
416     rtc_set_memory(s, 0x12, val);
417 
418     val = 0;
419     for (i = 0; i < 4; i++) {
420         /* NOTE: ide_get_geometry() returns the physical
421            geometry.  It is always such that: 1 <= sects <= 63, 1
422            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
423            geometry can be different if a translation is done. */
424         if (arg->idebus[i / 2] &&
425             ide_get_geometry(arg->idebus[i / 2], i % 2,
426                              &cylinders, &heads, &sectors) >= 0) {
427             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
428             assert((trans & ~3) == 0);
429             val |= trans << (i * 2);
430         }
431     }
432     rtc_set_memory(s, 0x39, val);
433 
434     pc_cmos_init_floppy(s, pc_find_fdc0());
435 
436     qemu_unregister_reset(pc_cmos_init_late, opaque);
437 }
438 
439 void pc_cmos_init(PCMachineState *pcms,
440                   BusState *idebus0, BusState *idebus1,
441                   ISADevice *s)
442 {
443     int val;
444     static pc_cmos_init_late_arg arg;
445 
446     /* various important CMOS locations needed by PC/Bochs bios */
447 
448     /* memory size */
449     /* base memory (first MiB) */
450     val = MIN(pcms->below_4g_mem_size / 1024, 640);
451     rtc_set_memory(s, 0x15, val);
452     rtc_set_memory(s, 0x16, val >> 8);
453     /* extended memory (next 64MiB) */
454     if (pcms->below_4g_mem_size > 1024 * 1024) {
455         val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
456     } else {
457         val = 0;
458     }
459     if (val > 65535)
460         val = 65535;
461     rtc_set_memory(s, 0x17, val);
462     rtc_set_memory(s, 0x18, val >> 8);
463     rtc_set_memory(s, 0x30, val);
464     rtc_set_memory(s, 0x31, val >> 8);
465     /* memory between 16MiB and 4GiB */
466     if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
467         val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
468     } else {
469         val = 0;
470     }
471     if (val > 65535)
472         val = 65535;
473     rtc_set_memory(s, 0x34, val);
474     rtc_set_memory(s, 0x35, val >> 8);
475     /* memory above 4GiB */
476     val = pcms->above_4g_mem_size / 65536;
477     rtc_set_memory(s, 0x5b, val);
478     rtc_set_memory(s, 0x5c, val >> 8);
479     rtc_set_memory(s, 0x5d, val >> 16);
480 
481     object_property_add_link(OBJECT(pcms), "rtc_state",
482                              TYPE_ISA_DEVICE,
483                              (Object **)&pcms->rtc,
484                              object_property_allow_set_link,
485                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
486     object_property_set_link(OBJECT(pcms), OBJECT(s),
487                              "rtc_state", &error_abort);
488 
489     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
490 
491     val = 0;
492     val |= 0x02; /* FPU is there */
493     val |= 0x04; /* PS/2 mouse installed */
494     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
495 
496     /* hard drives and FDC */
497     arg.rtc_state = s;
498     arg.idebus[0] = idebus0;
499     arg.idebus[1] = idebus1;
500     qemu_register_reset(pc_cmos_init_late, &arg);
501 }
502 
503 #define TYPE_PORT92 "port92"
504 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
505 
506 /* port 92 stuff: could be split off */
507 typedef struct Port92State {
508     ISADevice parent_obj;
509 
510     MemoryRegion io;
511     uint8_t outport;
512     qemu_irq a20_out;
513 } Port92State;
514 
515 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
516                          unsigned size)
517 {
518     Port92State *s = opaque;
519     int oldval = s->outport;
520 
521     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
522     s->outport = val;
523     qemu_set_irq(s->a20_out, (val >> 1) & 1);
524     if ((val & 1) && !(oldval & 1)) {
525         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
526     }
527 }
528 
529 static uint64_t port92_read(void *opaque, hwaddr addr,
530                             unsigned size)
531 {
532     Port92State *s = opaque;
533     uint32_t ret;
534 
535     ret = s->outport;
536     DPRINTF("port92: read 0x%02x\n", ret);
537     return ret;
538 }
539 
540 static void port92_init(ISADevice *dev, qemu_irq a20_out)
541 {
542     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
543 }
544 
545 static const VMStateDescription vmstate_port92_isa = {
546     .name = "port92",
547     .version_id = 1,
548     .minimum_version_id = 1,
549     .fields = (VMStateField[]) {
550         VMSTATE_UINT8(outport, Port92State),
551         VMSTATE_END_OF_LIST()
552     }
553 };
554 
555 static void port92_reset(DeviceState *d)
556 {
557     Port92State *s = PORT92(d);
558 
559     s->outport &= ~1;
560 }
561 
562 static const MemoryRegionOps port92_ops = {
563     .read = port92_read,
564     .write = port92_write,
565     .impl = {
566         .min_access_size = 1,
567         .max_access_size = 1,
568     },
569     .endianness = DEVICE_LITTLE_ENDIAN,
570 };
571 
572 static void port92_initfn(Object *obj)
573 {
574     Port92State *s = PORT92(obj);
575 
576     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
577 
578     s->outport = 0;
579 
580     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
581 }
582 
583 static void port92_realizefn(DeviceState *dev, Error **errp)
584 {
585     ISADevice *isadev = ISA_DEVICE(dev);
586     Port92State *s = PORT92(dev);
587 
588     isa_register_ioport(isadev, &s->io, 0x92);
589 }
590 
591 static void port92_class_initfn(ObjectClass *klass, void *data)
592 {
593     DeviceClass *dc = DEVICE_CLASS(klass);
594 
595     dc->realize = port92_realizefn;
596     dc->reset = port92_reset;
597     dc->vmsd = &vmstate_port92_isa;
598     /*
599      * Reason: unlike ordinary ISA devices, this one needs additional
600      * wiring: its A20 output line needs to be wired up by
601      * port92_init().
602      */
603     dc->user_creatable = false;
604 }
605 
606 static const TypeInfo port92_info = {
607     .name          = TYPE_PORT92,
608     .parent        = TYPE_ISA_DEVICE,
609     .instance_size = sizeof(Port92State),
610     .instance_init = port92_initfn,
611     .class_init    = port92_class_initfn,
612 };
613 
614 static void port92_register_types(void)
615 {
616     type_register_static(&port92_info);
617 }
618 
619 type_init(port92_register_types)
620 
621 static void handle_a20_line_change(void *opaque, int irq, int level)
622 {
623     X86CPU *cpu = opaque;
624 
625     /* XXX: send to all CPUs ? */
626     /* XXX: add logic to handle multiple A20 line sources */
627     x86_cpu_set_a20(cpu, level);
628 }
629 
630 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
631 {
632     int index = le32_to_cpu(e820_reserve.count);
633     struct e820_entry *entry;
634 
635     if (type != E820_RAM) {
636         /* old FW_CFG_E820_TABLE entry -- reservations only */
637         if (index >= E820_NR_ENTRIES) {
638             return -EBUSY;
639         }
640         entry = &e820_reserve.entry[index++];
641 
642         entry->address = cpu_to_le64(address);
643         entry->length = cpu_to_le64(length);
644         entry->type = cpu_to_le32(type);
645 
646         e820_reserve.count = cpu_to_le32(index);
647     }
648 
649     /* new "etc/e820" file -- include ram too */
650     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
651     e820_table[e820_entries].address = cpu_to_le64(address);
652     e820_table[e820_entries].length = cpu_to_le64(length);
653     e820_table[e820_entries].type = cpu_to_le32(type);
654     e820_entries++;
655 
656     return e820_entries;
657 }
658 
659 int e820_get_num_entries(void)
660 {
661     return e820_entries;
662 }
663 
664 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
665 {
666     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
667         *address = le64_to_cpu(e820_table[idx].address);
668         *length = le64_to_cpu(e820_table[idx].length);
669         return true;
670     }
671     return false;
672 }
673 
674 /* Enables contiguous-apic-ID mode, for compatibility */
675 static bool compat_apic_id_mode;
676 
677 void enable_compat_apic_id_mode(void)
678 {
679     compat_apic_id_mode = true;
680 }
681 
682 /* Calculates initial APIC ID for a specific CPU index
683  *
684  * Currently we need to be able to calculate the APIC ID from the CPU index
685  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
686  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
687  * all CPUs up to max_cpus.
