1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "hw/hw.h" 28 #include "hw/i386/pc.h" 29 #include "hw/char/serial.h" 30 #include "hw/char/parallel.h" 31 #include "hw/i386/apic.h" 32 #include "hw/i386/topology.h" 33 #include "sysemu/cpus.h" 34 #include "hw/block/fdc.h" 35 #include "hw/ide.h" 36 #include "hw/pci/pci.h" 37 #include "hw/pci/pci_bus.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/timer/hpet.h" 40 #include "hw/firmware/smbios.h" 41 #include "hw/loader.h" 42 #include "elf.h" 43 #include "multiboot.h" 44 #include "hw/timer/mc146818rtc.h" 45 #include "hw/dma/i8257.h" 46 #include "hw/timer/i8254.h" 47 #include "hw/input/i8042.h" 48 #include "hw/audio/pcspk.h" 49 #include "hw/pci/msi.h" 50 #include "hw/sysbus.h" 51 #include "sysemu/sysemu.h" 52 #include "sysemu/numa.h" 53 #include "sysemu/kvm.h" 54 #include "sysemu/qtest.h" 55 #include "kvm_i386.h" 56 #include "hw/xen/xen.h" 57 #include "ui/qemu-spice.h" 58 #include "exec/memory.h" 59 #include "exec/address-spaces.h" 60 #include "sysemu/arch_init.h" 61 #include "qemu/bitmap.h" 62 #include "qemu/config-file.h" 63 #include "qemu/error-report.h" 64 #include "qemu/option.h" 65 #include "hw/acpi/acpi.h" 66 #include "hw/acpi/cpu_hotplug.h" 67 #include "hw/boards.h" 68 #include "acpi-build.h" 69 #include "hw/mem/pc-dimm.h" 70 #include "qapi/error.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/visitor.h" 73 #include "qom/cpu.h" 74 #include "hw/nmi.h" 75 #include "hw/i386/intel_iommu.h" 76 #include "hw/net/ne2000-isa.h" 77 78 /* debug PC/ISA interrupts */ 79 //#define DEBUG_IRQ 80 81 #ifdef DEBUG_IRQ 82 #define DPRINTF(fmt, ...) \ 83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 84 #else 85 #define DPRINTF(fmt, ...) 86 #endif 87 88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 93 94 #define E820_NR_ENTRIES 16 95 96 struct e820_entry { 97 uint64_t address; 98 uint64_t length; 99 uint32_t type; 100 } QEMU_PACKED __attribute((__aligned__(4))); 101 102 struct e820_table { 103 uint32_t count; 104 struct e820_entry entry[E820_NR_ENTRIES]; 105 } QEMU_PACKED __attribute((__aligned__(4))); 106 107 static struct e820_table e820_reserve; 108 static struct e820_entry *e820_table; 109 static unsigned e820_entries; 110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 111 112 GlobalProperty pc_compat_3_1[] = { 113 { 114 .driver = "intel-iommu", 115 .property = "dma-drain", 116 .value = "off", 117 }, 118 }; 119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1); 120 121 GlobalProperty pc_compat_3_0[] = { 122 { 123 .driver = TYPE_X86_CPU, 124 .property = "x-hv-synic-kvm-only", 125 .value = "on", 126 },{ 127 .driver = "Skylake-Server" "-" TYPE_X86_CPU, 128 .property = "pku", 129 .value = "off", 130 },{ 131 .driver = "Skylake-Server-IBRS" "-" TYPE_X86_CPU, 132 .property = "pku", 133 .value = "off", 134 }, 135 }; 136 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0); 137 138 void gsi_handler(void *opaque, int n, int level) 139 { 140 GSIState *s = opaque; 141 142 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 143 if (n < ISA_NUM_IRQS) { 144 qemu_set_irq(s->i8259_irq[n], level); 145 } 146 qemu_set_irq(s->ioapic_irq[n], level); 147 } 148 149 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 150 unsigned size) 151 { 152 } 153 154 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 155 { 156 return 0xffffffffffffffffULL; 157 } 158 159 /* MSDOS compatibility mode FPU exception support */ 160 static qemu_irq ferr_irq; 161 162 void pc_register_ferr_irq(qemu_irq irq) 163 { 164 ferr_irq = irq; 165 } 166 167 /* XXX: add IGNNE support */ 168 void cpu_set_ferr(CPUX86State *s) 169 { 170 qemu_irq_raise(ferr_irq); 171 } 172 173 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 174 unsigned size) 175 { 176 qemu_irq_lower(ferr_irq); 177 } 178 179 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 180 { 181 return 0xffffffffffffffffULL; 182 } 183 184 /* TSC handling */ 185 uint64_t cpu_get_tsc(CPUX86State *env) 186 { 187 return cpu_get_ticks(); 188 } 189 190 /* IRQ handling */ 191 int cpu_get_pic_interrupt(CPUX86State *env) 192 { 193 X86CPU *cpu = x86_env_get_cpu(env); 194 int intno; 195 196 if (!kvm_irqchip_in_kernel()) { 197 intno = apic_get_interrupt(cpu->apic_state); 198 if (intno >= 0) { 199 return intno; 200 } 201 /* read the irq from the PIC */ 202 if (!apic_accept_pic_intr(cpu->apic_state)) { 203 return -1; 204 } 205 } 206 207 intno = pic_read_irq(isa_pic); 208 return intno; 209 } 210 211 static void pic_irq_request(void *opaque, int irq, int level) 212 { 213 CPUState *cs = first_cpu; 214 X86CPU *cpu = X86_CPU(cs); 215 216 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 217 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 218 CPU_FOREACH(cs) { 219 cpu = X86_CPU(cs); 220 if (apic_accept_pic_intr(cpu->apic_state)) { 221 apic_deliver_pic_intr(cpu->apic_state, level); 222 } 223 } 224 } else { 225 if (level) { 226 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 227 } else { 228 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 229 } 230 } 231 } 232 233 /* PC cmos mappings */ 234 235 #define REG_EQUIPMENT_BYTE 0x14 236 237 int cmos_get_fd_drive_type(FloppyDriveType fd0) 238 { 239 int val; 240 241 switch (fd0) { 242 case FLOPPY_DRIVE_TYPE_144: 243 /* 1.44 Mb 3"5 drive */ 244 val = 4; 245 break; 246 case FLOPPY_DRIVE_TYPE_288: 247 /* 2.88 Mb 3"5 drive */ 248 val = 5; 249 break; 250 case FLOPPY_DRIVE_TYPE_120: 251 /* 1.2 Mb 5"5 drive */ 252 val = 2; 253 break; 254 case FLOPPY_DRIVE_TYPE_NONE: 255 default: 256 val = 0; 257 break; 258 } 259 return val; 260 } 261 262 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 263 int16_t cylinders, int8_t heads, int8_t sectors) 264 { 265 rtc_set_memory(s, type_ofs, 47); 266 rtc_set_memory(s, info_ofs, cylinders); 267 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 268 rtc_set_memory(s, info_ofs + 2, heads); 269 rtc_set_memory(s, info_ofs + 3, 0xff); 270 rtc_set_memory(s, info_ofs + 4, 0xff); 271 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 272 rtc_set_memory(s, info_ofs + 6, cylinders); 273 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 274 rtc_set_memory(s, info_ofs + 8, sectors); 275 } 276 277 /* convert boot_device letter to something recognizable by the bios */ 278 static int boot_device2nibble(char boot_device) 279 { 280 switch(boot_device) { 281 case 'a': 282 case 'b': 283 return 0x01; /* floppy boot */ 284 case 'c': 285 return 0x02; /* hard drive boot */ 286 case 'd': 287 return 0x03; /* CD-ROM boot */ 288 case 'n': 289 return 0x04; /* Network boot */ 290 } 291 return 0; 292 } 293 294 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 295 { 296 #define PC_MAX_BOOT_DEVICES 3 297 int nbds, bds[3] = { 0, }; 298 int i; 299 300 nbds = strlen(boot_device); 301 if (nbds > PC_MAX_BOOT_DEVICES) { 302 error_setg(errp, "Too many boot devices for PC"); 303 return; 304 } 305 for (i = 0; i < nbds; i++) { 306 bds[i] = boot_device2nibble(boot_device[i]); 307 if (bds[i] == 0) { 308 error_setg(errp, "Invalid boot device for PC: '%c'", 309 boot_device[i]); 310 return; 311 } 312 } 313 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 314 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 315 } 316 317 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 318 { 319 set_boot_dev(opaque, boot_device, errp); 320 } 321 322 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 323 { 324 int val, nb, i; 325 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 326 FLOPPY_DRIVE_TYPE_NONE }; 327 328 /* floppy type */ 329 if (floppy) { 330 for (i = 0; i < 2; i++) { 331 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 332 } 333 } 334 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 335 cmos_get_fd_drive_type(fd_type[1]); 336 rtc_set_memory(rtc_state, 0x10, val); 337 338 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 339 nb = 0; 340 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 341 nb++; 342 } 343 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 344 nb++; 345 } 346 switch (nb) { 347 case 0: 348 break; 349 case 1: 350 val |= 0x01; /* 1 drive, ready for boot */ 351 break; 352 case 2: 353 val |= 0x41; /* 2 drives, ready for boot */ 354 break; 355 } 356 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 357 } 358 359 typedef struct pc_cmos_init_late_arg { 360 ISADevice *rtc_state; 361 BusState *idebus[2]; 362 } pc_cmos_init_late_arg; 363 364 typedef struct check_fdc_state { 365 ISADevice *floppy; 366 bool multiple; 367 } CheckFdcState; 368 369 static int check_fdc(Object *obj, void *opaque) 370 { 371 CheckFdcState *state = opaque; 372 Object *fdc; 373 uint32_t iobase; 374 Error *local_err = NULL; 375 376 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 377 if (!fdc) { 378 return 0; 379 } 380 381 iobase = object_property_get_uint(obj, "iobase", &local_err); 382 if (local_err || iobase != 0x3f0) { 383 error_free(local_err); 384 return 0; 385 } 386 387 if (state->floppy) { 388 state->multiple = true; 389 } else { 390 state->floppy = ISA_DEVICE(obj); 391 } 392 return 0; 393 } 394 395 static const char * const fdc_container_path[] = { 396 "/unattached", "/peripheral", "/peripheral-anon" 397 }; 398 399 /* 400 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 401 * and ACPI objects. 