xref: /openbmc/qemu/hw/i386/pc.c (revision dffacd46)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/acpi/cpu_hotplug.h"
57 #include "hw/cpu/icc_bus.h"
58 #include "hw/boards.h"
59 #include "hw/pci/pci_host.h"
60 #include "acpi-build.h"
61 
62 /* debug PC/ISA interrupts */
63 //#define DEBUG_IRQ
64 
65 #ifdef DEBUG_IRQ
66 #define DPRINTF(fmt, ...)                                       \
67     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
68 #else
69 #define DPRINTF(fmt, ...)
70 #endif
71 
72 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
73 #define ACPI_DATA_SIZE       0x10000
74 #define BIOS_CFG_IOPORT 0x510
75 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
76 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
77 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
78 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
79 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
80 
81 #define E820_NR_ENTRIES		16
82 
83 struct e820_entry {
84     uint64_t address;
85     uint64_t length;
86     uint32_t type;
87 } QEMU_PACKED __attribute((__aligned__(4)));
88 
89 struct e820_table {
90     uint32_t count;
91     struct e820_entry entry[E820_NR_ENTRIES];
92 } QEMU_PACKED __attribute((__aligned__(4)));
93 
94 static struct e820_table e820_reserve;
95 static struct e820_entry *e820_table;
96 static unsigned e820_entries;
97 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
98 
99 void gsi_handler(void *opaque, int n, int level)
100 {
101     GSIState *s = opaque;
102 
103     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
104     if (n < ISA_NUM_IRQS) {
105         qemu_set_irq(s->i8259_irq[n], level);
106     }
107     qemu_set_irq(s->ioapic_irq[n], level);
108 }
109 
110 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
111                            unsigned size)
112 {
113 }
114 
115 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
116 {
117     return 0xffffffffffffffffULL;
118 }
119 
120 /* MSDOS compatibility mode FPU exception support */
121 static qemu_irq ferr_irq;
122 
123 void pc_register_ferr_irq(qemu_irq irq)
124 {
125     ferr_irq = irq;
126 }
127 
128 /* XXX: add IGNNE support */
129 void cpu_set_ferr(CPUX86State *s)
130 {
131     qemu_irq_raise(ferr_irq);
132 }
133 
134 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
135                            unsigned size)
136 {
137     qemu_irq_lower(ferr_irq);
138 }
139 
140 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
141 {
142     return 0xffffffffffffffffULL;
143 }
144 
145 /* TSC handling */
146 uint64_t cpu_get_tsc(CPUX86State *env)
147 {
148     return cpu_get_ticks();
149 }
150 
151 /* SMM support */
152 
153 static cpu_set_smm_t smm_set;
154 static void *smm_arg;
155 
156 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
157 {
158     assert(smm_set == NULL);
159     assert(smm_arg == NULL);
160     smm_set = callback;
161     smm_arg = arg;
162 }
163 
164 void cpu_smm_update(CPUX86State *env)
165 {
166     if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
167         smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
168     }
169 }
170 
171 
172 /* IRQ handling */
173 int cpu_get_pic_interrupt(CPUX86State *env)
174 {
175     X86CPU *cpu = x86_env_get_cpu(env);
176     int intno;
177 
178     intno = apic_get_interrupt(cpu->apic_state);
179     if (intno >= 0) {
180         return intno;
181     }
182     /* read the irq from the PIC */
183     if (!apic_accept_pic_intr(cpu->apic_state)) {
184         return -1;
185     }
186 
187     intno = pic_read_irq(isa_pic);
188     return intno;
189 }
190 
191 static void pic_irq_request(void *opaque, int irq, int level)
192 {
193     CPUState *cs = first_cpu;
194     X86CPU *cpu = X86_CPU(cs);
195 
196     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
197     if (cpu->apic_state) {
198         CPU_FOREACH(cs) {
199             cpu = X86_CPU(cs);
200             if (apic_accept_pic_intr(cpu->apic_state)) {
201                 apic_deliver_pic_intr(cpu->apic_state, level);
202             }
203         }
204     } else {
205         if (level) {
206             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
207         } else {
208             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
209         }
210     }
211 }
212 
213 /* PC cmos mappings */
214 
215 #define REG_EQUIPMENT_BYTE          0x14
216 
217 static int cmos_get_fd_drive_type(FDriveType fd0)
218 {
219     int val;
220 
221     switch (fd0) {
222     case FDRIVE_DRV_144:
223         /* 1.44 Mb 3"5 drive */
224         val = 4;
225         break;
226     case FDRIVE_DRV_288:
227         /* 2.88 Mb 3"5 drive */
228         val = 5;
229         break;
230     case FDRIVE_DRV_120:
231         /* 1.2 Mb 5"5 drive */
232         val = 2;
233         break;
234     case FDRIVE_DRV_NONE:
235     default:
236         val = 0;
237         break;
238     }
239     return val;