688  */
689 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
690 {
691     uint32_t correct_id;
692     static bool warned;
693 
694     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
695     if (compat_apic_id_mode) {
696         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
697             error_report("APIC IDs set in compatibility mode, "
698                          "CPU topology won't match the configuration");
699             warned = true;
700         }
701         return cpu_index;
702     } else {
703         return correct_id;
704     }
705 }
706 
707 static void pc_build_smbios(PCMachineState *pcms)
708 {
709     uint8_t *smbios_tables, *smbios_anchor;
710     size_t smbios_tables_len, smbios_anchor_len;
711     struct smbios_phys_mem_area *mem_array;
712     unsigned i, array_count;
713     MachineState *ms = MACHINE(pcms);
714     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
715 
716     /* tell smbios about cpuid version and features */
717     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
718 
719     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
720     if (smbios_tables) {
721         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
722                          smbios_tables, smbios_tables_len);
723     }
724 
725     /* build the array of physical mem area from e820 table */
726     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
727     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
728         uint64_t addr, len;
729 
730         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
731             mem_array[array_count].address = addr;
732             mem_array[array_count].length = len;
733             array_count++;
734         }
735     }
736     smbios_get_tables(mem_array, array_count,
737                       &smbios_tables, &smbios_tables_len,
738                       &smbios_anchor, &smbios_anchor_len);
739     g_free(mem_array);
740 
741     if (smbios_anchor) {
742         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
743                         smbios_tables, smbios_tables_len);
744         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
745                         smbios_anchor, smbios_anchor_len);
746     }
747 }
748 
749 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
750 {
751     FWCfgState *fw_cfg;
752     uint64_t *numa_fw_cfg;
753     int i;
754     const CPUArchIdList *cpus;
755     MachineClass *mc = MACHINE_GET_CLASS(pcms);
756 
757     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
758     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
759 
760     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
761      *
762      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
763      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
764      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
765      * for CPU hotplug also uses APIC ID and not "CPU index".
766      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
767      * but the "limit to the APIC ID values SeaBIOS may see".
768      *
769      * So for compatibility reasons with old BIOSes we are stuck with
770      * "etc/max-cpus" actually being apic_id_limit
771      */
772     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
773     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
774     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
775                      acpi_tables, acpi_tables_len);
776     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
777 
778     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
779                      &e820_reserve, sizeof(e820_reserve));
780     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
781                     sizeof(struct e820_entry) * e820_entries);
782 
783     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
784     /* allocate memory for the NUMA channel: one (64bit) word for the number
785      * of nodes, one word for each VCPU->node and one word for each node to
786      * hold the amount of memory.
787      */
788     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
789     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
790     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
791     for (i = 0; i < cpus->len; i++) {
792         unsigned int apic_id = cpus->cpus[i].arch_id;
793         assert(apic_id < pcms->apic_id_limit);
794         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
795     }
796     for (i = 0; i < nb_numa_nodes; i++) {
797         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
798             cpu_to_le64(numa_info[i].node_mem);
799     }
800     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
801                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
802                      sizeof(*numa_fw_cfg));
803 
804     return fw_cfg;
805 }
806 
807 static long get_file_size(FILE *f)
808 {
809     long where, size;
810 
811     /* XXX: on Unix systems, using fstat() probably makes more sense */
812 
813     where = ftell(f);
814     fseek(f, 0, SEEK_END);
815     size = ftell(f);
816     fseek(f, where, SEEK_SET);
817 
818     return size;
819 }
820 
821 /* setup_data types */
822 #define SETUP_NONE     0
823 #define SETUP_E820_EXT 1
824 #define SETUP_DTB      2
825 #define SETUP_PCI      3
826 #define SETUP_EFI      4
827 
828 struct setup_data {
829     uint64_t next;
830     uint32_t type;
831     uint32_t len;
832     uint8_t data[0];
833 } __attribute__((packed));
834 
835 static void load_linux(PCMachineState *pcms,
836                        FWCfgState *fw_cfg)
837 {
838     uint16_t protocol;
839     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
840     int dtb_size, setup_data_offset;
841     uint32_t initrd_max;
842     uint8_t header[8192], *setup, *kernel, *initrd_data;
843     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
844     FILE *f;
845     char *vmode;
846     MachineState *machine = MACHINE(pcms);
847     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
848     struct setup_data *setup_data;
849     const char *kernel_filename = machine->kernel_filename;
850     const char *initrd_filename = machine->initrd_filename;
851     const char *dtb_filename = machine->dtb;
852     const char *kernel_cmdline = machine->kernel_cmdline;
853 
854     /* Align to 16 bytes as a paranoia measure */
855     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
856 
857     /* load the kernel header */
858     f = fopen(kernel_filename, "rb");
859     if (!f || !(kernel_size = get_file_size(f)) ||
860         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
861         MIN(ARRAY_SIZE(header), kernel_size)) {
862         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
863                 kernel_filename, strerror(errno));
864         exit(1);
865     }
866 
867     /* kernel protocol version */
868 #if 0
869     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
870 #endif
871     if (ldl_p(header+0x202) == 0x53726448) {
872         protocol = lduw_p(header+0x206);
873     } else {
874         /* This looks like a multiboot kernel. If it is, let's stop
875            treating it like a Linux kernel. */
876         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
877                            kernel_cmdline, kernel_size, header)) {
878             return;
879         }
880         protocol = 0;
881     }
882 
883     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
884         /* Low kernel */
885         real_addr    = 0x90000;
886         cmdline_addr = 0x9a000 - cmdline_size;
887         prot_addr    = 0x10000;
888     } else if (protocol < 0x202) {
889         /* High but ancient kernel */
890         real_addr    = 0x90000;
891         cmdline_addr = 0x9a000 - cmdline_size;
892         prot_addr    = 0x100000;
893     } else {
894         /* High and recent kernel */
895         real_addr    = 0x10000;
896         cmdline_addr = 0x20000;
897         prot_addr    = 0x100000;
898     }
899 
900 #if 0
901     fprintf(stderr,
902             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
903             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
904             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
905             real_addr,
906             cmdline_addr,
907             prot_addr);
908 #endif
909 
910     /* highest address for loading the initrd */
911     if (protocol >= 0x203) {
912         initrd_max = ldl_p(header+0x22c);
913     } else {
914         initrd_max = 0x37ffffff;
915     }
916 
917     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
918         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
919     }
920 
921     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
922     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
923     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
924 
925     if (protocol >= 0x202) {
926         stl_p(header+0x228, cmdline_addr);
927     } else {
928         stw_p(header+0x20, 0xA33F);
929         stw_p(header+0x22, cmdline_addr-real_addr);
930     }
931 
932     /* handle vga= parameter */
933     vmode = strstr(kernel_cmdline, "vga=");
934     if (vmode) {
935         unsigned int video_mode;
936         /* skip "vga=" */
937         vmode += 4;
938         if (!strncmp(vmode, "normal", 6)) {
939             video_mode = 0xffff;
940         } else if (!strncmp(vmode, "ext", 3)) {
941             video_mode = 0xfffe;
942         } else if (!strncmp(vmode, "ask", 3)) {
943             video_mode = 0xfffd;
944         } else {
945             video_mode = strtol(vmode, NULL, 0);
946         }
947         stw_p(header+0x1fa, video_mode);
948     }
949 
950     /* loader type */
951     /* High nybble = B reserved for QEMU; low nybble is revision number.