402 */ 403 ISADevice *pc_find_fdc0(void) 404 { 405 int i; 406 Object *container; 407 CheckFdcState state = { 0 }; 408 409 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 410 container = container_get(qdev_get_machine(), fdc_container_path[i]); 411 object_child_foreach(container, check_fdc, &state); 412 } 413 414 if (state.multiple) { 415 warn_report("multiple floppy disk controllers with " 416 "iobase=0x3f0 have been found"); 417 error_printf("the one being picked for CMOS setup might not reflect " 418 "your intent"); 419 } 420 421 return state.floppy; 422 } 423 424 static void pc_cmos_init_late(void *opaque) 425 { 426 pc_cmos_init_late_arg *arg = opaque; 427 ISADevice *s = arg->rtc_state; 428 int16_t cylinders; 429 int8_t heads, sectors; 430 int val; 431 int i, trans; 432 433 val = 0; 434 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 435 &cylinders, &heads, §ors) >= 0) { 436 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 437 val |= 0xf0; 438 } 439 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 440 &cylinders, &heads, §ors) >= 0) { 441 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 442 val |= 0x0f; 443 } 444 rtc_set_memory(s, 0x12, val); 445 446 val = 0; 447 for (i = 0; i < 4; i++) { 448 /* NOTE: ide_get_geometry() returns the physical 449 geometry. It is always such that: 1 <= sects <= 63, 1 450 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 451 geometry can be different if a translation is done. */ 452 if (arg->idebus[i / 2] && 453 ide_get_geometry(arg->idebus[i / 2], i % 2, 454 &cylinders, &heads, §ors) >= 0) { 455 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 456 assert((trans & ~3) == 0); 457 val |= trans << (i * 2); 458 } 459 } 460 rtc_set_memory(s, 0x39, val); 461 462 pc_cmos_init_floppy(s, pc_find_fdc0()); 463 464 qemu_unregister_reset(pc_cmos_init_late, opaque); 465 } 466 467 void pc_cmos_init(PCMachineState *pcms, 468 BusState *idebus0, BusState *idebus1, 469 ISADevice *s) 470 { 471 int val; 472 static pc_cmos_init_late_arg arg; 473 474 /* various important CMOS locations needed by PC/Bochs bios */ 475 476 /* memory size */ 477 /* base memory (first MiB) */ 478 val = MIN(pcms->below_4g_mem_size / KiB, 640); 479 rtc_set_memory(s, 0x15, val); 480 rtc_set_memory(s, 0x16, val >> 8); 481 /* extended memory (next 64MiB) */ 482 if (pcms->below_4g_mem_size > 1 * MiB) { 483 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB; 484 } else { 485 val = 0; 486 } 487 if (val > 65535) 488 val = 65535; 489 rtc_set_memory(s, 0x17, val); 490 rtc_set_memory(s, 0x18, val >> 8); 491 rtc_set_memory(s, 0x30, val); 492 rtc_set_memory(s, 0x31, val >> 8); 493 /* memory between 16MiB and 4GiB */ 494 if (pcms->below_4g_mem_size > 16 * MiB) { 495 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB); 496 } else { 497 val = 0; 498 } 499 if (val > 65535) 500 val = 65535; 501 rtc_set_memory(s, 0x34, val); 502 rtc_set_memory(s, 0x35, val >> 8); 503 /* memory above 4GiB */ 504 val = pcms->above_4g_mem_size / 65536; 505 rtc_set_memory(s, 0x5b, val); 506 rtc_set_memory(s, 0x5c, val >> 8); 507 rtc_set_memory(s, 0x5d, val >> 16); 508 509 object_property_add_link(OBJECT(pcms), "rtc_state", 510 TYPE_ISA_DEVICE, 511 (Object **)&pcms->rtc, 512 object_property_allow_set_link, 513 OBJ_PROP_LINK_STRONG, &error_abort); 514 object_property_set_link(OBJECT(pcms), OBJECT(s), 515 "rtc_state", &error_abort); 516 517 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 518 519 val = 0; 520 val |= 0x02; /* FPU is there */ 521 val |= 0x04; /* PS/2 mouse installed */ 522 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 523 524 /* hard drives and FDC */ 525 arg.rtc_state = s; 526 arg.idebus[0] = idebus0; 527 arg.idebus[1] = idebus1; 528 qemu_register_reset(pc_cmos_init_late, &arg); 529 } 530 531 #define TYPE_PORT92 "port92" 532 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 533 534 /* port 92 stuff: could be split off */ 535 typedef struct Port92State { 536 ISADevice parent_obj; 537 538 MemoryRegion io; 539 uint8_t outport; 540 qemu_irq a20_out; 541 } Port92State; 542 543 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 544 unsigned size) 545 { 546 Port92State *s = opaque; 547 int oldval = s->outport; 548 549 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 550 s->outport = val; 551 qemu_set_irq(s->a20_out, (val >> 1) & 1); 552 if ((val & 1) && !(oldval & 1)) { 553 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 554 } 555 } 556 557 static uint64_t port92_read(void *opaque, hwaddr addr, 558 unsigned size) 559 { 560 Port92State *s = opaque; 561 uint32_t ret; 562 563 ret = s->outport; 564 DPRINTF("port92: read 0x%02x\n", ret); 565 return ret; 566 } 567 568 static void port92_init(ISADevice *dev, qemu_irq a20_out) 569 { 570 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 571 } 572 573 static const VMStateDescription vmstate_port92_isa = { 574 .name = "port92", 575 .version_id = 1, 576 .minimum_version_id = 1, 577 .fields = (VMStateField[]) { 578 VMSTATE_UINT8(outport, Port92State), 579 VMSTATE_END_OF_LIST() 580 } 581 }; 582 583 static void port92_reset(DeviceState *d) 584 { 585 Port92State *s = PORT92(d); 586 587 s->outport &= ~1; 588 } 589 590 static const MemoryRegionOps port92_ops = { 591 .read = port92_read, 592 .write = port92_write, 593 .impl = { 594 .min_access_size = 1, 595 .max_access_size = 1, 596 }, 597 .endianness = DEVICE_LITTLE_ENDIAN, 598 }; 599 600 static void port92_initfn(Object *obj) 601 { 602 Port92State *s = PORT92(obj); 603 604 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 605 606 s->outport = 0; 607 608 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 609 } 610 611 static void port92_realizefn(DeviceState *dev, Error **errp) 612 { 613 ISADevice *isadev = ISA_DEVICE(dev); 614 Port92State *s = PORT92(dev); 615 616 isa_register_ioport(isadev, &s->io, 0x92); 617 } 618 619 static void port92_class_initfn(ObjectClass *klass, void *data) 620 { 621 DeviceClass *dc = DEVICE_CLASS(klass); 622 623 dc->realize = port92_realizefn; 624 dc->reset = port92_reset; 625 dc->vmsd = &vmstate_port92_isa; 626 /* 627 * Reason: unlike ordinary ISA devices, this one needs additional 628 * wiring: its A20 output line needs to be wired up by 629 * port92_init(). 630 */ 631 dc->user_creatable = false; 632 } 633 634 static const TypeInfo port92_info = { 635 .name = TYPE_PORT92, 636 .parent = TYPE_ISA_DEVICE, 637 .instance_size = sizeof(Port92State), 638 .instance_init = port92_initfn, 639 .class_init = port92_class_initfn, 640 }; 641 642 static void port92_register_types(void) 643 { 644 type_register_static(&port92_info); 645 } 646 647 type_init(port92_register_types) 648 649 static void handle_a20_line_change(void *opaque, int irq, int level) 650 { 651 X86CPU *cpu = opaque; 652 653 /* XXX: send to all CPUs ? */ 654 /* XXX: add logic to handle multiple A20 line sources */ 655 x86_cpu_set_a20(cpu, level); 656 } 657 658 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 659 { 660 int index = le32_to_cpu(e820_reserve.count); 661 struct e820_entry *entry; 662 663 if (type != E820_RAM) { 664 /* old FW_CFG_E820_TABLE entry -- reservations only */ 665 if (index >= E820_NR_ENTRIES) { 666 return -EBUSY; 667 } 668 entry = &e820_reserve.entry[index++]; 669 670 entry->address = cpu_to_le64(address); 671 entry->length = cpu_to_le64(length); 672 entry->type = cpu_to_le32(type); 673 674 e820_reserve.count = cpu_to_le32(index); 675 } 676 677 /* new "etc/e820" file -- include ram too */ 678 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 679 e820_table[e820_entries].address = cpu_to_le64(address); 680 e820_table[e820_entries].length = cpu_to_le64(length); 681 e820_table[e820_entries].type = cpu_to_le32(type); 682 e820_entries++; 683 684 return e820_entries; 685 } 686 687 int e820_get_num_entries(void) 688 { 689 return e820_entries; 690 } 691 692 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 693 { 694 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 695 *address = le64_to_cpu(e820_table[idx].address); 696 *length = le64_to_cpu(e820_table[idx].length); 697 return true; 698 } 699 return false; 700 } 701 702 /* Enables contiguous-apic-ID mode, for compatibility */ 703 static bool compat_apic_id_mode; 704 705 void enable_compat_apic_id_mode(void) 706 { 707 compat_apic_id_mode = true; 708 } 709 710 /* Calculates initial APIC ID for a specific CPU index 711 * 712 * Currently we need to be able to calculate the APIC ID from the CPU index 713 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 714 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 715 * all CPUs up to max_cpus. 716 */ 717 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 718 { 719 uint32_t correct_id; 720 static bool warned; 721 722 