240 }
241 
242 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
243                          int16_t cylinders, int8_t heads, int8_t sectors)
244 {
245     rtc_set_memory(s, type_ofs, 47);
246     rtc_set_memory(s, info_ofs, cylinders);
247     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
248     rtc_set_memory(s, info_ofs + 2, heads);
249     rtc_set_memory(s, info_ofs + 3, 0xff);
250     rtc_set_memory(s, info_ofs + 4, 0xff);
251     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
252     rtc_set_memory(s, info_ofs + 6, cylinders);
253     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
254     rtc_set_memory(s, info_ofs + 8, sectors);
255 }
256 
257 /* convert boot_device letter to something recognizable by the bios */
258 static int boot_device2nibble(char boot_device)
259 {
260     switch(boot_device) {
261     case 'a':
262     case 'b':
263         return 0x01; /* floppy boot */
264     case 'c':
265         return 0x02; /* hard drive boot */
266     case 'd':
267         return 0x03; /* CD-ROM boot */
268     case 'n':
269         return 0x04; /* Network boot */
270     }
271     return 0;
272 }
273 
274 static int set_boot_dev(ISADevice *s, const char *boot_device)
275 {
276 #define PC_MAX_BOOT_DEVICES 3
277     int nbds, bds[3] = { 0, };
278     int i;
279 
280     nbds = strlen(boot_device);
281     if (nbds > PC_MAX_BOOT_DEVICES) {
282         error_report("Too many boot devices for PC");
283         return(1);
284     }
285     for (i = 0; i < nbds; i++) {
286         bds[i] = boot_device2nibble(boot_device[i]);
287         if (bds[i] == 0) {
288             error_report("Invalid boot device for PC: '%c'",
289                          boot_device[i]);
290             return(1);
291         }
292     }
293     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
294     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
295     return(0);
296 }
297 
298 static int pc_boot_set(void *opaque, const char *boot_device)
299 {
300     return set_boot_dev(opaque, boot_device);
301 }
302 
303 typedef struct pc_cmos_init_late_arg {
304     ISADevice *rtc_state;
305     BusState *idebus[2];
306 } pc_cmos_init_late_arg;
307 
308 static void pc_cmos_init_late(void *opaque)
309 {
310     pc_cmos_init_late_arg *arg = opaque;
311     ISADevice *s = arg->rtc_state;
312     int16_t cylinders;
313     int8_t heads, sectors;
314     int val;
315     int i, trans;
316 
317     val = 0;
318     if (ide_get_geometry(arg->idebus[0], 0,
319                          &cylinders, &heads, &sectors) >= 0) {
320         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
321         val |= 0xf0;
322     }
323     if (ide_get_geometry(arg->idebus[0], 1,
324                          &cylinders, &heads, &sectors) >= 0) {
325         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
326         val |= 0x0f;
327     }
328     rtc_set_memory(s, 0x12, val);
329 
330     val = 0;
331     for (i = 0; i < 4; i++) {
332         /* NOTE: ide_get_geometry() returns the physical
333            geometry.  It is always such that: 1 <= sects <= 63, 1
334            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
335            geometry can be different if a translation is done. */
336         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
337                              &cylinders, &heads, &sectors) >= 0) {
338             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
339             assert((trans & ~3) == 0);
340             val |= trans << (i * 2);
341         }
342     }
343     rtc_set_memory(s, 0x39, val);
344 
345     qemu_unregister_reset(pc_cmos_init_late, opaque);
346 }
347 
348 typedef struct RTCCPUHotplugArg {
349     Notifier cpu_added_notifier;
350     ISADevice *rtc_state;
351 } RTCCPUHotplugArg;
352 
353 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
354 {
355     RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
356                                          cpu_added_notifier);
357     ISADevice *s = arg->rtc_state;
358 
359     /* increment the number of CPUs */
360     rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
361 }
362 
363 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
364                   const char *boot_device,
365                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
366                   ISADevice *s)
367 {
368     int val, nb, i;
369     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
370     static pc_cmos_init_late_arg arg;
371     static RTCCPUHotplugArg cpu_hotplug_cb;
372 
373     /* various important CMOS locations needed by PC/Bochs bios */
374 
375     /* memory size */
376     /* base memory (first MiB) */
377     val = MIN(ram_size / 1024, 640);
378     rtc_set_memory(s, 0x15, val);
379     rtc_set_memory(s, 0x16, val >> 8);
380     /* extended memory (next 64MiB) */
381     if (ram_size > 1024 * 1024) {
