xref: /openbmc/qemu/hw/i386/pc.c (revision dd9fe29c)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/block-backend.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/acpi/cpu_hotplug.h"
57 #include "hw/cpu/icc_bus.h"
58 #include "hw/boards.h"
59 #include "hw/pci/pci_host.h"
60 #include "acpi-build.h"
61 #include "hw/mem/pc-dimm.h"
62 #include "trace.h"
63 #include "qapi/visitor.h"
64 #include "qapi-visit.h"
65 
66 /* debug PC/ISA interrupts */
67 //#define DEBUG_IRQ
68 
69 #ifdef DEBUG_IRQ
70 #define DPRINTF(fmt, ...)                                       \
71     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
72 #else
73 #define DPRINTF(fmt, ...)
74 #endif
75 
76 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
77  * (128K) and other BIOS datastructures (less than 4K reported to be used at
78  * the moment, 32K should be enough for a while).  */
79 static unsigned acpi_data_size = 0x20000 + 0x8000;
80 void pc_set_legacy_acpi_data_size(void)
81 {
82     acpi_data_size = 0x10000;
83 }
84 
85 #define BIOS_CFG_IOPORT 0x510
86 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
87 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
88 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
89 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
90 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
91 
92 #define E820_NR_ENTRIES		16
93 
94 struct e820_entry {
95     uint64_t address;
96     uint64_t length;
97     uint32_t type;
98 } QEMU_PACKED __attribute((__aligned__(4)));
99 
100 struct e820_table {
101     uint32_t count;
102     struct e820_entry entry[E820_NR_ENTRIES];
103 } QEMU_PACKED __attribute((__aligned__(4)));
104 
105 static struct e820_table e820_reserve;
106 static struct e820_entry *e820_table;
107 static unsigned e820_entries;
108 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
109 
110 void gsi_handler(void *opaque, int n, int level)
111 {
112     GSIState *s = opaque;
113 
114     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
115     if (n < ISA_NUM_IRQS) {
116         qemu_set_irq(s->i8259_irq[n], level);
117     }
118     qemu_set_irq(s->ioapic_irq[n], level);
119 }
120 
121 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
122                            unsigned size)
123 {
124 }
125 
126 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
127 {
128     return 0xffffffffffffffffULL;
129 }
130 
131 /* MSDOS compatibility mode FPU exception support */
132 static qemu_irq ferr_irq;
133 
134 void pc_register_ferr_irq(qemu_irq irq)
135 {
136     ferr_irq = irq;
137 }
138 
139 /* XXX: add IGNNE support */
140 void cpu_set_ferr(CPUX86State *s)
141 {
142     qemu_irq_raise(ferr_irq);
143 }
144 
145 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
146                            unsigned size)
147 {
148     qemu_irq_lower(ferr_irq);
149 }
150 
151 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
152 {
153     return 0xffffffffffffffffULL;
154 }
155 
156 /* TSC handling */
157 uint64_t cpu_get_tsc(CPUX86State *env)
158 {
159     return cpu_get_ticks();
160 }
161 
162 /* SMM support */
163 
164 static cpu_set_smm_t smm_set;
165 static void *smm_arg;
166 
167 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
168 {
169     assert(smm_set == NULL);
170     assert(smm_arg == NULL);
171     smm_set = callback;
172     smm_arg = arg;
173 }
174 
175 void cpu_smm_update(CPUX86State *env)
176 {
177     if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
178         smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
179     }
180 }
181 
182 
183 /* IRQ handling */
184 int cpu_get_pic_interrupt(CPUX86State *env)
185 {
186     X86CPU *cpu = x86_env_get_cpu(env);
187     int intno;
188 
189     intno = apic_get_interrupt(cpu->apic_state);
190     if (intno >= 0) {
191         return intno;
192     }
193     /* read the irq from the PIC */
194     if (!apic_accept_pic_intr(cpu->apic_state)) {
195         return -1;
196     }
197 
198     intno = pic_read_irq(isa_pic);
199     return intno;
200 }
201 