952        If this code is substantially changed, you may want to consider
953        incrementing the revision. */
954     if (protocol >= 0x200) {
955         header[0x210] = 0xB0;
956     }
957     /* heap */
958     if (protocol >= 0x201) {
959         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
960         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
961     }
962 
963     /* load initrd */
964     if (initrd_filename) {
965         if (protocol < 0x200) {
966             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
967             exit(1);
968         }
969 
970         initrd_size = get_image_size(initrd_filename);
971         if (initrd_size < 0) {
972             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
973                     initrd_filename, strerror(errno));
974             exit(1);
975         }
976 
977         initrd_addr = (initrd_max-initrd_size) & ~4095;
978 
979         initrd_data = g_malloc(initrd_size);
980         load_image(initrd_filename, initrd_data);
981 
982         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
983         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
984         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
985 
986         stl_p(header+0x218, initrd_addr);
987         stl_p(header+0x21c, initrd_size);
988     }
989 
990     /* load kernel and setup */
991     setup_size = header[0x1f1];
992     if (setup_size == 0) {
993         setup_size = 4;
994     }
995     setup_size = (setup_size+1)*512;
996     if (setup_size > kernel_size) {
997         fprintf(stderr, "qemu: invalid kernel header\n");
998         exit(1);
999     }
1000     kernel_size -= setup_size;
1001 
1002     setup  = g_malloc(setup_size);
1003     kernel = g_malloc(kernel_size);
1004     fseek(f, 0, SEEK_SET);
1005     if (fread(setup, 1, setup_size, f) != setup_size) {
1006         fprintf(stderr, "fread() failed\n");
1007         exit(1);
1008     }
1009     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1010         fprintf(stderr, "fread() failed\n");
1011         exit(1);
1012     }
1013     fclose(f);
1014 
1015     /* append dtb to kernel */
1016     if (dtb_filename) {
1017         if (protocol < 0x209) {
1018             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1019             exit(1);
1020         }
1021 
1022         dtb_size = get_image_size(dtb_filename);
1023         if (dtb_size <= 0) {
1024             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1025                     dtb_filename, strerror(errno));
1026             exit(1);
1027         }
1028 
1029         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1030         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1031         kernel = g_realloc(kernel, kernel_size);
1032 
1033         stq_p(header+0x250, prot_addr + setup_data_offset);
1034 
1035         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1036         setup_data->next = 0;
1037         setup_data->type = cpu_to_le32(SETUP_DTB);
1038         setup_data->len = cpu_to_le32(dtb_size);
1039 
1040         load_image_size(dtb_filename, setup_data->data, dtb_size);
1041     }
1042 
1043     memcpy(setup, header, MIN(sizeof(header), setup_size));
1044 
1045     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1046     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1047     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1048 
1049     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1050     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1051     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1052 
1053     option_rom[nb_option_roms].bootindex = 0;
1054     option_rom[nb_option_roms].name = "linuxboot.bin";
1055     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1056         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1057     }
1058     nb_option_roms++;
1059 }
1060 
1061 #define NE2000_NB_MAX 6
1062 
1063 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1064                                               0x280, 0x380 };
1065 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1066 
1067 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1068 {
1069     static int nb_ne2k = 0;
1070 
1071     if (nb_ne2k == NE2000_NB_MAX)
1072         return;
1073     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1074                     ne2000_irq[nb_ne2k], nd);
1075     nb_ne2k++;
1076 }
1077 
1078 DeviceState *cpu_get_current_apic(void)
1079 {
1080     if (current_cpu) {
1081         X86CPU *cpu = X86_CPU(current_cpu);
1082         return cpu->apic_state;
1083     } else {
1084         return NULL;
1085     }
1086 }
1087 
1088 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1089 {
1090     X86CPU *cpu = opaque;
1091 
1092     if (level) {
1093         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1094     }
1095 }
1096 
1097 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1098 {
1099     Object *cpu = NULL;
1100     Error *local_err = NULL;
1101 
1102     cpu = object_new(typename);
1103 
1104     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1105     object_property_set_bool(cpu, true, "realized", &local_err);
1106 
1107     object_unref(cpu);
1108     error_propagate(errp, local_err);
1109 }
1110 
1111 void pc_hot_add_cpu(const int64_t id, Error **errp)
1112 {
1113     MachineState *ms = MACHINE(qdev_get_machine());
1114     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1115     Error *local_err = NULL;
1116 
1117     if (id < 0) {
1118         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1119         return;
1120     }
1121 
1122     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1123         error_setg(errp, "Unable to add CPU: %" PRIi64
1124                    ", resulting APIC ID (%" PRIi64 ") is too large",
1125                    id, apic_id);
1126         return;
1127     }
1128 
1129     pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1130     if (local_err) {
1131         error_propagate(errp, local_err);
1132         return;
1133     }
1134 }
1135 
1136 void pc_cpus_init(PCMachineState *pcms)
1137 {
1138     int i;
1139     const CPUArchIdList *possible_cpus;
1140     MachineState *ms = MACHINE(pcms);
1141     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1142 
1143     /* Calculates the limit to CPU APIC ID values
1144      *
1145      * Limit for the APIC ID value, so that all
1146      * CPU APIC IDs are < pcms->apic_id_limit.
1147      *
1148      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1149      */
1150     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1151     possible_cpus = mc->possible_cpu_arch_ids(ms);
1152     for (i = 0; i < smp_cpus; i++) {
1153         pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1154                    &error_fatal);
1155     }
1156 }
1157 
1158 static void pc_build_feature_control_file(PCMachineState *pcms)
1159 {
1160     MachineState *ms = MACHINE(pcms);
1161     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1162     CPUX86State *env = &cpu->env;
1163     uint32_t unused, ecx, edx;
1164     uint64_t feature_control_bits = 0;
1165     uint64_t *val;
1166 
1167     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1168     if (ecx & CPUID_EXT_VMX) {
1169         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1170     }
1171 
1172     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1173         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1174         (env->mcg_cap & MCG_LMCE_P)) {
1175         feature_control_bits |= FEATURE_CONTROL_LMCE;
1176     }
1177 
1178     if (!feature_control_bits) {
1179         return;
1180     }
1181 
1182     val = g_malloc(sizeof(*val));
1183     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1184     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1185 }
1186 
1187 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1188 {
1189     if (cpus_count > 0xff) {
1190         /* If the number of CPUs can't be represented in 8 bits, the
1191          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1192          * to make old BIOSes fail more predictably.