382         val = (ram_size - 1024 * 1024) / 1024;
383     } else {
384         val = 0;
385     }
386     if (val > 65535)
387         val = 65535;
388     rtc_set_memory(s, 0x17, val);
389     rtc_set_memory(s, 0x18, val >> 8);
390     rtc_set_memory(s, 0x30, val);
391     rtc_set_memory(s, 0x31, val >> 8);
392     /* memory between 16MiB and 4GiB */
393     if (ram_size > 16 * 1024 * 1024) {
394         val = (ram_size - 16 * 1024 * 1024) / 65536;
395     } else {
396         val = 0;
397     }
398     if (val > 65535)
399         val = 65535;
400     rtc_set_memory(s, 0x34, val);
401     rtc_set_memory(s, 0x35, val >> 8);
402     /* memory above 4GiB */
403     val = above_4g_mem_size / 65536;
404     rtc_set_memory(s, 0x5b, val);
405     rtc_set_memory(s, 0x5c, val >> 8);
406     rtc_set_memory(s, 0x5d, val >> 16);
407 
408     /* set the number of CPU */
409     rtc_set_memory(s, 0x5f, smp_cpus - 1);
410     /* init CPU hotplug notifier */
411     cpu_hotplug_cb.rtc_state = s;
412     cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
413     qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
414 
415     if (set_boot_dev(s, boot_device)) {
416         exit(1);
417     }
418 
419     /* floppy type */
420     if (floppy) {
421         for (i = 0; i < 2; i++) {
422             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
423         }
424     }
425     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
426         cmos_get_fd_drive_type(fd_type[1]);
427     rtc_set_memory(s, 0x10, val);
428 
429     val = 0;
430     nb = 0;
431     if (fd_type[0] < FDRIVE_DRV_NONE) {
432         nb++;
433     }
434     if (fd_type[1] < FDRIVE_DRV_NONE) {
435         nb++;
436     }
437     switch (nb) {
438     case 0:
439         break;
440     case 1:
441         val |= 0x01; /* 1 drive, ready for boot */
442         break;
443     case 2:
444         val |= 0x41; /* 2 drives, ready for boot */
445         break;
446     }
447     val |= 0x02; /* FPU is there */
448     val |= 0x04; /* PS/2 mouse installed */
449     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
450 
451     /* hard drives */
452     arg.rtc_state = s;
453     arg.idebus[0] = idebus0;
454     arg.idebus[1] = idebus1;
455     qemu_register_reset(pc_cmos_init_late, &arg);
456 }
457 
458 #define TYPE_PORT92 "port92"
459 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
460 
461 /* port 92 stuff: could be split off */
462 typedef struct Port92State {
463     ISADevice parent_obj;
464 
465     MemoryRegion io;
466     uint8_t outport;
467     qemu_irq *a20_out;
468 } Port92State;
469 
470 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
471                          unsigned size)
472 {
473     Port92State *s = opaque;
474 
475     DPRINTF("port92: write 0x%02x\n", val);
476     s->outport = val;
477     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
478     if (val & 1) {
479         qemu_system_reset_request();
480     }
481 }
482 
483 static uint64_t port92_read(void *opaque, hwaddr addr,
484                             unsigned size)
485 {
486     Port92State *s = opaque;
487     uint32_t ret;
488 
489     ret = s->outport;
490     DPRINTF("port92: read 0x%02x\n", ret);
491     return ret;
492 }
493 
494 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
495 {
496     Port92State *s = PORT92(dev);
497 
498     s->a20_out = a20_out;
499 }
500 
501 static const VMStateDescription vmstate_port92_isa = {
502     .name = "port92",
503     .version_id = 1,
504     .minimum_version_id = 1,
505     .minimum_version_id_old = 1,
506     .fields      = (VMStateField []) {
507         VMSTATE_UINT8(outport, Port92State),
508         VMSTATE_END_OF_LIST()
509     }
510 };
511 
512 static void port92_reset(DeviceState *d)
513 {
514     Port92State *s = PORT92(d);
515 
516     s->outport &= ~1;
517 }
518 
519 static const MemoryRegionOps port92_ops = {
520     .read = port92_read,
521     .write = port92_write,
522     .impl = {
523         .min_access_size = 1,
524         .max_access_size = 1,
525     },
526     .endianness = DEVICE_LITTLE_ENDIAN,
527 };
528 
529 static void port92_initfn(Object *obj)
530 {
531     Port92State *s = PORT92(obj);
532 
533     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
534 
535     s->outport = 0;
536 }
537 
538 static void port92_realizefn(DeviceState *dev, Error **errp)
539 {
540     ISADevice *isadev = ISA_DEVICE(dev);
541     Port92State *s = PORT92(dev);
542 
543     isa_register_ioport(isadev, &s->io, 0x92);
544 }
545 
546 static void port92_class_initfn(ObjectClass *klass, void *data)
547 {
548     DeviceClass *dc = DEVICE_CLASS(klass);
549 
550     dc->realize = port92_realizefn;
551     dc->reset = port92_reset;
552     dc->vmsd = &vmstate_port92_isa;
553     /*
554      * Reason: unlike ordinary ISA devices, this one needs additional
555      * wiring: its A20 output line needs to be wired up by
556      * port92_init().