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 723 if (compat_apic_id_mode) { 724 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 725 error_report("APIC IDs set in compatibility mode, " 726 "CPU topology won't match the configuration"); 727 warned = true; 728 } 729 return cpu_index; 730 } else { 731 return correct_id; 732 } 733 } 734 735 static void pc_build_smbios(PCMachineState *pcms) 736 { 737 uint8_t *smbios_tables, *smbios_anchor; 738 size_t smbios_tables_len, smbios_anchor_len; 739 struct smbios_phys_mem_area *mem_array; 740 unsigned i, array_count; 741 MachineState *ms = MACHINE(pcms); 742 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 743 744 /* tell smbios about cpuid version and features */ 745 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 746 747 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 748 if (smbios_tables) { 749 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 750 smbios_tables, smbios_tables_len); 751 } 752 753 /* build the array of physical mem area from e820 table */ 754 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 755 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 756 uint64_t addr, len; 757 758 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 759 mem_array[array_count].address = addr; 760 mem_array[array_count].length = len; 761 array_count++; 762 } 763 } 764 smbios_get_tables(mem_array, array_count, 765 &smbios_tables, &smbios_tables_len, 766 &smbios_anchor, &smbios_anchor_len); 767 g_free(mem_array); 768 769 if (smbios_anchor) { 770 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 771 smbios_tables, smbios_tables_len); 772 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 773 smbios_anchor, smbios_anchor_len); 774 } 775 } 776 777 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 778 { 779 FWCfgState *fw_cfg; 780 uint64_t *numa_fw_cfg; 781 int i; 782 const CPUArchIdList *cpus; 783 MachineClass *mc = MACHINE_GET_CLASS(pcms); 784 785 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 786 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 787 788 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 789 * 790 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 791 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 792 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 793 * for CPU hotplug also uses APIC ID and not "CPU index". 794 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 795 * but the "limit to the APIC ID values SeaBIOS may see". 796 * 797 * So for compatibility reasons with old BIOSes we are stuck with 798 * "etc/max-cpus" actually being apic_id_limit 799 */ 800 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 801 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 802 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 803 acpi_tables, acpi_tables_len); 804 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 805 806 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 807 &e820_reserve, sizeof(e820_reserve)); 808 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 809 sizeof(struct e820_entry) * e820_entries); 810 811 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 812 /* allocate memory for the NUMA channel: one (64bit) word for the number 813 * of nodes, one word for each VCPU->node and one word for each node to 814 * hold the amount of memory. 815 */ 816 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 817 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 818 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 819 for (i = 0; i < cpus->len; i++) { 820 unsigned int apic_id = cpus->cpus[i].arch_id; 821 assert(apic_id < pcms->apic_id_limit); 822 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 823 } 824 for (i = 0; i < nb_numa_nodes; i++) { 825 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 826 cpu_to_le64(numa_info[i].node_mem); 827 } 828 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 829 (1 + pcms->apic_id_limit + nb_numa_nodes) * 830 sizeof(*numa_fw_cfg)); 831 832 return fw_cfg; 833 } 834 835 static long get_file_size(FILE *f) 836 { 837 long where, size; 838 839 /* XXX: on Unix systems, using fstat() probably makes more sense */ 840 841 where = ftell(f); 842 fseek(f, 0, SEEK_END); 843 size = ftell(f); 844 fseek(f, where, SEEK_SET); 845 846 return size; 847 } 848 849 /* setup_data types */ 850 #define SETUP_NONE 0 851 #define SETUP_E820_EXT 1 852 #define SETUP_DTB 2 853 #define SETUP_PCI 3 854 #define SETUP_EFI 4 855 856 struct setup_data { 857 uint64_t next; 858 uint32_t type; 859 uint32_t len; 860 uint8_t data[0]; 861 } __attribute__((packed)); 862 863 static void load_linux(PCMachineState *pcms, 864 FWCfgState *fw_cfg) 865 { 866 uint16_t protocol; 867 int setup_size, kernel_size, cmdline_size; 868 int dtb_size, setup_data_offset; 869 uint32_t initrd_max; 870 uint8_t header[8192], *setup, *kernel; 871 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 872 FILE *f; 873 char *vmode; 874 MachineState *machine = MACHINE(pcms); 875 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 876 struct setup_data *setup_data; 877 const char *kernel_filename = machine->kernel_filename; 878 const char *initrd_filename = machine->initrd_filename; 879 const char *dtb_filename = machine->dtb; 880 const char *kernel_cmdline = machine->kernel_cmdline; 881 882 /* Align to 16 bytes as a paranoia measure */ 883 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 884 885 /* load the kernel header */ 886 f = fopen(kernel_filename, "rb"); 887 if (!f || !(kernel_size = get_file_size(f)) || 888 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 889 MIN(ARRAY_SIZE(header), kernel_size)) { 890 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 891 kernel_filename, strerror(errno)); 892 exit(1); 893 } 894 895 /* kernel protocol version */ 896 #if 0 897 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 898 #endif 899 if (ldl_p(header+0x202) == 0x53726448) { 900 protocol = lduw_p(header+0x206); 901 } else { 902 /* This looks like a multiboot kernel. If it is, let's stop 903 treating it like a Linux kernel. */ 904 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 905 kernel_cmdline, kernel_size, header)) { 906 return; 907 } 908 protocol = 0; 909 } 910 911 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 912 /* Low kernel */ 913 real_addr = 0x90000; 914 cmdline_addr = 0x9a000 - cmdline_size; 915 prot_addr = 0x10000; 916 } else if (protocol < 0x202) { 917 /* High but ancient kernel */ 918 real_addr = 0x90000; 919 cmdline_addr = 0x9a000 - cmdline_size; 920 prot_addr = 0x100000; 921 } else { 922 /* High and recent kernel */ 923 real_addr = 0x10000; 924 cmdline_addr = 0x20000; 925 prot_addr = 0x100000; 926 } 927 928 #if 0 929 fprintf(stderr, 930 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 931 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 932 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 933 real_addr, 934 cmdline_addr, 935 prot_addr); 936 #endif 937 938 /* highest address for loading the initrd */ 939 if (protocol >= 0x203) { 940 initrd_max = ldl_p(header+0x22c); 941 } else { 942 initrd_max = 0x37ffffff; 943 } 944 945 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 946 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 947 } 948 949 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 950 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 951 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 952 953 if (protocol >= 0x202) { 954 stl_p(header+0x228, cmdline_addr); 955 } else { 956 stw_p(header+0x20, 0xA33F); 957 stw_p(header+0x22, cmdline_addr-real_addr); 958 } 959 960 /* handle vga= parameter */ 961 vmode = strstr(kernel_cmdline, "vga="); 962 if (vmode) { 963 unsigned int video_mode; 964 /* skip "vga=" */ 965 vmode += 4; 966 if (!strncmp(vmode, "normal", 6)) { 967 video_mode = 0xffff; 968 } else if (!strncmp(vmode, "ext", 3)) { 969 video_mode = 0xfffe; 970 } else if (!strncmp(vmode, "ask", 3)) { 971 video_mode = 0xfffd; 972 } else { 973 video_mode = strtol(vmode, NULL, 0); 974 } 975 stw_p(header+0x1fa, video_mode); 976 } 977 978 /* loader type */ 979 /* High nybble = B reserved for QEMU; low nybble is revision number. 980 If this code is substantially changed, you may want to consider 981 incrementing the revision. */ 982 if (protocol >= 0x200) { 983 header[0x210] = 0xB0; 984 } 985 /* heap */ 986 if (protocol >= 0x201) { 987 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 988 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 989 } 990 991 /* load initrd */ 992 if (initrd_filename) { 993 gsize initrd_size; 994 gchar *initrd_data; 995 GError *gerr = NULL; 996 997 if (protocol < 0x200) { 998 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 999 exit(1); 1000 } 1001 1002 if (!g_file_get_contents(initrd_filename, &initrd_data, 1003 &initrd_size, &gerr)) { 1004 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 1005 initrd_filename, gerr->message); 1006 exit(1); 1007 } 1008 if (initrd_size >= initrd_max) { 1009 fprintf(stderr, "qemu: initrd is too large, cannot support." 