1193          */
1194         rtc_set_memory(rtc, 0x5f, 0);
1195     } else {
1196         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1197     }
1198 }
1199 
1200 static
1201 void pc_machine_done(Notifier *notifier, void *data)
1202 {
1203     PCMachineState *pcms = container_of(notifier,
1204                                         PCMachineState, machine_done);
1205     PCIBus *bus = pcms->bus;
1206 
1207     /* set the number of CPUs */
1208     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1209 
1210     if (bus) {
1211         int extra_hosts = 0;
1212 
1213         QLIST_FOREACH(bus, &bus->child, sibling) {
1214             /* look for expander root buses */
1215             if (pci_bus_is_root(bus)) {
1216                 extra_hosts++;
1217             }
1218         }
1219         if (extra_hosts && pcms->fw_cfg) {
1220             uint64_t *val = g_malloc(sizeof(*val));
1221             *val = cpu_to_le64(extra_hosts);
1222             fw_cfg_add_file(pcms->fw_cfg,
1223                     "etc/extra-pci-roots", val, sizeof(*val));
1224         }
1225     }
1226 
1227     acpi_setup();
1228     if (pcms->fw_cfg) {
1229         pc_build_smbios(pcms);
1230         pc_build_feature_control_file(pcms);
1231         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1232         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1233     }
1234 
1235     if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1236         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1237 
1238         if (!iommu || !iommu->x86_iommu.intr_supported ||
1239             iommu->intr_eim != ON_OFF_AUTO_ON) {
1240             error_report("current -smp configuration requires "
1241                          "Extended Interrupt Mode enabled. "
1242                          "You can add an IOMMU using: "
1243                          "-device intel-iommu,intremap=on,eim=on");
1244             exit(EXIT_FAILURE);
1245         }
1246     }
1247 }
1248 
1249 void pc_guest_info_init(PCMachineState *pcms)
1250 {
1251     int i;
1252 
1253     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1254     pcms->numa_nodes = nb_numa_nodes;
1255     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1256                                     sizeof *pcms->node_mem);
1257     for (i = 0; i < nb_numa_nodes; i++) {
1258         pcms->node_mem[i] = numa_info[i].node_mem;
1259     }
1260 
1261     pcms->machine_done.notify = pc_machine_done;
1262     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1263 }
1264 
1265 /* setup pci memory address space mapping into system address space */
1266 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1267                             MemoryRegion *pci_address_space)
1268 {
1269     /* Set to lower priority than RAM */
1270     memory_region_add_subregion_overlap(system_memory, 0x0,
1271                                         pci_address_space, -1);
1272 }
1273 
1274 void pc_acpi_init(const char *default_dsdt)
1275 {
1276     char *filename;
1277 
1278     if (acpi_tables != NULL) {
1279         /* manually set via -acpitable, leave it alone */
1280         return;
1281     }
1282 
1283     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1284     if (filename == NULL) {
1285         warn_report("failed to find %s", default_dsdt);
1286     } else {
1287         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1288                                           &error_abort);
1289         Error *err = NULL;
1290 
1291         qemu_opt_set(opts, "file", filename, &error_abort);
1292 
1293         acpi_table_add_builtin(opts, &err);
1294         if (err) {
1295             warn_reportf_err(err, "failed to load %s: ", filename);
1296         }
1297         g_free(filename);
1298     }
1299 }
1300 
1301 void xen_load_linux(PCMachineState *pcms)
1302 {
1303     int i;
1304     FWCfgState *fw_cfg;
1305 
1306     assert(MACHINE(pcms)->kernel_filename != NULL);
1307 
1308     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1309     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1310     rom_set_fw(fw_cfg);
1311 
1312     load_linux(pcms, fw_cfg);
1313     for (i = 0; i < nb_option_roms; i++) {
1314         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1315                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1316                !strcmp(option_rom[i].name, "multiboot.bin"));
1317         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1318     }
1319     pcms->fw_cfg = fw_cfg;
1320 }
1321 
1322 void pc_memory_init(PCMachineState *pcms,
1323                     MemoryRegion *system_memory,
1324                     MemoryRegion *rom_memory,
1325                     MemoryRegion **ram_memory)
1326 {
1327     int linux_boot, i;
1328     MemoryRegion *ram, *option_rom_mr;
1329     MemoryRegion *ram_below_4g, *ram_above_4g;
1330     FWCfgState *fw_cfg;
1331     MachineState *machine = MACHINE(pcms);
1332     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1333 
1334     assert(machine->ram_size == pcms->below_4g_mem_size +
1335                                 pcms->above_4g_mem_size);
1336 
1337     linux_boot = (machine->kernel_filename != NULL);
1338 
1339     /* Allocate RAM.  We allocate it as a single memory region and use
1340      * aliases to address portions of it, mostly for backwards compatibility
1341      * with older qemus that used qemu_ram_alloc().
1342      */
1343     ram = g_malloc(sizeof(*ram));
1344     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1345                                          machine->ram_size);
1346     *ram_memory = ram;
1347     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1348     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1349                              0, pcms->below_4g_mem_size);
1350     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1351     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1352     if (pcms->above_4g_mem_size > 0) {
1353         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1354         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1355                                  pcms->below_4g_mem_size,
1356                                  pcms->above_4g_mem_size);
1357         memory_region_add_subregion(system_memory, 0x100000000ULL,
1358                                     ram_above_4g);
1359         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1360     }
1361 
1362     if (!pcmc->has_reserved_memory &&
1363         (machine->ram_slots ||
1364          (machine->maxram_size > machine->ram_size))) {
1365         MachineClass *mc = MACHINE_GET_CLASS(machine);
1366 
1367         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1368                      mc->name);
1369         exit(EXIT_FAILURE);
1370     }
1371 
1372     /* initialize hotplug memory address space */
1373     if (pcmc->has_reserved_memory &&
1374         (machine->ram_size < machine->maxram_size)) {
1375         ram_addr_t hotplug_mem_size =
1376             machine->maxram_size - machine->ram_size;
1377 
1378         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1379             error_report("unsupported amount of memory slots: %"PRIu64,
1380                          machine->ram_slots);
1381             exit(EXIT_FAILURE);
1382         }
1383 
1384         if (QEMU_ALIGN_UP(machine->maxram_size,
1385                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1386             error_report("maximum memory size must by aligned to multiple of "
1387                          "%d bytes", TARGET_PAGE_SIZE);
1388             exit(EXIT_FAILURE);
1389         }
1390 
1391         pcms->hotplug_memory.base =
1392             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1393 
1394         if (pcmc->enforce_aligned_dimm) {
1395             /* size hotplug region assuming 1G page max alignment per slot */
1396             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1397         }
1398 
1399         if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1400             hotplug_mem_size) {
1401             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1402                          machine->maxram_size);
1403             exit(EXIT_FAILURE);
1404         }
1405 
1406         memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1407                            "hotplug-memory", hotplug_mem_size);
1408         memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1409                                     &pcms->hotplug_memory.mr);
1410     }
1411 
1412     /* Initialize PC system firmware */
1413     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1414 
1415     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1416     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1417                            &error_fatal);
1418     if (pcmc->pci_enabled) {
1419         memory_region_set_readonly(option_rom_mr, true);
1420     }
1421     memory_region_add_subregion_overlap(rom_memory,
1422                                         PC_ROM_MIN_VGA,
1423                                         option_rom_mr,
1424                                         1);
1425 
1426     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1427 
1428     rom_set_fw(fw_cfg);
1429 
1430     if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1431         uint64_t *val = g_malloc(sizeof(*val));
1432         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1433         uint64_t res_mem_end = pcms->hotplug_memory.base;
1434 
1435         if (!pcmc->broken_reserved_end) {
1436             res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1437         }
1438         *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1439         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1440     }
1441 
1442     if (linux_boot) {
1443         load_linux(pcms, fw_cfg);
1444     }
1445 
1446     for (i = 0; i < nb_option_roms; i++) {
1447         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1448     }
1449     pcms->fw_cfg = fw_cfg;
1450 
1451     /* Init default IOAPIC address space */
1452     pcms->ioapic_as = &address_space_memory;
1453 }
1454 
1455 /*
1456  * The 64bit pci hole starts after "above 4G RAM" and
1457  * potentially the space reserved for memory hotplug.