557      */
558     dc->cannot_instantiate_with_device_add_yet = true;
559 }
560 
561 static const TypeInfo port92_info = {
562     .name          = TYPE_PORT92,
563     .parent        = TYPE_ISA_DEVICE,
564     .instance_size = sizeof(Port92State),
565     .instance_init = port92_initfn,
566     .class_init    = port92_class_initfn,
567 };
568 
569 static void port92_register_types(void)
570 {
571     type_register_static(&port92_info);
572 }
573 
574 type_init(port92_register_types)
575 
576 static void handle_a20_line_change(void *opaque, int irq, int level)
577 {
578     X86CPU *cpu = opaque;
579 
580     /* XXX: send to all CPUs ? */
581     /* XXX: add logic to handle multiple A20 line sources */
582     x86_cpu_set_a20(cpu, level);
583 }
584 
585 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
586 {
587     int index = le32_to_cpu(e820_reserve.count);
588     struct e820_entry *entry;
589 
590     if (type != E820_RAM) {
591         /* old FW_CFG_E820_TABLE entry -- reservations only */
592         if (index >= E820_NR_ENTRIES) {
593             return -EBUSY;
594         }
595         entry = &e820_reserve.entry[index++];
596 
597         entry->address = cpu_to_le64(address);
598         entry->length = cpu_to_le64(length);
599         entry->type = cpu_to_le32(type);
600 
601         e820_reserve.count = cpu_to_le32(index);
602     }
603 
604     /* new "etc/e820" file -- include ram too */
605     e820_table = g_realloc(e820_table,
606                            sizeof(struct e820_entry) * (e820_entries+1));
607     e820_table[e820_entries].address = cpu_to_le64(address);
608     e820_table[e820_entries].length = cpu_to_le64(length);
609     e820_table[e820_entries].type = cpu_to_le32(type);
610     e820_entries++;
611 
612     return e820_entries;
613 }
614 
615 /* Calculates the limit to CPU APIC ID values
616  *
617  * This function returns the limit for the APIC ID value, so that all
618  * CPU APIC IDs are < pc_apic_id_limit().
619  *
620  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
621  */
622 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
623 {
624     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
625 }
626 
627 static FWCfgState *bochs_bios_init(void)
628 {
629     FWCfgState *fw_cfg;
630     uint8_t *smbios_table;
631     size_t smbios_len;
632     uint64_t *numa_fw_cfg;
633     int i, j;
634     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
635 
636     fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
637     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
638      *
639      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
640      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
641      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
642      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
643      * may see".
644      *
645      * So, this means we must not use max_cpus, here, but the maximum possible
646      * APIC ID value, plus one.
647      *
648      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
649      *     the APIC ID, not the "CPU index"
650      */
651     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
652     fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
653     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
654     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
655                      acpi_tables, acpi_tables_len);
656     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
657 
658     smbios_table = smbios_get_table(&smbios_len);
659     if (smbios_table)
660         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
661                          smbios_table, smbios_len);
662     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
663                      &e820_reserve, sizeof(e820_reserve));
664     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
665                     sizeof(struct e820_entry) * e820_entries);
666 
667     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
668     /* allocate memory for the NUMA channel: one (64bit) word for the number
669      * of nodes, one word for each VCPU->node and one word for each node to
670      * hold the amount of memory.
671      */
672     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
673     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
674     for (i = 0; i < max_cpus; i++) {
675         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
676         assert(apic_id < apic_id_limit);
677         for (j = 0; j < nb_numa_nodes; j++) {
678             if (test_bit(i, node_cpumask[j])) {
679                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
680                 break;
681             }
682         }
683     }
684     for (i = 0; i < nb_numa_nodes; i++) {
685         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
686     }
687     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
688                      (1 + apic_id_limit + nb_numa_nodes) *
689                      sizeof(*numa_fw_cfg));
690 
691     return fw_cfg;
692 }
693 
694 static long get_file_size(FILE *f)
695 {
696     long where, size;
697 
698     /* XXX: on Unix systems, using fstat() probably makes more sense */
699 
700     where = ftell(f);
701     fseek(f, 0, SEEK_END);
702     size = ftell(f);
703     fseek(f, where, SEEK_SET);
704 
705     return size;
706 }
707 
708 static void load_linux(FWCfgState *fw_cfg,
709                        const char *kernel_filename,
710                        const char *initrd_filename,
711                        const char *kernel_cmdline,
712                        hwaddr max_ram_size)
713 {
714     uint16_t protocol;
715     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
716     uint32_t initrd_max;
717     uint8_t header[8192], *setup, *kernel, *initrd_data;