1010 "(max: %"PRIu32", need %"PRId64")\n", 1011 initrd_max, (uint64_t)initrd_size); 1012 exit(1); 1013 } 1014 1015 initrd_addr = (initrd_max-initrd_size) & ~4095; 1016 1017 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 1018 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1019 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 1020 1021 stl_p(header+0x218, initrd_addr); 1022 stl_p(header+0x21c, initrd_size); 1023 } 1024 1025 /* load kernel and setup */ 1026 setup_size = header[0x1f1]; 1027 if (setup_size == 0) { 1028 setup_size = 4; 1029 } 1030 setup_size = (setup_size+1)*512; 1031 if (setup_size > kernel_size) { 1032 fprintf(stderr, "qemu: invalid kernel header\n"); 1033 exit(1); 1034 } 1035 kernel_size -= setup_size; 1036 1037 setup = g_malloc(setup_size); 1038 kernel = g_malloc(kernel_size); 1039 fseek(f, 0, SEEK_SET); 1040 if (fread(setup, 1, setup_size, f) != setup_size) { 1041 fprintf(stderr, "fread() failed\n"); 1042 exit(1); 1043 } 1044 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1045 fprintf(stderr, "fread() failed\n"); 1046 exit(1); 1047 } 1048 fclose(f); 1049 1050 /* append dtb to kernel */ 1051 if (dtb_filename) { 1052 if (protocol < 0x209) { 1053 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1054 exit(1); 1055 } 1056 1057 dtb_size = get_image_size(dtb_filename); 1058 if (dtb_size <= 0) { 1059 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1060 dtb_filename, strerror(errno)); 1061 exit(1); 1062 } 1063 1064 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1065 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1066 kernel = g_realloc(kernel, kernel_size); 1067 1068 stq_p(header+0x250, prot_addr + setup_data_offset); 1069 1070 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1071 setup_data->next = 0; 1072 setup_data->type = cpu_to_le32(SETUP_DTB); 1073 setup_data->len = cpu_to_le32(dtb_size); 1074 1075 load_image_size(dtb_filename, setup_data->data, dtb_size); 1076 } 1077 1078 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1079 1080 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1081 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1082 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1083 1084 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1085 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1086 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1087 1088 option_rom[nb_option_roms].bootindex = 0; 1089 option_rom[nb_option_roms].name = "linuxboot.bin"; 1090 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1091 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1092 } 1093 nb_option_roms++; 1094 } 1095 1096 #define NE2000_NB_MAX 6 1097 1098 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1099 0x280, 0x380 }; 1100 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1101 1102 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1103 { 1104 static int nb_ne2k = 0; 1105 1106 if (nb_ne2k == NE2000_NB_MAX) 1107 return; 1108 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1109 ne2000_irq[nb_ne2k], nd); 1110 nb_ne2k++; 1111 } 1112 1113 DeviceState *cpu_get_current_apic(void) 1114 { 1115 if (current_cpu) { 1116 X86CPU *cpu = X86_CPU(current_cpu); 1117 return cpu->apic_state; 1118 } else { 1119 return NULL; 1120 } 1121 } 1122 1123 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1124 { 1125 X86CPU *cpu = opaque; 1126 1127 if (level) { 1128 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1129 } 1130 } 1131 1132 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1133 { 1134 Object *cpu = NULL; 1135 Error *local_err = NULL; 1136 1137 cpu = object_new(typename); 1138 1139 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1140 object_property_set_bool(cpu, true, "realized", &local_err); 1141 1142 object_unref(cpu); 1143 error_propagate(errp, local_err); 1144 } 1145 1146 void pc_hot_add_cpu(const int64_t id, Error **errp) 1147 { 1148 MachineState *ms = MACHINE(qdev_get_machine()); 1149 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1150 Error *local_err = NULL; 1151 1152 if (id < 0) { 1153 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1154 return; 1155 } 1156 1157 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1158 error_setg(errp, "Unable to add CPU: %" PRIi64 1159 ", resulting APIC ID (%" PRIi64 ") is too large", 1160 id, apic_id); 1161 return; 1162 } 1163 1164 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1165 if (local_err) { 1166 error_propagate(errp, local_err); 1167 return; 1168 } 1169 } 1170 1171 void pc_cpus_init(PCMachineState *pcms) 1172 { 1173 int i; 1174 const CPUArchIdList *possible_cpus; 1175 MachineState *ms = MACHINE(pcms); 1176 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1177 1178 /* Calculates the limit to CPU APIC ID values 1179 * 1180 * Limit for the APIC ID value, so that all 1181 * CPU APIC IDs are < pcms->apic_id_limit. 1182 * 1183 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1184 */ 1185 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1186 possible_cpus = mc->possible_cpu_arch_ids(ms); 1187 for (i = 0; i < smp_cpus; i++) { 1188 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id, 1189 &error_fatal); 1190 } 1191 } 1192 1193 static void pc_build_feature_control_file(PCMachineState *pcms) 1194 { 1195 MachineState *ms = MACHINE(pcms); 1196 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1197 CPUX86State *env = &cpu->env; 1198 uint32_t unused, ecx, edx; 1199 uint64_t feature_control_bits = 0; 1200 uint64_t *val; 1201 1202 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1203 if (ecx & CPUID_EXT_VMX) { 1204 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1205 } 1206 1207 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1208 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1209 (env->mcg_cap & MCG_LMCE_P)) { 1210 feature_control_bits |= FEATURE_CONTROL_LMCE; 1211 } 1212 1213 if (!feature_control_bits) { 1214 return; 1215 } 1216 1217 val = g_malloc(sizeof(*val)); 1218 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1219 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1220 } 1221 1222 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1223 { 1224 if (cpus_count > 0xff) { 1225 /* If the number of CPUs can't be represented in 8 bits, the 1226 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1227 * to make old BIOSes fail more predictably. 1228 */ 1229 rtc_set_memory(rtc, 0x5f, 0); 1230 } else { 1231 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1232 } 1233 } 1234 1235 static 1236 void pc_machine_done(Notifier *notifier, void *data) 1237 { 1238 PCMachineState *pcms = container_of(notifier, 1239 PCMachineState, machine_done); 1240 PCIBus *bus = pcms->bus; 1241 1242 /* set the number of CPUs */ 1243 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1244 1245 if (bus) { 1246 int extra_hosts = 0; 1247 1248 QLIST_FOREACH(bus, &bus->child, sibling) { 1249 /* look for expander root buses */ 1250 if (pci_bus_is_root(bus)) { 1251 extra_hosts++; 1252 } 1253 } 1254 if (extra_hosts && pcms->fw_cfg) { 1255 uint64_t *val = g_malloc(sizeof(*val)); 1256 *val = cpu_to_le64(extra_hosts); 1257 fw_cfg_add_file(pcms->fw_cfg, 1258 "etc/extra-pci-roots", val, sizeof(*val)); 1259 } 1260 } 1261 1262 acpi_setup(); 1263 if (pcms->fw_cfg) { 1264 pc_build_smbios(pcms); 1265 pc_build_feature_control_file(pcms); 1266 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1267 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1268 } 1269 1270 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1271 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1272 1273 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) || 1274 iommu->intr_eim != ON_OFF_AUTO_ON) { 1275 error_report("current -smp configuration requires " 1276 "Extended Interrupt Mode enabled. " 1277 "You can add an IOMMU using: " 1278 "-device intel-iommu,intremap=on,eim=on"); 1279 exit(EXIT_FAILURE); 1280 } 1281 } 1282 } 1283 1284 void pc_guest_info_init(PCMachineState *pcms) 1285 { 1286 int i; 1287 1288 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1289 pcms->numa_nodes = nb_numa_nodes; 1290 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1291 sizeof *pcms->node_mem); 1292 for (i = 0; i < nb_numa_nodes; i++) { 1293 pcms->node_mem[i] = numa_info[i].node_mem; 1294 } 1295 1296 pcms->machine_done.notify = pc_machine_done; 1297 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1298 } 1299 1300 /* setup pci memory address space mapping into system address space */ 1301 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1302 MemoryRegion *pci_address_space) 1303 { 1304 /* Set to lower priority than RAM */ 1305 memory_region_add_subregion_overlap(system_memory, 0x0, 1306 pci_address_space, -1); 1307 } 1308 1309 void pc_acpi_init(const char *default_dsdt) 1310 { 1311 char *filename; 1312 1313 if (acpi_tables != NULL) { 1314 /* manually set via -acpitable, leave it alone */ 1315 return; 1316 } 1317 1318 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1319 if (filename == NULL) { 1320 warn_report("failed to find %s", default_dsdt); 1321 } else { 1322 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1323 &error_abort); 1324 Error *err = NULL; 1325 1326 qemu_opt_set(opts, "file", filename, &error_abort); 1327 1328 acpi_table_add_builtin(opts, &err); 1329 if (err) { 1330 warn_reportf_err(err, "failed to load %s: ", filename); 1331 } 1332 g_free(filename); 1333 } 1334 } 1335 1336 void xen_load_linux(PCMachineState *pcms) 1337 { 1338 int i; 1339 FWCfgState *fw_cfg; 1340 1341 assert(MACHINE(pcms)->kernel_filename != NULL); 1342 1343 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1344 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1345 rom_set_fw(fw_cfg); 1346 1347 load_linux(pcms, fw_cfg); 1348 for (i = 0; i < nb_option_roms; i++) { 1349 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1350 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1351 !strcmp(option_rom[i].name, "multiboot.bin")); 1352 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1353 } 1354 pcms->fw_cfg = fw_cfg; 1355 } 1356 1357 void pc_memory_init(PCMachineState *pcms, 1358 MemoryRegion *system_memory, 1359 MemoryRegion *rom_memory, 1360 MemoryRegion **ram_memory) 1361 { 1362 int linux_boot, i; 1363 MemoryRegion *ram, *option_rom_mr; 1364 MemoryRegion *ram_below_4g, *ram_above_4g; 1365 FWCfgState *fw_cfg; 1366 MachineState *machine = MACHINE(pcms); 1367 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1368 1369 assert(machine->ram_size == pcms->below_4g_mem_size + 1370 pcms->above_4g_mem_size); 1371 1372 linux_boot = (machine->kernel_filename != NULL); 1373 1374 /* Allocate RAM. We allocate it as a single memory region and use 1375 * aliases to address portions of it, mostly for backwards compatibility 1376 * with older qemus that used qemu_ram_alloc(). 1377 */ 1378 ram = g_malloc(sizeof(*ram)); 1379 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1380 machine->ram_size); 1381 *ram_memory = ram; 1382 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1383 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1384 0, pcms->below_4g_mem_size); 1385 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1386 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1387 if (pcms->above_4g_mem_size > 0) { 1388 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1389 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1390 pcms->below_4g_mem_size, 1391 pcms->above_4g_mem_size); 1392 memory_region_add_subregion(system_memory, 0x100000000ULL, 1393 ram_above_4g); 1394 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1395 } 1396 1397 if (!pcmc->has_reserved_memory && 1398 (machine->ram_slots || 1399 (machine->maxram_size > machine->ram_size))) { 1400 MachineClass *mc = MACHINE_GET_CLASS(machine); 1401 1402 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1403 mc->name); 1404 exit(EXIT_FAILURE); 1405 } 1406 1407 /* always allocate the device memory information */ 1408 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 1409 1410 /* initialize device memory address space */ 1411 if (pcmc->has_reserved_memory && 1412 (machine->ram_size < machine->maxram_size)) { 1413 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 1414 1415 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1416 error_report("unsupported amount of memory slots: %"PRIu64, 1417 machine->ram_slots); 1418 exit(EXIT_FAILURE); 1419 } 1420 1421 if (QEMU_ALIGN_UP(machine->maxram_size, 1422 TARGET_PAGE_SIZE) != machine->maxram_size) { 1423 error_report("maximum memory size must by aligned to multiple of " 1424 "%d bytes", TARGET_PAGE_SIZE); 1425 exit(EXIT_FAILURE); 1426 } 1427 1428 machine->device_memory->base = 1429 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB); 1430 1431 if (pcmc->enforce_aligned_dimm) { 1432 /* size device region assuming 1G page max alignment per slot */ 1433 device_mem_size += (1 * GiB) * machine->ram_slots; 1434 } 1435 1436 if ((machine->device_memory->base + device_mem_size) < 1437 device_mem_size) { 1438 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1439 machine->maxram_size); 1440 exit(EXIT_FAILURE); 1441 } 1442 1443 memory_region_init(&machine->device_memory->mr, OBJECT(pcms), 1444 "device-memory", device_mem_size); 1445 memory_region_add_subregion(system_memory, machine->device_memory->base, 1446 &machine->device_memory->mr); 1447 } 1448 1449 /* Initialize PC system firmware */ 1450 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1451 1452 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1453 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1454 &error_fatal); 1455 if (pcmc->pci_enabled) { 1456 memory_region_set_readonly(option_rom_mr, true); 1457 } 1458 memory_region_add_subregion_overlap(rom_memory, 1459 PC_ROM_MIN_VGA, 1460 option_rom_mr, 1461 1); 1462 1463 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1464 1465 rom_set_fw(fw_cfg); 1466 1467 if (pcmc->has_reserved_memory && machine->device_memory->base) { 1468 uint64_t *val = g_malloc(sizeof(*val)); 1469 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1470 uint64_t res_mem_end = machine->device_memory->base; 1471 1472 if (!pcmc->broken_reserved_end) { 1473 res_mem_end += memory_region_size(&machine->device_memory->mr); 1474 } 1475 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB)); 1476 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1477 } 1478 1479 if (linux_boot) { 1480 load_linux(pcms, fw_cfg); 1481 } 1482 1483 for (i = 0; i < nb_option_roms; i++) { 1484 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1485 } 1486 pcms->fw_cfg = fw_cfg; 1487 1488 /* Init default IOAPIC address space */ 1489 pcms->ioapic_as = &address_space_memory; 1490 } 1491 1492 /* 1493 * The 64bit pci hole starts after "above 4G RAM" and 1494 * potentially the space reserved for memory hotplug. 1495 */ 1496 uint64_t pc_pci_hole64_start(void) 1497 { 1498 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1499 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1500 MachineState *ms = MACHINE(pcms); 1501 uint64_t hole64_start = 0; 1502 1503 if (pcmc->has_reserved_memory && ms->device_memory->base) { 1504 hole64_start = ms->device_memory->base; 1505 if (!pcmc->broken_reserved_end) { 1506 hole64_start += memory_region_size(&ms->device_memory->mr); 1507 } 1508 } else { 1509 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1510 } 1511 1512 return ROUND_UP(hole64_start, 1 * GiB); 1513 } 1514 1515 qemu_irq pc_allocate_cpu_irq(void) 1516 { 1517 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1518 } 1519 1520 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1521 { 1522 DeviceState *dev = NULL; 1523 1524 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1525 if (pci_bus) { 1526 PCIDevice *pcidev = pci_vga_init(pci_bus); 1527 dev = pcidev ? &pcidev->qdev : NULL; 1528 } else if (isa_bus) { 1529 ISADevice *isadev = isa_vga_init(isa_bus); 1530 dev = isadev ? DEVICE(isadev) : NULL; 1531 } 1532 rom_reset_order_override(); 1533 return dev; 1534 } 1535 1536 static const MemoryRegionOps ioport80_io_ops = { 1537 .write = ioport80_write, 1538 .read = ioport80_read, 1539 .endianness = DEVICE_NATIVE_ENDIAN, 1540 .impl = { 1541 .min_access_size = 1, 1542 .max_access_size = 1, 1543 }, 1544 }; 1545 1546 static const MemoryRegionOps ioportF0_io_ops = { 1547 .write = ioportF0_write, 1548 .read = ioportF0_read, 1549 .endianness = DEVICE_NATIVE_ENDIAN, 1550 .impl = { 1551 .min_access_size = 1, 1552 .max_access_size = 1, 1553 }, 1554 }; 1555 1556 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport) 1557 { 1558 int i; 1559 DriveInfo *fd[MAX_FD]; 1560 qemu_irq *a20_line; 1561 ISADevice *i8042, *port92, *vmmouse; 1562 1563 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS); 1564 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1565 1566 for (i = 0; i < MAX_FD; i++) { 1567 fd[i] = drive_get(IF_FLOPPY, 0, i); 1568 create_fdctrl |= !!fd[i]; 1569 } 1570 if (create_fdctrl) { 1571 fdctrl_init_isa(isa_bus, fd); 1572 } 1573 1574 i8042 = isa_create_simple(isa_bus, "i8042"); 1575 if (!no_vmport) { 1576 vmport_init(isa_bus); 1577 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1578 } else { 1579 vmmouse = NULL; 1580 } 1581 if (vmmouse) { 1582 DeviceState *dev = DEVICE(vmmouse); 1583 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1584 qdev_init_nofail(dev); 1585 } 1586 port92 = isa_create_simple(isa_bus, "port92"); 1587 1588 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1589 i8042_setup_a20_line(i8042, a20_line[0]); 1590 port92_init(port92, a20_line[1]); 1591 g_free(a20_line); 1592 } 1593 1594 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1595 ISADevice **rtc_state, 1596 bool create_fdctrl, 1597 bool no_vmport, 1598 bool has_pit, 1599 uint32_t hpet_irqs) 1600 { 1601 int i; 1602 DeviceState *hpet = NULL; 1603 int pit_isa_irq = 0; 1604 qemu_irq pit_alt_irq = NULL; 1605 qemu_irq rtc_irq = NULL; 1606 ISADevice *pit = NULL; 1607 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1608 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1609 1610 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1611 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1612 1613 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1614 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1615 1616 /* 1617 * Check if an HPET shall be created. 