1458  */
1459 uint64_t pc_pci_hole64_start(void)
1460 {
1461     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1462     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1463     uint64_t hole64_start = 0;
1464 
1465     if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1466         hole64_start = pcms->hotplug_memory.base;
1467         if (!pcmc->broken_reserved_end) {
1468             hole64_start += memory_region_size(&pcms->hotplug_memory.mr);
1469         }
1470     } else {
1471         hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1472     }
1473 
1474     return ROUND_UP(hole64_start, 1ULL << 30);
1475 }
1476 
1477 qemu_irq pc_allocate_cpu_irq(void)
1478 {
1479     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1480 }
1481 
1482 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1483 {
1484     DeviceState *dev = NULL;
1485 
1486     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1487     if (pci_bus) {
1488         PCIDevice *pcidev = pci_vga_init(pci_bus);
1489         dev = pcidev ? &pcidev->qdev : NULL;
1490     } else if (isa_bus) {
1491         ISADevice *isadev = isa_vga_init(isa_bus);
1492         dev = isadev ? DEVICE(isadev) : NULL;
1493     }
1494     rom_reset_order_override();
1495     return dev;
1496 }
1497 
1498 static const MemoryRegionOps ioport80_io_ops = {
1499     .write = ioport80_write,
1500     .read = ioport80_read,
1501     .endianness = DEVICE_NATIVE_ENDIAN,
1502     .impl = {
1503         .min_access_size = 1,
1504         .max_access_size = 1,
1505     },
1506 };
1507 
1508 static const MemoryRegionOps ioportF0_io_ops = {
1509     .write = ioportF0_write,
1510     .read = ioportF0_read,
1511     .endianness = DEVICE_NATIVE_ENDIAN,
1512     .impl = {
1513         .min_access_size = 1,
1514         .max_access_size = 1,
1515     },
1516 };
1517 
1518 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1519                           ISADevice **rtc_state,
1520                           bool create_fdctrl,
1521                           bool no_vmport,
1522                           bool has_pit,
1523                           uint32_t hpet_irqs)
1524 {
1525     int i;
1526     DriveInfo *fd[MAX_FD];
1527     DeviceState *hpet = NULL;
1528     int pit_isa_irq = 0;
1529     qemu_irq pit_alt_irq = NULL;
1530     qemu_irq rtc_irq = NULL;
1531     qemu_irq *a20_line;
1532     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1533     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1534     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1535 
1536     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1537     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1538 
1539     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1540     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1541 
1542     /*
1543      * Check if an HPET shall be created.
1544      *
1545      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1546      * when the HPET wants to take over. Thus we have to disable the latter.
1547      */
1548     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1549         /* In order to set property, here not using sysbus_try_create_simple */
1550         hpet = qdev_try_create(NULL, TYPE_HPET);
1551         if (hpet) {
1552             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1553              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1554              * IRQ8 and IRQ2.
1555              */
1556             uint8_t compat = object_property_get_uint(OBJECT(hpet),
1557                     HPET_INTCAP, NULL);
1558             if (!compat) {
1559                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1560             }
1561             qdev_init_nofail(hpet);
1562             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1563 
1564             for (i = 0; i < GSI_NUM_PINS; i++) {
1565                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1566             }
1567             pit_isa_irq = -1;
1568             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1569             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1570         }
1571     }
1572     *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1573 
1574     qemu_register_boot_set(pc_boot_set, *rtc_state);
1575 
1576     if (!xen_enabled() && has_pit) {
1577         if (kvm_pit_in_kernel()) {
1578             pit = kvm_pit_init(isa_bus, 0x40);
1579         } else {
1580             pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1581         }
1582         if (hpet) {
1583             /* connect PIT to output control line of the HPET */
1584             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1585         }
1586         pcspk_init(isa_bus, pit);
1587     }
1588 
1589     serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS);
1590     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1591 
1592     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1593     i8042 = isa_create_simple(isa_bus, "i8042");
1594     i8042_setup_a20_line(i8042, a20_line[0]);
1595     if (!no_vmport) {
1596         vmport_init(isa_bus);
1597         vmmouse = isa_try_create(isa_bus, "vmmouse");
1598     } else {
1599         vmmouse = NULL;
1600     }
1601     if (vmmouse) {
1602         DeviceState *dev = DEVICE(vmmouse);
1603         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1604         qdev_init_nofail(dev);
1605     }
1606     port92 = isa_create_simple(isa_bus, "port92");
1607     port92_init(port92, a20_line[1]);
1608     g_free(a20_line);
1609 
1610     DMA_init(isa_bus, 0);
1611 
1612     for(i = 0; i < MAX_FD; i++) {
1613         fd[i] = drive_get(IF_FLOPPY, 0, i);
1614         create_fdctrl |= !!fd[i];
1615     }
1616     if (create_fdctrl) {
1617         fdctrl_init_isa(isa_bus, fd);
1618     }
1619 }
1620 
1621 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1622 {
1623     int i;
1624 
1625     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1626     for (i = 0; i < nb_nics; i++) {
1627         NICInfo *nd = &nd_table[i];
1628 
1629         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1630             pc_init_ne2k_isa(isa_bus, nd);
1631         } else {
1632             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1633         }
1634     }
1635     rom_reset_order_override();
1636 }
1637 
1638 void pc_pci_device_init(PCIBus *pci_bus)
1639 {
1640     int max_bus;
1641     int bus;
1642 
1643     /* Note: if=scsi is deprecated with PC machine types */
1644     max_bus = drive_get_max_bus(IF_SCSI);
1645     for (bus = 0; bus <= max_bus; bus++) {
1646         pci_create_simple(pci_bus, -1, "lsi53c895a");
1647         /*
1648          * By not creating frontends here, we make
1649          * scsi_legacy_handle_cmdline() create them, and warn that
1650          * this usage is deprecated.