718     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
719     FILE *f;
720     char *vmode;
721 
722     /* Align to 16 bytes as a paranoia measure */
723     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
724 
725     /* load the kernel header */
726     f = fopen(kernel_filename, "rb");
727     if (!f || !(kernel_size = get_file_size(f)) ||
728         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
729         MIN(ARRAY_SIZE(header), kernel_size)) {
730         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
731                 kernel_filename, strerror(errno));
732         exit(1);
733     }
734 
735     /* kernel protocol version */
736 #if 0
737     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
738 #endif
739     if (ldl_p(header+0x202) == 0x53726448) {
740         protocol = lduw_p(header+0x206);
741     } else {
742         /* This looks like a multiboot kernel. If it is, let's stop
743            treating it like a Linux kernel. */
744         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
745                            kernel_cmdline, kernel_size, header)) {
746             return;
747         }
748         protocol = 0;
749     }
750 
751     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
752         /* Low kernel */
753         real_addr    = 0x90000;
754         cmdline_addr = 0x9a000 - cmdline_size;
755         prot_addr    = 0x10000;
756     } else if (protocol < 0x202) {
757         /* High but ancient kernel */
758         real_addr    = 0x90000;
759         cmdline_addr = 0x9a000 - cmdline_size;
760         prot_addr    = 0x100000;
761     } else {
762         /* High and recent kernel */
763         real_addr    = 0x10000;
764         cmdline_addr = 0x20000;
765         prot_addr    = 0x100000;
766     }
767 
768 #if 0
769     fprintf(stderr,
770             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
771             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
772             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
773             real_addr,
774             cmdline_addr,
775             prot_addr);
776 #endif
777 
778     /* highest address for loading the initrd */
779     if (protocol >= 0x203) {
780         initrd_max = ldl_p(header+0x22c);
781     } else {
782         initrd_max = 0x37ffffff;
783     }
784 
785     if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
786     	initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
787 
788     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
789     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
790     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
791 
792     if (protocol >= 0x202) {
793         stl_p(header+0x228, cmdline_addr);
794     } else {
795         stw_p(header+0x20, 0xA33F);
796         stw_p(header+0x22, cmdline_addr-real_addr);
797     }
798 
799     /* handle vga= parameter */
800     vmode = strstr(kernel_cmdline, "vga=");
801     if (vmode) {
802         unsigned int video_mode;
803         /* skip "vga=" */
804         vmode += 4;
805         if (!strncmp(vmode, "normal", 6)) {
806             video_mode = 0xffff;
807         } else if (!strncmp(vmode, "ext", 3)) {
808             video_mode = 0xfffe;
809         } else if (!strncmp(vmode, "ask", 3)) {
810             video_mode = 0xfffd;
811         } else {
812             video_mode = strtol(vmode, NULL, 0);
813         }
814         stw_p(header+0x1fa, video_mode);
815     }
816 
817     /* loader type */
818     /* High nybble = B reserved for QEMU; low nybble is revision number.
819        If this code is substantially changed, you may want to consider
820        incrementing the revision. */
821     if (protocol >= 0x200) {
822         header[0x210] = 0xB0;
823     }
824     /* heap */
825     if (protocol >= 0x201) {
826         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
827         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
828     }
829 
830     /* load initrd */
831     if (initrd_filename) {
832         if (protocol < 0x200) {
833             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
834             exit(1);
835         }
836 
837         initrd_size = get_image_size(initrd_filename);
838         if (initrd_size < 0) {
839             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
840                     initrd_filename, strerror(errno));
841             exit(1);
842         }
843 
844         initrd_addr = (initrd_max-initrd_size) & ~4095;
845 
846         initrd_data = g_malloc(initrd_size);
847         load_image(initrd_filename, initrd_data);
848 
849         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
850         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
851         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
852 
853         stl_p(header+0x218, initrd_addr);
854         stl_p(header+0x21c, initrd_size);
855     }
856 
857     /* load kernel and setup */
858     setup_size = header[0x1f1];
859     if (setup_size == 0) {
860         setup_size = 4;
861     }
862     setup_size = (setup_size+1)*512;
863     kernel_size -= setup_size;
864 
865     setup  = g_malloc(setup_size);
866     kernel = g_malloc(kernel_size);
867     fseek(f, 0, SEEK_SET);
868     if (fread(setup, 1, setup_size, f) != setup_size) {
869         fprintf(stderr, "fread() failed\n");
870         exit(1);
871     }
872     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
873         fprintf(stderr, "fread() failed\n");
874         exit(1);
875     }
876     fclose(f);
877     memcpy(setup, header, MIN(sizeof(header), setup_size));
878 
879     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
880     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
881     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
882 
883     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