1618 * 1619 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1620 * when the HPET wants to take over. Thus we have to disable the latter. 1621 */ 1622 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1623 /* In order to set property, here not using sysbus_try_create_simple */ 1624 hpet = qdev_try_create(NULL, TYPE_HPET); 1625 if (hpet) { 1626 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1627 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1628 * IRQ8 and IRQ2. 1629 */ 1630 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1631 HPET_INTCAP, NULL); 1632 if (!compat) { 1633 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1634 } 1635 qdev_init_nofail(hpet); 1636 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1637 1638 for (i = 0; i < GSI_NUM_PINS; i++) { 1639 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1640 } 1641 pit_isa_irq = -1; 1642 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1643 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1644 } 1645 } 1646 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 1647 1648 qemu_register_boot_set(pc_boot_set, *rtc_state); 1649 1650 if (!xen_enabled() && has_pit) { 1651 if (kvm_pit_in_kernel()) { 1652 pit = kvm_pit_init(isa_bus, 0x40); 1653 } else { 1654 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1655 } 1656 if (hpet) { 1657 /* connect PIT to output control line of the HPET */ 1658 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1659 } 1660 pcspk_init(isa_bus, pit); 1661 } 1662 1663 i8257_dma_init(isa_bus, 0); 1664 1665 /* Super I/O */ 1666 pc_superio_init(isa_bus, create_fdctrl, no_vmport); 1667 } 1668 1669 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus) 1670 { 1671 int i; 1672 1673 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1674 for (i = 0; i < nb_nics; i++) { 1675 NICInfo *nd = &nd_table[i]; 1676 const char *model = nd->model ? nd->model : pcmc->default_nic_model; 1677 1678 if (g_str_equal(model, "ne2k_isa")) { 1679 pc_init_ne2k_isa(isa_bus, nd); 1680 } else { 1681 pci_nic_init_nofail(nd, pci_bus, model, NULL); 1682 } 1683 } 1684 rom_reset_order_override(); 1685 } 1686 1687 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1688 { 1689 DeviceState *dev; 1690 SysBusDevice *d; 1691 unsigned int i; 1692 1693 if (kvm_ioapic_in_kernel()) { 1694 dev = qdev_create(NULL, "kvm-ioapic"); 1695 } else { 1696 dev = qdev_create(NULL, "ioapic"); 1697 } 1698 if (parent_name) { 1699 object_property_add_child(object_resolve_path(parent_name, NULL), 1700 "ioapic", OBJECT(dev), NULL); 1701 } 1702 qdev_init_nofail(dev); 1703 d = SYS_BUS_DEVICE(dev); 1704 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1705 1706 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1707 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1708 } 1709 } 1710 1711 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 1712 Error **errp) 1713 { 1714 const PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1715 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1716 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1717 const uint64_t legacy_align = TARGET_PAGE_SIZE; 1718 1719 /* 1720 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1721 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1722 * addition to cover this case. 1723 */ 1724 if (!pcms->acpi_dev || !acpi_enabled) { 1725 error_setg(errp, 1726 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1727 return; 1728 } 1729 1730 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) { 1731 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1732 return; 1733 } 1734 1735 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), 1736 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp); 1737 } 1738 1739 static void pc_memory_plug(HotplugHandler *hotplug_dev, 1740 DeviceState *dev, Error **errp) 1741 { 1742 HotplugHandlerClass *hhc; 1743 Error *local_err = NULL; 1744 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1745 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1746 1747 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err); 1748 if (local_err) { 1749 goto out; 1750 } 1751 1752 if (is_nvdimm) { 1753 nvdimm_plug(&pcms->acpi_nvdimm_state); 1754 } 1755 1756 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1757 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1758 out: 1759 error_propagate(errp, local_err); 1760 } 1761 1762 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev, 1763 DeviceState *dev, Error **errp) 1764 { 1765 HotplugHandlerClass *hhc; 1766 Error *local_err = NULL; 1767 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1768 1769 /* 1770 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1771 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1772 * addition to cover this case. 1773 */ 1774 if (!pcms->acpi_dev || !acpi_enabled) { 1775 error_setg(&local_err, 1776 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1777 goto out; 1778 } 1779 1780 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1781 error_setg(&local_err, 1782 "nvdimm device hot unplug is not supported yet."); 1783 goto out; 1784 } 1785 1786 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1787 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1788 1789 out: 1790 error_propagate(errp, local_err); 1791 } 1792 1793 static void pc_memory_unplug(HotplugHandler *hotplug_dev, 1794 DeviceState *dev, Error **errp) 1795 { 1796 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1797 HotplugHandlerClass *hhc; 1798 Error *local_err = NULL; 1799 1800 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1801 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1802 1803 if (local_err) { 1804 goto out; 1805 } 1806 1807 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms)); 1808 object_unparent(OBJECT(dev)); 1809 1810 out: 1811 error_propagate(errp, local_err); 1812 } 1813 1814 static int pc_apic_cmp(const void *a, const void *b) 1815 { 1816 CPUArchId *apic_a = (CPUArchId *)a; 1817 CPUArchId *apic_b = (CPUArchId *)b; 1818 1819 return apic_a->arch_id - apic_b->arch_id; 1820 } 1821 1822 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1823 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1824 * entry corresponding to CPU's apic_id returns NULL. 1825 */ 1826 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1827 { 1828 CPUArchId apic_id, *found_cpu; 1829 1830 apic_id.arch_id = id; 1831 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1832 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1833 pc_apic_cmp); 1834 if (found_cpu && idx) { 1835 *idx = found_cpu - ms->possible_cpus->cpus; 1836 } 1837 return found_cpu; 1838 } 1839 1840 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1841 DeviceState *dev, Error **errp) 1842 { 1843 CPUArchId *found_cpu; 1844 HotplugHandlerClass *hhc; 1845 Error *local_err = NULL; 1846 X86CPU *cpu = X86_CPU(dev); 1847 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1848 1849 if (pcms->acpi_dev) { 1850 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1851 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1852 if (local_err) { 1853 goto out; 1854 } 1855 } 1856 1857 /* increment the number of CPUs */ 1858 pcms->boot_cpus++; 1859 if (pcms->rtc) { 1860 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1861 } 1862 if (pcms->fw_cfg) { 1863 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1864 } 1865 1866 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1867 found_cpu->cpu = OBJECT(dev); 1868 out: 1869 error_propagate(errp, local_err); 1870 } 1871 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1872 DeviceState *dev, Error **errp) 1873 { 1874 int idx = -1; 1875 HotplugHandlerClass *hhc; 1876 Error *local_err = NULL; 1877 X86CPU *cpu = X86_CPU(dev); 1878 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1879 1880 if (!pcms->acpi_dev) { 1881 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 1882 goto out; 1883 } 1884 1885 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1886 assert(idx != -1); 1887 if (idx == 0) { 1888 error_setg(&local_err, "Boot CPU is unpluggable"); 1889 goto out; 1890 } 1891 1892 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1893 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1894 1895 if (local_err) { 1896 goto out; 1897 } 1898 1899 out: 1900 error_propagate(errp, local_err); 1901 1902 } 1903 1904 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1905 DeviceState *dev, Error **errp) 1906 { 1907 CPUArchId *found_cpu; 1908 HotplugHandlerClass *hhc; 1909 Error *local_err = NULL; 1910 X86CPU *cpu = X86_CPU(dev); 1911 