1651          */
1652     }
1653 }
1654 
1655 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1656 {
1657     DeviceState *dev;
1658     SysBusDevice *d;
1659     unsigned int i;
1660 
1661     if (kvm_ioapic_in_kernel()) {
1662         dev = qdev_create(NULL, "kvm-ioapic");
1663     } else {
1664         dev = qdev_create(NULL, "ioapic");
1665     }
1666     if (parent_name) {
1667         object_property_add_child(object_resolve_path(parent_name, NULL),
1668                                   "ioapic", OBJECT(dev), NULL);
1669     }
1670     qdev_init_nofail(dev);
1671     d = SYS_BUS_DEVICE(dev);
1672     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1673 
1674     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1675         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1676     }
1677 }
1678 
1679 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1680                          DeviceState *dev, Error **errp)
1681 {
1682     HotplugHandlerClass *hhc;
1683     Error *local_err = NULL;
1684     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1685     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1686     PCDIMMDevice *dimm = PC_DIMM(dev);
1687     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1688     MemoryRegion *mr;
1689     uint64_t align = TARGET_PAGE_SIZE;
1690     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1691 
1692     mr = ddc->get_memory_region(dimm, &local_err);
1693     if (local_err) {
1694         goto out;
1695     }
1696 
1697     if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1698         align = memory_region_get_alignment(mr);
1699     }
1700 
1701     /*
1702      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1703      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1704      * addition to cover this case.
1705      */
1706     if (!pcms->acpi_dev || !acpi_enabled) {
1707         error_setg(&local_err,
1708                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1709         goto out;
1710     }
1711 
1712     if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1713         error_setg(&local_err,
1714                    "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1715         goto out;
1716     }
1717 
1718     pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1719     if (local_err) {
1720         goto out;
1721     }
1722 
1723     if (is_nvdimm) {
1724         nvdimm_plug(&pcms->acpi_nvdimm_state);
1725     }
1726 
1727     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1728     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1729 out:
1730     error_propagate(errp, local_err);
1731 }
1732 
1733 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1734                                    DeviceState *dev, Error **errp)
1735 {
1736     HotplugHandlerClass *hhc;
1737     Error *local_err = NULL;
1738     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1739 
1740     /*
1741      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1742      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1743      * addition to cover this case.
1744      */
1745     if (!pcms->acpi_dev || !acpi_enabled) {
1746         error_setg(&local_err,
1747                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1748         goto out;
1749     }
1750 
1751     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1752         error_setg(&local_err,
1753                    "nvdimm device hot unplug is not supported yet.");
1754         goto out;
1755     }
1756 
1757     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1758     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1759 
1760 out:
1761     error_propagate(errp, local_err);
1762 }
1763 
1764 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1765                            DeviceState *dev, Error **errp)
1766 {
1767     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1768     PCDIMMDevice *dimm = PC_DIMM(dev);
1769     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1770     MemoryRegion *mr;
1771     HotplugHandlerClass *hhc;
1772     Error *local_err = NULL;
1773 
1774     mr = ddc->get_memory_region(dimm, &local_err);
1775     if (local_err) {
1776         goto out;
1777     }
1778 
1779     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1780     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1781 
1782     if (local_err) {
1783         goto out;
1784     }
1785 
1786     pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1787     object_unparent(OBJECT(dev));
1788 
1789  out:
1790     error_propagate(errp, local_err);
1791 }
1792 
1793 static int pc_apic_cmp(const void *a, const void *b)
1794 {
1795    CPUArchId *apic_a = (CPUArchId *)a;
1796    CPUArchId *apic_b = (CPUArchId *)b;
1797 
1798    return apic_a->arch_id - apic_b->arch_id;
1799 }
1800 
1801 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1802  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1803  * entry corresponding to CPU's apic_id returns NULL.
1804  */
1805 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1806 {
1807     CPUArchId apic_id, *found_cpu;
1808 
1809     apic_id.arch_id = id;
1810     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1811         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1812         pc_apic_cmp);
1813     if (found_cpu && idx) {
1814         *idx = found_cpu - ms->possible_cpus->cpus;
1815     }
1816     return found_cpu;
1817 }
1818 
1819 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1820                         DeviceState *dev, Error **errp)
1821 {
1822     CPUArchId *found_cpu;
1823     HotplugHandlerClass *hhc;
1824     Error *local_err = NULL;
1825     X86CPU *cpu = X86_CPU(dev);
1826     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1827 
1828     if (pcms->acpi_dev) {
1829         hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1830         hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1831         if (local_err) {
1832             goto out;
1833         }
1834     }
1835 
1836     /* increment the number of CPUs */
1837     pcms->boot_cpus++;
1838     if (pcms->rtc) {
1839         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1840     }
1841     if (pcms->fw_cfg) {
1842         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1843     }
1844 
1845     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1846     found_cpu->cpu = OBJECT(dev);
1847 out:
1848     error_propagate(errp, local_err);
1849 }
1850 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1851                                      DeviceState *dev, Error **errp)
1852 {
1853     int idx = -1;
1854     HotplugHandlerClass *hhc;
1855     Error *local_err = NULL;
1856     X86CPU *cpu = X86_CPU(dev);
1857     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1858 
1859     if (!pcms->acpi_dev) {
1860         error_setg(&local_err, "CPU hot unplug not supported without ACPI");
1861         goto out;
1862     }
1863 
1864     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1865     assert(idx != -1);
1866     if (idx == 0) {
1867         error_setg(&local_err, "Boot CPU is unpluggable");
1868         goto out;
1869     }
1870 
1871     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1872     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1873 
1874     if (local_err) {
1875         goto out;
1876     }
1877 
1878  out:
1879     error_propagate(errp, local_err);
1880 
1881 }
1882 
1883 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1884                              DeviceState *dev, Error **errp)
1885 {
1886     CPUArchId *found_cpu;
1887     HotplugHandlerClass *hhc;
1888     Error *local_err = NULL;
1889     X86CPU *cpu = X86_CPU(dev);
1890     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1891 
1892     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1893     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1894 
1895     if (local_err) {
1896         goto out;
1897     }
1898 
1899     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1900     found_cpu->cpu = NULL;
1901     object_unparent(OBJECT(dev));
1902 
1903     /* decrement the number of CPUs */
1904     pcms->boot_cpus--;
1905     /* Update the number of CPUs in CMOS */
1906     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1907     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1908  out:
1909     error_propagate(errp, local_err);
1910 }
1911 
1912 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1913                             DeviceState *dev, Error **errp)
1914 {
1915     int idx;
1916     CPUState *cs;
1917     CPUArchId *cpu_slot;
1918     X86CPUTopoInfo topo;
1919     X86CPU *cpu = X86_CPU(dev);
1920     MachineState *ms = MACHINE(hotplug_dev);
1921     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1922 
1923     if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
1924         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
1925                    ms->cpu_type);
1926         return;
1927     }
1928 
1929     /* if APIC ID is not set, set it based on socket/core/thread properties */
1930     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1931         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1932 
1933         if (cpu->socket_id < 0) {
1934             error_setg(errp, "CPU socket-id is not set");
1935             return;
1936         } else if (cpu->socket_id > max_socket) {
1937             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1938                        cpu->socket_id, max_socket);
1939             return;
1940         }
1941         if (cpu->core_id < 0) {
1942             error_setg(errp, "CPU core-id is not set");
1943             return;
1944         } else if (cpu->core_id > (smp_cores - 1)) {
1945             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1946                        cpu->core_id, smp_cores - 1);
1947             return;
1948         }
1949         if (cpu->thread_id < 0) {
1950             error_setg(errp, "CPU thread-id is not set");
1951             return;
1952         } else if (cpu->thread_id > (smp_threads - 1)) {
1953             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1954                        cpu->thread_id, smp_threads - 1);
1955             return;
1956         }
1957 