884     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
885     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
886 
887     option_rom[nb_option_roms].name = "linuxboot.bin";
888     option_rom[nb_option_roms].bootindex = 0;
889     nb_option_roms++;
890 }
891 
892 #define NE2000_NB_MAX 6
893 
894 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
895                                               0x280, 0x380 };
896 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
897 
898 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
899 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
900 
901 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
902 {
903     static int nb_ne2k = 0;
904 
905     if (nb_ne2k == NE2000_NB_MAX)
906         return;
907     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
908                     ne2000_irq[nb_ne2k], nd);
909     nb_ne2k++;
910 }
911 
912 DeviceState *cpu_get_current_apic(void)
913 {
914     if (current_cpu) {
915         X86CPU *cpu = X86_CPU(current_cpu);
916         return cpu->apic_state;
917     } else {
918         return NULL;
919     }
920 }
921 
922 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
923 {
924     X86CPU *cpu = opaque;
925 
926     if (level) {
927         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
928     }
929 }
930 
931 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
932                           DeviceState *icc_bridge, Error **errp)
933 {
934     X86CPU *cpu;
935     Error *local_err = NULL;
936 
937     cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
938     if (local_err != NULL) {
939         error_propagate(errp, local_err);
940         return NULL;
941     }
942 
943     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
944     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
945 
946     if (local_err) {
947         error_propagate(errp, local_err);
948         object_unref(OBJECT(cpu));
949         cpu = NULL;
950     }
951     return cpu;
952 }
953 
954 static const char *current_cpu_model;
955 
956 void pc_hot_add_cpu(const int64_t id, Error **errp)
957 {
958     DeviceState *icc_bridge;
959     int64_t apic_id = x86_cpu_apic_id_from_index(id);
960 
961     if (id < 0) {
962         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
963         return;
964     }
965 
966     if (cpu_exists(apic_id)) {
967         error_setg(errp, "Unable to add CPU: %" PRIi64
968                    ", it already exists", id);
969         return;
970     }
971 
972     if (id >= max_cpus) {
973         error_setg(errp, "Unable to add CPU: %" PRIi64
974                    ", max allowed: %d", id, max_cpus - 1);
975         return;
976     }
977 
978     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
979         error_setg(errp, "Unable to add CPU: %" PRIi64
980                    ", resulting APIC ID (%" PRIi64 ") is too large",
981                    id, apic_id);
982         return;
983     }
984 
985     icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
986                                                  TYPE_ICC_BRIDGE, NULL));
987     pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
988 }
989 
990 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
991 {
992     int i;
993     X86CPU *cpu = NULL;
994     Error *error = NULL;
995     unsigned long apic_id_limit;
996 
997     /* init CPUs */
998     if (cpu_model == NULL) {
999 #ifdef TARGET_X86_64
1000         cpu_model = "qemu64";
1001 #else
1002         cpu_model = "qemu32";
1003 #endif
1004     }
1005     current_cpu_model = cpu_model;
1006 
1007     apic_id_limit = pc_apic_id_limit(max_cpus);
1008     if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1009         error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1010                      apic_id_limit - 1);
1011         exit(1);
1012     }
1013 
1014     for (i = 0; i < smp_cpus; i++) {
1015         cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1016                          icc_bridge, &error);
1017         if (error) {
1018             error_report("%s", error_get_pretty(error));
1019             error_free(error);
1020             exit(1);
1021         }
1022     }
1023 
1024     /* map APIC MMIO area if CPU has APIC */
1025     if (cpu && cpu->apic_state) {
1026         /* XXX: what if the base changes? */
1027         sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1028                                 APIC_DEFAULT_ADDRESS, 0x1000);
1029     }
1030 }
1031 
1032 /* pci-info ROM file. Little endian format */
1033 typedef struct PcRomPciInfo {
1034     uint64_t w32_min;
1035     uint64_t w32_max;
1036     uint64_t w64_min;
1037     uint64_t w64_max;
1038 } PcRomPciInfo;
1039 
1040 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
1041 {
1042     PcRomPciInfo *info;
1043     Object *pci_info;
1044     bool ambiguous = false;
1045 
1046     if (!guest_info->has_pci_info || !guest_info->fw_cfg) {
1047         return;
1048     }
1049     pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous);
1050     g_assert(!ambiguous);
1051     if (!pci_info) {
1052         return;
1053     }
1054 
1055     info = g_malloc(sizeof *info);
1056     info->w32_min = cpu_to_le64(object_property_get_int(pci_info,
1057                                 PCI_HOST_PROP_PCI_HOLE_START, NULL));
1058     info->w32_max = cpu_to_le64(object_property_get_int(pci_info,
1059                                 PCI_HOST_PROP_PCI_HOLE_END, NULL));
1060     info->w64_min = cpu_to_le64(object_property_get_int(pci_info,
1061                                 PCI_HOST_PROP_PCI_HOLE64_START, NULL));
1062     info->w64_max = cpu_to_le64(object_property_get_int(pci_info,
1063                                 PCI_HOST_PROP_PCI_HOLE64_END, NULL));
1064     /* Pass PCI hole info to guest via a side channel.