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1912 1913 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1914 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1915 1916 if (local_err) { 1917 goto out; 1918 } 1919 1920 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1921 found_cpu->cpu = NULL; 1922 object_unparent(OBJECT(dev)); 1923 1924 /* decrement the number of CPUs */ 1925 pcms->boot_cpus--; 1926 /* Update the number of CPUs in CMOS */ 1927 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1928 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1929 out: 1930 error_propagate(errp, local_err); 1931 } 1932 1933 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 1934 DeviceState *dev, Error **errp) 1935 { 1936 int idx; 1937 CPUState *cs; 1938 CPUArchId *cpu_slot; 1939 X86CPUTopoInfo topo; 1940 X86CPU *cpu = X86_CPU(dev); 1941 MachineState *ms = MACHINE(hotplug_dev); 1942 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1943 1944 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 1945 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 1946 ms->cpu_type); 1947 return; 1948 } 1949 1950 /* if APIC ID is not set, set it based on socket/core/thread properties */ 1951 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 1952 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 1953 1954 if (cpu->socket_id < 0) { 1955 error_setg(errp, "CPU socket-id is not set"); 1956 return; 1957 } else if (cpu->socket_id > max_socket) { 1958 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 1959 cpu->socket_id, max_socket); 1960 return; 1961 } 1962 if (cpu->core_id < 0) { 1963 error_setg(errp, "CPU core-id is not set"); 1964 return; 1965 } else if (cpu->core_id > (smp_cores - 1)) { 1966 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 1967 cpu->core_id, smp_cores - 1); 1968 return; 1969 } 1970 if (cpu->thread_id < 0) { 1971 error_setg(errp, "CPU thread-id is not set"); 1972 return; 1973 } else if (cpu->thread_id > (smp_threads - 1)) { 1974 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 1975 cpu->thread_id, smp_threads - 1); 1976 return; 1977 } 1978 1979 topo.pkg_id = cpu->socket_id; 1980 topo.core_id = cpu->core_id; 1981 topo.smt_id = cpu->thread_id; 1982 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 1983 } 1984 1985 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1986 if (!cpu_slot) { 1987 MachineState *ms = MACHINE(pcms); 1988 1989 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1990 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 1991 " APIC ID %" PRIu32 ", valid index range 0:%d", 1992 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 1993 ms->possible_cpus->len - 1); 1994 return; 1995 } 1996 1997 if (cpu_slot->cpu) { 1998 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 1999 idx, cpu->apic_id); 2000 return; 2001 } 2002 2003 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 2004 * so that machine_query_hotpluggable_cpus would show correct values 2005 */ 2006 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 2007 * once -smp refactoring is complete and there will be CPU private 2008 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 2009 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 2010 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 2011 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 2012 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 2013 return; 2014 } 2015 cpu->socket_id = topo.pkg_id; 2016 2017 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 2018 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 2019 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 2020 return; 2021 } 2022 cpu->core_id = topo.core_id; 2023 2024 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 2025 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 2026 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 2027 return; 2028 } 2029 cpu->thread_id = topo.smt_id; 2030 2031 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) { 2032 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 2033 return; 2034 } 2035 2036 cs = CPU(cpu); 2037 cs->cpu_index = idx; 2038 2039 numa_cpu_pre_plug(cpu_slot, dev, errp); 2040 } 2041 2042 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2043 DeviceState *dev, Error **errp) 2044 { 2045 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2046 pc_memory_pre_plug(hotplug_dev, dev, errp); 2047 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2048 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2049 } 2050 } 2051 2052 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2053 DeviceState *dev, Error **errp) 2054 { 2055 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2056 pc_memory_plug(hotplug_dev, dev, errp); 2057 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2058 pc_cpu_plug(hotplug_dev, dev, errp); 2059 } 2060 } 2061 2062 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2063 DeviceState *dev, Error **errp) 2064 { 2065 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2066 pc_memory_unplug_request(hotplug_dev, dev, errp); 2067 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2068 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2069 } else { 2070 error_setg(errp, "acpi: device unplug request for not supported device" 2071 " type: %s", object_get_typename(OBJECT(dev))); 2072 } 2073 } 2074 2075 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2076 DeviceState *dev, Error **errp) 2077 { 2078 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2079 pc_memory_unplug(hotplug_dev, dev, errp); 2080 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2081 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2082 } else { 2083 error_setg(errp, "acpi: device unplug for not supported device" 2084 " type: %s", object_get_typename(OBJECT(dev))); 2085 } 2086 } 2087 2088 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2089 DeviceState *dev) 2090 { 2091 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2092 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2093 return HOTPLUG_HANDLER(machine); 2094 } 2095 2096 return NULL; 2097 } 2098 2099 static void 2100 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v, 2101 const char *name, void *opaque, 2102 Error **errp) 2103 { 2104 MachineState *ms = MACHINE(obj); 2105 int64_t value = memory_region_size(&ms->device_memory->mr); 2106 2107 visit_type_int(v, name, &value, errp); 2108 } 2109 2110 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2111 const char *name, void *opaque, 2112 Error **errp) 2113 { 2114 PCMachineState *pcms = PC_MACHINE(obj); 2115 uint64_t value = pcms->max_ram_below_4g; 2116 2117 visit_type_size(v, name, &value, errp); 2118 } 2119 2120 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2121 const char *name, void *opaque, 2122 Error **errp) 2123 { 2124 PCMachineState *pcms = PC_MACHINE(obj); 2125 Error *error = NULL; 2126 uint64_t value; 2127 2128 visit_type_size(v, name, &value, &error); 2129 if (error) { 2130 error_propagate(errp, error); 2131 return; 2132 } 2133 if (value > 4 * GiB) { 2134 error_setg(&error, 2135 "Machine option 'max-ram-below-4g=%"PRIu64 2136 "' expects size less than or equal to 4G", value); 2137 error_propagate(errp, error); 2138 return; 2139 } 2140 2141 if (value < 1 * MiB) { 2142 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2143 "BIOS may not work with less than 1MiB", value); 2144 } 2145 2146 pcms->max_ram_below_4g = value; 2147 } 2148 2149 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2150 void *opaque, Error **errp) 2151 { 2152 PCMachineState *pcms = PC_MACHINE(obj); 2153 OnOffAuto vmport = pcms->vmport; 2154 2155 visit_type_OnOffAuto(v, name, &vmport, errp); 2156 } 2157 2158 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2159 void *opaque, Error **errp) 2160 { 2161 PCMachineState *pcms = PC_MACHINE(obj); 2162 2163 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2164 } 2165 2166 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2167 { 2168 bool smm_available = false; 2169 2170 if (pcms->smm == ON_OFF_AUTO_OFF) { 2171 return false; 2172 } 2173 2174 if (tcg_enabled() || qtest_enabled()) { 2175 smm_available = true; 2176 } else if (kvm_enabled()) { 2177 smm_available = kvm_has_smm(); 2178 } 2179 2180 if (smm_available) { 2181 return true; 2182 } 2183 2184 if (pcms->smm == ON_OFF_AUTO_ON) { 2185 error_report("System Management Mode not supported by this hypervisor."); 2186 exit(1); 2187 } 2188 return false; 2189 } 2190 2191 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2192 void *opaque, Error **errp) 2193 { 2194 PCMachineState *pcms = PC_MACHINE(obj); 2195 OnOffAuto smm = pcms->smm; 2196 2197 visit_type_OnOffAuto(v, name, &smm, errp); 2198 } 2199 2200 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2201 void *opaque, Error **errp) 2202 { 2203 PCMachineState *pcms = PC_MACHINE(obj); 2204 2205 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2206 } 2207 2208 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2209 { 2210 PCMachineState *pcms = PC_MACHINE(obj); 2211 2212 return pcms->acpi_nvdimm_state.is_enabled; 2213 } 2214 2215 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2216 { 2217 PCMachineState *pcms = PC_MACHINE(obj); 2218 2219 pcms->acpi_nvdimm_state.is_enabled = value; 2220 } 2221 2222 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp) 2223 { 2224 PCMachineState *pcms = PC_MACHINE(obj); 2225 2226 return g_strdup(pcms->acpi_nvdimm_state.persistence_string); 2227 } 2228 2229 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value, 2230 Error **errp) 2231 { 2232 PCMachineState *pcms = PC_MACHINE(obj); 2233 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state; 2234 2235 if (strcmp(value, "cpu") == 0) 2236 nvdimm_state->persistence = 3; 2237 else if (strcmp(value, "mem-ctrl") == 0) 2238 nvdimm_state->persistence = 2; 2239 else { 2240 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option", 2241 value); 2242 return; 2243 } 2244 2245 g_free(nvdimm_state->persistence_string); 2246 nvdimm_state->persistence_string = g_strdup(value); 2247 } 2248 2249 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2250 { 2251 PCMachineState *pcms = PC_MACHINE(obj); 2252 2253 return pcms->smbus_enabled; 2254 } 2255 2256 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2257 { 2258 PCMachineState *pcms = PC_MACHINE(obj); 2259 2260 pcms->smbus_enabled = value; 2261 } 2262 2263 static bool pc_machine_get_sata(Object *obj, Error **errp) 2264 { 2265 PCMachineState *pcms = PC_MACHINE(obj); 2266 2267 return pcms->sata_enabled; 2268 } 2269 2270 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2271 { 2272 PCMachineState *pcms = PC_MACHINE(obj); 2273 2274 pcms->sata_enabled = value; 2275 } 2276 2277 static bool pc_machine_get_pit(Object *obj, Error **errp) 2278 { 2279 PCMachineState *pcms = PC_MACHINE(obj); 2280 2281 return pcms->pit_enabled; 2282 } 2283 2284 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2285 { 2286 PCMachineState *pcms = PC_MACHINE(obj); 2287 2288 pcms->pit_enabled = value; 2289 } 2290 2291 static void pc_machine_initfn(Object *obj) 2292 { 2293 PCMachineState *pcms = PC_MACHINE(obj); 2294 2295 pcms->max_ram_below_4g = 0; /* use default */ 2296 pcms->smm = ON_OFF_AUTO_AUTO; 2297 pcms->vmport = ON_OFF_AUTO_AUTO; 2298 /* nvdimm is disabled on default. */ 2299 pcms->acpi_nvdimm_state.is_enabled = false; 2300 /* acpi build is enabled by default if machine supports it */ 2301 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2302 pcms->smbus_enabled = true; 2303 pcms->sata_enabled = true; 2304 pcms->pit_enabled = true; 2305 } 2306 2307 static void pc_machine_reset(void) 2308 { 2309 CPUState *cs; 2310 X86CPU *cpu; 2311 2312 qemu_devices_reset(); 2313 2314 /* Reset APIC after devices have been reset to cancel 2315 * any changes that qemu_devices_reset() might have done. 2316 */ 2317 CPU_FOREACH(cs) { 2318 cpu = X86_CPU(cs); 2319 2320 if (cpu->apic_state) { 2321 device_reset(cpu->apic_state); 2322 } 2323 } 2324 } 2325 2326 static CpuInstanceProperties 2327 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2328 { 2329 MachineClass *mc = MACHINE_GET_CLASS(ms); 2330 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2331 2332 assert(cpu_index < possible_cpus->len); 2333 return possible_cpus->cpus[cpu_index].props; 2334 } 2335 2336 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2337 { 2338 X86CPUTopoInfo topo; 2339 2340 assert(idx < ms->possible_cpus->len); 2341 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2342 smp_cores, smp_threads, &topo); 2343 return topo.pkg_id % nb_numa_nodes; 2344 } 2345 2346 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2347 { 2348 int i; 2349 2350 if (ms->possible_cpus) { 2351 /* 2352 * make sure that max_cpus hasn't changed since the first use, i.e. 2353 * -smp hasn't been parsed after it 2354 */ 2355 assert(ms->possible_cpus->len == max_cpus); 2356 return ms->possible_cpus; 2357 } 2358 2359 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2360 sizeof(CPUArchId) * max_cpus); 2361 ms->possible_cpus->len = max_cpus; 2362 for (i = 0; i < ms->possible_cpus->len; i++) { 2363 X86CPUTopoInfo topo; 2364 2365 ms->possible_cpus->cpus[i].type = ms->cpu_type; 2366 ms->possible_cpus->cpus[i].vcpus_count = 1; 2367 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2368 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2369 smp_cores, smp_threads, &topo); 2370 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2371 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2372 ms->possible_cpus->cpus[i].props.has_core_id = true; 2373 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2374 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2375 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2376 } 2377 return ms->possible_cpus; 2378 } 2379 2380 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2381 { 2382 /* cpu index isn't used */ 2383 CPUState *cs; 2384 2385 CPU_FOREACH(cs) { 2386 X86CPU *cpu = X86_CPU(cs); 2387 2388 if (!cpu->apic_state) { 2389 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2390 } else { 2391 apic_deliver_nmi(cpu->apic_state); 2392 } 2393 } 2394 } 2395 2396 static void pc_machine_class_init(ObjectClass *oc, void *data) 2397 { 2398 MachineClass *mc = MACHINE_CLASS(oc); 2399 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2400 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2401 NMIClass *nc = NMI_CLASS(oc); 2402 2403 pcmc->pci_enabled = true; 2404 pcmc->has_acpi_build = true; 2405 pcmc->rsdp_in_ram = true; 2406 pcmc->smbios_defaults = true; 2407 pcmc->smbios_uuid_encoded = true; 2408 pcmc->gigabyte_align = true; 2409 pcmc->has_reserved_memory = true; 2410 pcmc->kvmclock_enabled = true; 2411 pcmc->enforce_aligned_dimm = true; 2412 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2413 * to be used at the moment, 32K should be enough for a while. */ 2414 pcmc->acpi_data_size = 0x20000 + 0x8000; 2415 pcmc->save_tsc_khz = true; 2416 pcmc->linuxboot_dma_enabled = true; 2417 assert(!mc->get_hotplug_handler); 2418 mc->get_hotplug_handler = pc_get_hotpug_handler; 2419 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2420 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2421 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2422 mc->auto_enable_numa_with_memhp = true; 2423 mc->has_hotpluggable_cpus = true; 2424 mc->default_boot_order = "cad"; 2425 mc->hot_add_cpu = pc_hot_add_cpu; 2426 mc->block_default_type = IF_IDE; 2427 mc->max_cpus = 255; 2428 mc->reset = pc_machine_reset; 2429 hc->pre_plug = pc_machine_device_pre_plug_cb; 2430 hc->plug = pc_machine_device_plug_cb; 2431 hc->unplug_request = pc_machine_device_unplug_request_cb; 2432 hc->unplug = pc_machine_device_unplug_cb; 2433 nc->nmi_monitor_handler = x86_nmi; 2434 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2435 2436 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int", 2437 pc_machine_get_device_memory_region_size, NULL, 2438 NULL, NULL, &error_abort); 2439 2440 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2441 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2442 NULL, NULL, &error_abort); 2443 2444 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2445 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2446 2447 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2448 pc_machine_get_smm, pc_machine_set_smm, 2449 NULL, NULL, &error_abort); 2450 object_class_property_set_description(oc, PC_MACHINE_SMM, 2451 "Enable SMM (pc & q35)", &error_abort); 2452 2453 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2454 pc_machine_get_vmport, pc_machine_set_vmport, 2455 NULL, NULL, &error_abort); 2456 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2457 "Enable vmport (pc & q35)", &error_abort); 2458 2459 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2460 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2461 2462 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST, 2463 pc_machine_get_nvdimm_persistence, 2464 pc_machine_set_nvdimm_persistence, &error_abort); 2465 2466 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2467 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2468 2469 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2470 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2471 2472 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2473 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2474 } 2475 2476 static const TypeInfo pc_machine_info = { 2477 .name = TYPE_PC_MACHINE, 2478 .parent = TYPE_MACHINE, 2479 .abstract = true, 2480 .instance_size = sizeof(PCMachineState), 2481 .instance_init = pc_machine_initfn, 2482 .class_size = sizeof(PCMachineClass), 2483 .class_init = pc_machine_class_init, 2484 .interfaces = (InterfaceInfo[]) { 2485 { TYPE_HOTPLUG_HANDLER }, 2486 { TYPE_NMI }, 2487 { } 2488 }, 2489 }; 2490 2491 static void pc_machine_register_types(void) 2492 { 2493 type_register_static(&pc_machine_info); 2494 } 2495 2496 type_init(pc_machine_register_types) 2497