1958         topo.pkg_id = cpu->socket_id;
1959         topo.core_id = cpu->core_id;
1960         topo.smt_id = cpu->thread_id;
1961         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1962     }
1963 
1964     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1965     if (!cpu_slot) {
1966         MachineState *ms = MACHINE(pcms);
1967 
1968         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1969         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1970                   " APIC ID %" PRIu32 ", valid index range 0:%d",
1971                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1972                    ms->possible_cpus->len - 1);
1973         return;
1974     }
1975 
1976     if (cpu_slot->cpu) {
1977         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1978                    idx, cpu->apic_id);
1979         return;
1980     }
1981 
1982     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1983      * so that machine_query_hotpluggable_cpus would show correct values
1984      */
1985     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1986      * once -smp refactoring is complete and there will be CPU private
1987      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1988     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1989     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1990         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1991             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1992         return;
1993     }
1994     cpu->socket_id = topo.pkg_id;
1995 
1996     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1997         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1998             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1999         return;
2000     }
2001     cpu->core_id = topo.core_id;
2002 
2003     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2004         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2005             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2006         return;
2007     }
2008     cpu->thread_id = topo.smt_id;
2009 
2010     cs = CPU(cpu);
2011     cs->cpu_index = idx;
2012 
2013     numa_cpu_pre_plug(cpu_slot, dev, errp);
2014 }
2015 
2016 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2017                                           DeviceState *dev, Error **errp)
2018 {
2019     if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2020         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2021     }
2022 }
2023 
2024 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2025                                       DeviceState *dev, Error **errp)
2026 {
2027     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2028         pc_dimm_plug(hotplug_dev, dev, errp);
2029     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2030         pc_cpu_plug(hotplug_dev, dev, errp);
2031     }
2032 }
2033 
2034 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2035                                                 DeviceState *dev, Error **errp)
2036 {
2037     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2038         pc_dimm_unplug_request(hotplug_dev, dev, errp);
2039     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2040         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2041     } else {
2042         error_setg(errp, "acpi: device unplug request for not supported device"
2043                    " type: %s", object_get_typename(OBJECT(dev)));
2044     }
2045 }
2046 
2047 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2048                                         DeviceState *dev, Error **errp)
2049 {
2050     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2051         pc_dimm_unplug(hotplug_dev, dev, errp);
2052     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2053         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2054     } else {
2055         error_setg(errp, "acpi: device unplug for not supported device"
2056                    " type: %s", object_get_typename(OBJECT(dev)));
2057     }
2058 }
2059 
2060 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2061                                              DeviceState *dev)
2062 {
2063     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
2064 
2065     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2066         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2067         return HOTPLUG_HANDLER(machine);
2068     }
2069 
2070     return pcmc->get_hotplug_handler ?
2071         pcmc->get_hotplug_handler(machine, dev) : NULL;
2072 }
2073 
2074 static void
2075 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2076                                           const char *name, void *opaque,
2077                                           Error **errp)
2078 {
2079     PCMachineState *pcms = PC_MACHINE(obj);
2080     int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2081 
2082     visit_type_int(v, name, &value, errp);
2083 }
2084 
2085 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2086                                             const char *name, void *opaque,
2087                                             Error **errp)
2088 {
2089     PCMachineState *pcms = PC_MACHINE(obj);
2090     uint64_t value = pcms->max_ram_below_4g;
2091 
2092     visit_type_size(v, name, &value, errp);
2093 }
2094 
2095 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2096                                             const char *name, void *opaque,
2097                                             Error **errp)
2098 {
2099     PCMachineState *pcms = PC_MACHINE(obj);
2100     Error *error = NULL;
2101     uint64_t value;
2102 
2103     visit_type_size(v, name, &value, &error);
2104     if (error) {
2105         error_propagate(errp, error);
2106         return;
2107     }
2108     if (value > (1ULL << 32)) {
2109         error_setg(&error,
2110                    "Machine option 'max-ram-below-4g=%"PRIu64
2111                    "' expects size less than or equal to 4G", value);
2112         error_propagate(errp, error);
2113         return;
2114     }
2115 
2116     if (value < (1ULL << 20)) {
2117         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2118                     "BIOS may not work with less than 1MiB", value);
2119     }
2120 
2121     pcms->max_ram_below_4g = value;
2122 }
2123 
2124 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2125                                   void *opaque, Error **errp)
2126 {
2127     PCMachineState *pcms = PC_MACHINE(obj);
2128     OnOffAuto vmport = pcms->vmport;
2129 
2130     visit_type_OnOffAuto(v, name, &vmport, errp);
2131 }
2132 
2133 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2134                                   void *opaque, Error **errp)
2135 {
2136     PCMachineState *pcms = PC_MACHINE(obj);
2137 
2138     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2139 }
2140 
2141 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2142 {
2143     bool smm_available = false;
2144 
2145     if (pcms->smm == ON_OFF_AUTO_OFF) {
2146         return false;
2147     }
2148 
2149     if (tcg_enabled() || qtest_enabled()) {
2150         smm_available = true;
2151     } else if (kvm_enabled()) {
2152         smm_available = kvm_has_smm();
2153     }
2154 
2155     if (smm_available) {
2156         return true;
2157     }
2158 
2159     if (pcms->smm == ON_OFF_AUTO_ON) {
2160         error_report("System Management Mode not supported by this hypervisor.");
2161         exit(1);
2162     }
2163     return false;
2164 }
2165 
2166 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2167                                void *opaque, Error **errp)
2168 {
2169     PCMachineState *pcms = PC_MACHINE(obj);
2170     OnOffAuto smm = pcms->smm;
2171 
2172     visit_type_OnOffAuto(v, name, &smm, errp);
2173 }
2174 
2175 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2176                                void *opaque, Error **errp)
2177 {
2178     PCMachineState *pcms = PC_MACHINE(obj);
2179 
2180     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2181 }
2182 
2183 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2184 {
2185     PCMachineState *pcms = PC_MACHINE(obj);
2186 
2187     return pcms->acpi_nvdimm_state.is_enabled;
2188 }
2189 
2190 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2191 {
2192     PCMachineState *pcms = PC_MACHINE(obj);
2193 
2194     pcms->acpi_nvdimm_state.is_enabled = value;
2195 }
2196 
2197 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2198 {
2199     PCMachineState *pcms = PC_MACHINE(obj);
2200 
2201     return pcms->smbus;
2202 }
2203 
2204 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2205 {
2206     PCMachineState *pcms = PC_MACHINE(obj);
2207 
2208     pcms->smbus = value;
2209 }
2210 
2211 static bool pc_machine_get_sata(Object *obj, Error **errp)
2212 {
2213     PCMachineState *pcms = PC_MACHINE(obj);
2214 
2215     return pcms->sata;
2216 }
2217 
2218 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2219 {
2220     PCMachineState *pcms = PC_MACHINE(obj);
2221 
2222     pcms->sata = value;
2223 }
2224 
2225 static bool pc_machine_get_pit(Object *obj, Error **errp)
2226 {
2227     PCMachineState *pcms = PC_MACHINE(obj);
2228 
2229     return pcms->pit;
2230 }
2231 
2232 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2233 {
2234     PCMachineState *pcms = PC_MACHINE(obj);
2235 
2236     pcms->pit = value;
2237 }
2238 
2239 static void pc_machine_initfn(Object *obj)
2240 {
2241     PCMachineState *pcms = PC_MACHINE(obj);
2242 
2243     pcms->max_ram_below_4g = 0; /* use default */
2244     pcms->smm = ON_OFF_AUTO_AUTO;
2245     pcms->vmport = ON_OFF_AUTO_AUTO;
2246     /* nvdimm is disabled on default. */
2247     pcms->acpi_nvdimm_state.is_enabled = false;
2248     /* acpi build is enabled by default if machine supports it */
2249     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2250     pcms->smbus = true;
2251     pcms->sata = true;
2252     pcms->pit = true;
2253 }
2254 
2255 static void pc_machine_reset(void)
2256 {
2257     CPUState *cs;
2258     X86CPU *cpu;
2259 
2260     qemu_devices_reset();
2261 
2262     /* Reset APIC after devices have been reset to cancel
2263      * any changes that qemu_devices_reset() might have done.