1065      * Required so guest PCI enumeration does the right thing. */
1066     fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
1067 }
1068 
1069 typedef struct PcGuestInfoState {
1070     PcGuestInfo info;
1071     Notifier machine_done;
1072 } PcGuestInfoState;
1073 
1074 static
1075 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1076 {
1077     PcGuestInfoState *guest_info_state = container_of(notifier,
1078                                                       PcGuestInfoState,
1079                                                       machine_done);
1080     pc_fw_cfg_guest_info(&guest_info_state->info);
1081     acpi_setup(&guest_info_state->info);
1082 }
1083 
1084 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1085                                 ram_addr_t above_4g_mem_size)
1086 {
1087     PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1088     PcGuestInfo *guest_info = &guest_info_state->info;
1089     int i, j;
1090 
1091     guest_info->ram_size_below_4g = below_4g_mem_size;
1092     guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1093     guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1094     guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1095     guest_info->numa_nodes = nb_numa_nodes;
1096     guest_info->node_mem = g_memdup(node_mem, guest_info->numa_nodes *
1097                                     sizeof *guest_info->node_mem);
1098     guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1099                                      sizeof *guest_info->node_cpu);
1100 
1101     for (i = 0; i < max_cpus; i++) {
1102         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1103         assert(apic_id < guest_info->apic_id_limit);
1104         for (j = 0; j < nb_numa_nodes; j++) {
1105             if (test_bit(i, node_cpumask[j])) {
1106                 guest_info->node_cpu[apic_id] = j;
1107                 break;
1108             }
1109         }
1110     }
1111 
1112     guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1113     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1114     return guest_info;
1115 }
1116 
1117 /* setup pci memory address space mapping into system address space */
1118 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1119                             MemoryRegion *pci_address_space)
1120 {
1121     /* Set to lower priority than RAM */
1122     memory_region_add_subregion_overlap(system_memory, 0x0,
1123                                         pci_address_space, -1);
1124 }
1125 
1126 void pc_acpi_init(const char *default_dsdt)
1127 {
1128     char *filename;
1129 
1130     if (acpi_tables != NULL) {
1131         /* manually set via -acpitable, leave it alone */
1132         return;
1133     }
1134 
1135     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1136     if (filename == NULL) {
1137         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1138     } else {
1139         char *arg;
1140         QemuOpts *opts;
1141         Error *err = NULL;
1142 
1143         arg = g_strdup_printf("file=%s", filename);
1144 
1145         /* creates a deep copy of "arg" */
1146         opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1147         g_assert(opts != NULL);
1148 
1149         acpi_table_add_builtin(opts, &err);
1150         if (err) {
1151             error_report("WARNING: failed to load %s: %s", filename,
1152                          error_get_pretty(err));
1153             error_free(err);
1154         }
1155         g_free(arg);
1156         g_free(filename);
1157     }
1158 }
1159 
1160 FWCfgState *pc_memory_init(MemoryRegion *system_memory,
1161                            const char *kernel_filename,
1162                            const char *kernel_cmdline,
1163                            const char *initrd_filename,
1164                            ram_addr_t below_4g_mem_size,
1165                            ram_addr_t above_4g_mem_size,
1166                            MemoryRegion *rom_memory,
1167                            MemoryRegion **ram_memory,
1168                            PcGuestInfo *guest_info)
1169 {
1170     int linux_boot, i;
1171     MemoryRegion *ram, *option_rom_mr;
1172     MemoryRegion *ram_below_4g, *ram_above_4g;
1173     FWCfgState *fw_cfg;
1174 
1175     linux_boot = (kernel_filename != NULL);
1176 
1177     /* Allocate RAM.  We allocate it as a single memory region and use
1178      * aliases to address portions of it, mostly for backwards compatibility
1179      * with older qemus that used qemu_ram_alloc().
1180      */
1181     ram = g_malloc(sizeof(*ram));
1182     memory_region_init_ram(ram, NULL, "pc.ram",
1183                            below_4g_mem_size + above_4g_mem_size);
1184     vmstate_register_ram_global(ram);
1185     *ram_memory = ram;
1186     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1187     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1188                              0, below_4g_mem_size);
1189     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1190     e820_add_entry(0, below_4g_mem_size, E820_RAM);
1191     if (above_4g_mem_size > 0) {
1192         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1193         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1194                                  below_4g_mem_size, above_4g_mem_size);
1195         memory_region_add_subregion(system_memory, 0x100000000ULL,
1196                                     ram_above_4g);
1197         e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1198     }
1199 
1200 
1201     /* Initialize PC system firmware */
1202     pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1203 
1204     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1205     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
1206     vmstate_register_ram_global(option_rom_mr);
1207     memory_region_add_subregion_overlap(rom_memory,
1208                                         PC_ROM_MIN_VGA,
1209                                         option_rom_mr,
1210                                         1);
1211 
1212     fw_cfg = bochs_bios_init();
1213     rom_set_fw(fw_cfg);
1214 
1215     if (linux_boot) {
1216         load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1217     }
1218 
1219     for (i = 0; i < nb_option_roms; i++) {
1220         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1221     }
1222     guest_info->fw_cfg = fw_cfg;
1223     return fw_cfg;
1224 }
1225 
1226 qemu_irq *pc_allocate_cpu_irq(void)
1227 {
1228     return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1229 }
1230 
1231 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1232 {
1233     DeviceState *dev = NULL;
1234 
1235     if (pci_bus) {
1236         PCIDevice *pcidev = pci_vga_init(pci_bus);
1237         dev = pcidev ? &pcidev->qdev : NULL;
1238     } else if (isa_bus) {
1239         ISADevice *isadev = isa_vga_init(isa_bus);
1240         dev = isadev ? DEVICE(isadev) : NULL;
1241     }
1242     return dev;
1243 }
1244 
1245 static void cpu_request_exit(void *opaque, int irq, int level)
1246 {
1247     CPUState *cpu = current_cpu;
1248 
1249     if (cpu && level) {
1250         cpu_exit(cpu);
1251     }
1252 }
1253 
1254 static const MemoryRegionOps ioport80_io_ops = {
1255     .write = ioport80_write,
1256     .read = ioport80_read,
1257     .endianness = DEVICE_NATIVE_ENDIAN,
1258     .impl = {
1259         .min_access_size = 1,
1260         .max_access_size = 1,
1261     },
1262 };
1263 
1264 static const MemoryRegionOps ioportF0_io_ops = {
1265     .write = ioportF0_write,
1266     .read = ioportF0_read,
1267     .endianness = DEVICE_NATIVE_ENDIAN,
1268     .impl = {
1269         .min_access_size = 1,
1270         .max_access_size = 1,
1271     },
1272 };
1273 
1274 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1275                           ISADevice **rtc_state,
1276                           ISADevice **floppy,
1277                           bool no_vmport,
1278                           uint32 hpet_irqs)
1279 {
1280     int i;
1281     DriveInfo *fd[MAX_FD];
1282     DeviceState *hpet = NULL;
1283     int pit_isa_irq = 0;
1284     qemu_irq pit_alt_irq = NULL;
1285     qemu_irq rtc_irq = NULL;
1286     qemu_irq *a20_line;
1287     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1288     qemu_irq *cpu_exit_irq;
1289     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1290     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1291 
1292     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1293     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1294 
1295     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1296     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1297 
1298     /*
1299      * Check if an HPET shall be created.