202 static void pic_irq_request(void *opaque, int irq, int level)
203 {
204     CPUState *cs = first_cpu;
205     X86CPU *cpu = X86_CPU(cs);
206 
207     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
208     if (cpu->apic_state) {
209         CPU_FOREACH(cs) {
210             cpu = X86_CPU(cs);
211             if (apic_accept_pic_intr(cpu->apic_state)) {
212                 apic_deliver_pic_intr(cpu->apic_state, level);
213             }
214         }
215     } else {
216         if (level) {
217             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
218         } else {
219             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
220         }
221     }
222 }
223 
224 /* PC cmos mappings */
225 
226 #define REG_EQUIPMENT_BYTE          0x14
227 
228 static int cmos_get_fd_drive_type(FDriveType fd0)
229 {
230     int val;
231 
232     switch (fd0) {
233     case FDRIVE_DRV_144:
234         /* 1.44 Mb 3"5 drive */
235         val = 4;
236         break;
237     case FDRIVE_DRV_288:
238         /* 2.88 Mb 3"5 drive */
239         val = 5;
240         break;
241     case FDRIVE_DRV_120:
242         /* 1.2 Mb 5"5 drive */
243         val = 2;
244         break;
245     case FDRIVE_DRV_NONE:
246     default:
247         val = 0;
248         break;
249     }
250     return val;
251 }
252 
253 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
254                          int16_t cylinders, int8_t heads, int8_t sectors)
255 {
256     rtc_set_memory(s, type_ofs, 47);
257     rtc_set_memory(s, info_ofs, cylinders);
258     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
259     rtc_set_memory(s, info_ofs + 2, heads);
260     rtc_set_memory(s, info_ofs + 3, 0xff);
261     rtc_set_memory(s, info_ofs + 4, 0xff);
262     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
263     rtc_set_memory(s, info_ofs + 6, cylinders);
264     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
265     rtc_set_memory(s, info_ofs + 8, sectors);
266 }
267 
268 /* convert boot_device letter to something recognizable by the bios */
269 static int boot_device2nibble(char boot_device)
270 {
271     switch(boot_device) {
272     case 'a':
273     case 'b':
274         return 0x01; /* floppy boot */
275     case 'c':
276         return 0x02; /* hard drive boot */
277     case 'd':
278         return 0x03; /* CD-ROM boot */
279     case 'n':
280         return 0x04; /* Network boot */
281     }
282     return 0;
283 }
284 
285 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
286 {
287 #define PC_MAX_BOOT_DEVICES 3
288     int nbds, bds[3] = { 0, };
289     int i;
290 
291     nbds = strlen(boot_device);
292     if (nbds > PC_MAX_BOOT_DEVICES) {
293         error_setg(errp, "Too many boot devices for PC");
294         return;
295     }
296     for (i = 0; i < nbds; i++) {
297         bds[i] = boot_device2nibble(boot_device[i]);
298         if (bds[i] == 0) {
299             error_setg(errp, "Invalid boot device for PC: '%c'",
300                        boot_device[i]);
301             return;
302         }
303     }
304     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
305     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
306 }
307 
308 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
309 {
310     set_boot_dev(opaque, boot_device, errp);
311 }
312 
313 typedef struct pc_cmos_init_late_arg {
314     ISADevice *rtc_state;
315     BusState *idebus[2];
316 } pc_cmos_init_late_arg;
317 
318 static void pc_cmos_init_late(void *opaque)
319 {
320     pc_cmos_init_late_arg *arg = opaque;
321     ISADevice *s = arg->rtc_state;
322     int16_t cylinders;
323     int8_t heads, sectors;
324     int val;
325     int i, trans;
326 
327     val = 0;
328     if (ide_get_geometry(arg->idebus[0], 0,
329                          &cylinders, &heads, &sectors) >= 0) {
330         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
331         val |= 0xf0;
332     }
333     if (ide_get_geometry(arg->idebus[0], 1,
334                          &cylinders, &heads, &sectors) >= 0) {