2264      */
2265     CPU_FOREACH(cs) {
2266         cpu = X86_CPU(cs);
2267 
2268         if (cpu->apic_state) {
2269             device_reset(cpu->apic_state);
2270         }
2271     }
2272 }
2273 
2274 static CpuInstanceProperties
2275 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2276 {
2277     MachineClass *mc = MACHINE_GET_CLASS(ms);
2278     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2279 
2280     assert(cpu_index < possible_cpus->len);
2281     return possible_cpus->cpus[cpu_index].props;
2282 }
2283 
2284 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2285 {
2286    X86CPUTopoInfo topo;
2287 
2288    assert(idx < ms->possible_cpus->len);
2289    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2290                             smp_cores, smp_threads, &topo);
2291    return topo.pkg_id % nb_numa_nodes;
2292 }
2293 
2294 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2295 {
2296     int i;
2297 
2298     if (ms->possible_cpus) {
2299         /*
2300          * make sure that max_cpus hasn't changed since the first use, i.e.
2301          * -smp hasn't been parsed after it
2302         */
2303         assert(ms->possible_cpus->len == max_cpus);
2304         return ms->possible_cpus;
2305     }
2306 
2307     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2308                                   sizeof(CPUArchId) * max_cpus);
2309     ms->possible_cpus->len = max_cpus;
2310     for (i = 0; i < ms->possible_cpus->len; i++) {
2311         X86CPUTopoInfo topo;
2312 
2313         ms->possible_cpus->cpus[i].type = ms->cpu_type;
2314         ms->possible_cpus->cpus[i].vcpus_count = 1;
2315         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2316         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2317                                  smp_cores, smp_threads, &topo);
2318         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2319         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2320         ms->possible_cpus->cpus[i].props.has_core_id = true;
2321         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2322         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2323         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2324     }
2325     return ms->possible_cpus;
2326 }
2327 
2328 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2329 {
2330     /* cpu index isn't used */
2331     CPUState *cs;
2332 
2333     CPU_FOREACH(cs) {
2334         X86CPU *cpu = X86_CPU(cs);
2335 
2336         if (!cpu->apic_state) {
2337             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2338         } else {
2339             apic_deliver_nmi(cpu->apic_state);
2340         }
2341     }
2342 }
2343 
2344 static void pc_machine_class_init(ObjectClass *oc, void *data)
2345 {
2346     MachineClass *mc = MACHINE_CLASS(oc);
2347     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2348     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2349     NMIClass *nc = NMI_CLASS(oc);
2350 
2351     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2352     pcmc->pci_enabled = true;
2353     pcmc->has_acpi_build = true;
2354     pcmc->rsdp_in_ram = true;
2355     pcmc->smbios_defaults = true;
2356     pcmc->smbios_uuid_encoded = true;
2357     pcmc->gigabyte_align = true;
2358     pcmc->has_reserved_memory = true;
2359     pcmc->kvmclock_enabled = true;
2360     pcmc->enforce_aligned_dimm = true;
2361     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2362      * to be used at the moment, 32K should be enough for a while.  */
2363     pcmc->acpi_data_size = 0x20000 + 0x8000;
2364     pcmc->save_tsc_khz = true;
2365     pcmc->linuxboot_dma_enabled = true;
2366     mc->get_hotplug_handler = pc_get_hotpug_handler;
2367     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2368     mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2369     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2370     mc->auto_enable_numa_with_memhp = true;
2371     mc->has_hotpluggable_cpus = true;
2372     mc->default_boot_order = "cad";
2373     mc->hot_add_cpu = pc_hot_add_cpu;
2374     mc->block_default_type = IF_IDE;
2375     mc->max_cpus = 255;
2376     mc->reset = pc_machine_reset;
2377     hc->pre_plug = pc_machine_device_pre_plug_cb;
2378     hc->plug = pc_machine_device_plug_cb;
2379     hc->unplug_request = pc_machine_device_unplug_request_cb;
2380     hc->unplug = pc_machine_device_unplug_cb;
2381     nc->nmi_monitor_handler = x86_nmi;
2382     mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2383 
2384     object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2385         pc_machine_get_hotplug_memory_region_size, NULL,
2386         NULL, NULL, &error_abort);
2387 
2388     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2389         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2390         NULL, NULL, &error_abort);
2391 
2392     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2393         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2394 
2395     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2396         pc_machine_get_smm, pc_machine_set_smm,
2397         NULL, NULL, &error_abort);
2398     object_class_property_set_description(oc, PC_MACHINE_SMM,
2399         "Enable SMM (pc & q35)", &error_abort);
2400 
2401     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2402         pc_machine_get_vmport, pc_machine_set_vmport,
2403         NULL, NULL, &error_abort);
2404     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2405         "Enable vmport (pc & q35)", &error_abort);
2406 
2407     object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2408         pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2409 
2410     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2411         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2412 
2413     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2414         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2415 
2416     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2417         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2418 }
2419 
2420 static const TypeInfo pc_machine_info = {
2421     .name = TYPE_PC_MACHINE,
2422     .parent = TYPE_MACHINE,
2423     .abstract = true,
2424     .instance_size = sizeof(PCMachineState),
2425     .instance_init = pc_machine_initfn,
2426     .class_size = sizeof(PCMachineClass),
2427     .class_init = pc_machine_class_init,
2428     .interfaces = (InterfaceInfo[]) {
2429          { TYPE_HOTPLUG_HANDLER },
2430          { TYPE_NMI },
2431          { }
2432     },
2433 };
2434 
2435 static void pc_machine_register_types(void)
2436 {
2437     type_register_static(&pc_machine_info);
2438 }
2439 
2440 type_init(pc_machine_register_types)
2441