1300      *
1301      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1302      * when the HPET wants to take over. Thus we have to disable the latter.
1303      */
1304     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1305         /* In order to set property, here not using sysbus_try_create_simple */
1306         hpet = qdev_try_create(NULL, TYPE_HPET);
1307         if (hpet) {
1308             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1309              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1310              * IRQ8 and IRQ2.
1311              */
1312             uint8_t compat = object_property_get_int(OBJECT(hpet),
1313                     HPET_INTCAP, NULL);
1314             if (!compat) {
1315                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1316             }
1317             qdev_init_nofail(hpet);
1318             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1319 
1320             for (i = 0; i < GSI_NUM_PINS; i++) {
1321                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1322             }
1323             pit_isa_irq = -1;
1324             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1325             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1326         }
1327     }
1328     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1329 
1330     qemu_register_boot_set(pc_boot_set, *rtc_state);
1331 
1332     if (!xen_enabled()) {
1333         if (kvm_irqchip_in_kernel()) {
1334             pit = kvm_pit_init(isa_bus, 0x40);
1335         } else {
1336             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1337         }
1338         if (hpet) {
1339             /* connect PIT to output control line of the HPET */
1340             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1341         }
1342         pcspk_init(isa_bus, pit);
1343     }
1344 
1345     for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1346         if (serial_hds[i]) {
1347             serial_isa_init(isa_bus, i, serial_hds[i]);
1348         }
1349     }
1350 
1351     for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1352         if (parallel_hds[i]) {
1353             parallel_init(isa_bus, i, parallel_hds[i]);
1354         }
1355     }
1356 
1357     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1358     i8042 = isa_create_simple(isa_bus, "i8042");
1359     i8042_setup_a20_line(i8042, &a20_line[0]);
1360     if (!no_vmport) {
1361         vmport_init(isa_bus);
1362         vmmouse = isa_try_create(isa_bus, "vmmouse");
1363     } else {
1364         vmmouse = NULL;
1365     }
1366     if (vmmouse) {
1367         DeviceState *dev = DEVICE(vmmouse);
1368         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1369         qdev_init_nofail(dev);
1370     }
1371     port92 = isa_create_simple(isa_bus, "port92");
1372     port92_init(port92, &a20_line[1]);
1373 
1374     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1375     DMA_init(0, cpu_exit_irq);
1376 
1377     for(i = 0; i < MAX_FD; i++) {
1378         fd[i] = drive_get(IF_FLOPPY, 0, i);
1379     }
1380     *floppy = fdctrl_init_isa(isa_bus, fd);
1381 }
1382 
1383 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1384 {
1385     int i;
1386 
1387     for (i = 0; i < nb_nics; i++) {
1388         NICInfo *nd = &nd_table[i];
1389 
1390         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1391             pc_init_ne2k_isa(isa_bus, nd);
1392         } else {
1393             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1394         }
1395     }
1396 }
1397 
1398 void pc_pci_device_init(PCIBus *pci_bus)
1399 {
1400     int max_bus;
1401     int bus;
1402 
1403     max_bus = drive_get_max_bus(IF_SCSI);
1404     for (bus = 0; bus <= max_bus; bus++) {
1405         pci_create_simple(pci_bus, -1, "lsi53c895a");
1406     }
1407 }
1408 
1409 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1410 {
1411     DeviceState *dev;
1412     SysBusDevice *d;
1413     unsigned int i;
1414 
1415     if (kvm_irqchip_in_kernel()) {
1416         dev = qdev_create(NULL, "kvm-ioapic");
1417     } else {
1418         dev = qdev_create(NULL, "ioapic");
1419     }
1420     if (parent_name) {
1421         object_property_add_child(object_resolve_path(parent_name, NULL),
1422                                   "ioapic", OBJECT(dev), NULL);
1423     }
1424     qdev_init_nofail(dev);
1425     d = SYS_BUS_DEVICE(dev);
1426     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1427 
1428     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1429         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1430     }
1431 }
1432