335         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
336         val |= 0x0f;
337     }
338     rtc_set_memory(s, 0x12, val);
339 
340     val = 0;
341     for (i = 0; i < 4; i++) {
342         /* NOTE: ide_get_geometry() returns the physical
343            geometry.  It is always such that: 1 <= sects <= 63, 1
344            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
345            geometry can be different if a translation is done. */
346         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
347                              &cylinders, &heads, &sectors) >= 0) {
348             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
349             assert((trans & ~3) == 0);
350             val |= trans << (i * 2);
351         }
352     }
353     rtc_set_memory(s, 0x39, val);
354 
355     qemu_unregister_reset(pc_cmos_init_late, opaque);
356 }
357 
358 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
359                   const char *boot_device, MachineState *machine,
360                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
361                   ISADevice *s)
362 {
363     int val, nb, i;
364     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
365     static pc_cmos_init_late_arg arg;
366     PCMachineState *pc_machine = PC_MACHINE(machine);
367     Error *local_err = NULL;
368 
369     /* various important CMOS locations needed by PC/Bochs bios */
370 
371     /* memory size */
372     /* base memory (first MiB) */
373     val = MIN(ram_size / 1024, 640);
374     rtc_set_memory(s, 0x15, val);
375     rtc_set_memory(s, 0x16, val >> 8);
376     /* extended memory (next 64MiB) */
377     if (ram_size > 1024 * 1024) {
378         val = (ram_size - 1024 * 1024) / 1024;
379     } else {
380         val = 0;
381     }
382     if (val > 65535)
383         val = 65535;
384     rtc_set_memory(s, 0x17, val);
385     rtc_set_memory(s, 0x18, val >> 8);
386     rtc_set_memory(s, 0x30, val);
387     rtc_set_memory(s, 0x31, val >> 8);
388     /* memory between 16MiB and 4GiB */
389     if (ram_size > 16 * 1024 * 1024) {
390         val = (ram_size - 16 * 1024 * 1024) / 65536;
391     } else {
392         val = 0;
393     }
394     if (val > 65535)
395         val = 65535;
396     rtc_set_memory(s, 0x34, val);
397     rtc_set_memory(s, 0x35, val >> 8);
398     /* memory above 4GiB */
399     val = above_4g_mem_size / 65536;
400     rtc_set_memory(s, 0x5b, val);
401     rtc_set_memory(s, 0x5c, val >> 8);
402     rtc_set_memory(s, 0x5d, val >> 16);
403 
404     /* set the number of CPU */
405     rtc_set_memory(s, 0x5f, smp_cpus - 1);
406 
407     object_property_add_link(OBJECT(machine), "rtc_state",
408                              TYPE_ISA_DEVICE,
409                              (Object **)&pc_machine->rtc,
410                              object_property_allow_set_link,
411                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
412     object_property_set_link(OBJECT(machine), OBJECT(s),
413                              "rtc_state", &error_abort);
414 
415     set_boot_dev(s, boot_device, &local_err);
416     if (local_err) {
417         error_report("%s", error_get_pretty(local_err));
418         exit(1);
419     }
420 
421     /* floppy type */
422     if (floppy) {
423         for (i = 0; i < 2; i++) {
424             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
425         }
426     }
427     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
428         cmos_get_fd_drive_type(fd_type[1]);
429     rtc_set_memory(s, 0x10, val);
430 
431     val = 0;
432     nb = 0;
433     if (fd_type[0] < FDRIVE_DRV_NONE) {
434         nb++;
435     }
436     if (fd_type[1] < FDRIVE_DRV_NONE) {
437         nb++;
438     }
439     switch (nb) {
440     case 0:
441         break;
442     case 1:
443         val |= 0x01; /* 1 drive, ready for boot */
444         break;
445     case 2:
446         val |= 0x41; /* 2 drives, ready for boot */
447         break;
448     }
449     val |= 0x02; /* FPU is there */
450     val |= 0x04; /* PS/2 mouse installed */
451     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
452 
453     /* hard drives */
454     arg.rtc_state = s;
455     arg.idebus[0] = idebus0;
456     arg.idebus[1] = idebus1;
457     qemu_register_reset(pc_cmos_init_late, &arg);
458 }
459 
460 #define TYPE_PORT92 "port92"
461 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
462 
463 /* port 92 stuff: could be split off */
464 typedef struct Port92State {
465     ISADevice parent_obj;
466 
467     MemoryRegion io;
468     uint8_t outport;
469     qemu_irq *a20_out;
470 } Port92State;
471 
472 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
473                          unsigned size)
474 {
475     Port92State *s = opaque;
476     int oldval = s->outport;
477 
478     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
479     s->outport = val;
480     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
481     if ((val & 1) && !(oldval & 1)) {
482         qemu_system_reset_request();
483     }
484 }
485 
486 static uint64_t port92_read(void *opaque, hwaddr addr,
487                             unsigned size)
488 {
489     Port92State *s = opaque;
490     uint32_t ret;
491 
492     ret = s->outport;
493     DPRINTF("port92: read 0x%02x\n", ret);
494     return ret;
495 }
496 
497 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
498 {
499     Port92State *s = PORT92(dev);
500 
501     s->a20_out = a20_out;
502 }
503 
504 static const VMStateDescription vmstate_port92_isa = {
505     .name = "port92",
506     .version_id = 1,
507     .minimum_version_id = 1,
508     .fields = (VMStateField[]) {
509         VMSTATE_UINT8(outport, Port92State),
510         VMSTATE_END_OF_LIST()
511     }
512 };
513 
514 static void port92_reset(DeviceState *d)
515 {
516     Port92State *s = PORT92(d);
517 
518     s->outport &= ~1;
519 }
520 
521 static const MemoryRegionOps port92_ops = {
522     .read = port92_read,
523     .write = port92_write,
524     .impl = {
525         .min_access_size = 1,
526         .max_access_size = 1,
527     },
528     .endianness = DEVICE_LITTLE_ENDIAN,
529 };
530 
531 static void port92_initfn(Object *obj)
532 {
533     Port92State *s = PORT92(obj);
534 
535     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
536 
537     s->outport = 0;
538 }
539 
540 static void port92_realizefn(DeviceState *dev, Error **errp)
541 {
542     ISADevice *isadev = ISA_DEVICE(dev);
543     Port92State *s = PORT92(dev);
544 
545     isa_register_ioport(isadev, &s->io, 0x92);
546 }
547 
548 static void port92_class_initfn(ObjectClass *klass, void *data)
549 {
550     DeviceClass *dc = DEVICE_CLASS(klass);
551 
552     dc->realize = port92_realizefn;
553     dc->reset = port92_reset;
554     dc->vmsd = &vmstate_port92_isa;
555     /*
556      * Reason: unlike ordinary ISA devices, this one needs additional
557      * wiring: its A20 output line needs to be wired up by
558      * port92_init().
559      */
560     dc->cannot_instantiate_with_device_add_yet = true;
561 }
562 
563 static const TypeInfo port92_info = {
564     .name          = TYPE_PORT92,
565     .parent        = TYPE_ISA_DEVICE,
566     .instance_size = sizeof(Port92State),
567     .instance_init = port92_initfn,
568     .class_init    = port92_class_initfn,
569 };
570 
571 static void port92_register_types(void)
572 {
573     type_register_static(&port92_info);
574 }
575 
576 type_init(port92_register_types)
577 
578 static void handle_a20_line_change(void *opaque, int irq, int level)
579 {
580     X86CPU *cpu = opaque;
581 
582     /* XXX: send to all CPUs ? */
583     /* XXX: add logic to handle multiple A20 line sources */
584     x86_cpu_set_a20(cpu, level);
585 }
586 
587 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
588 {
589     int index = le32_to_cpu(e820_reserve.count);
590     struct e820_entry *entry;
591 
592     if (type != E820_RAM) {
593         /* old FW_CFG_E820_TABLE entry -- reservations only */
594         if (index >= E820_NR_ENTRIES) {
595             return -EBUSY;
596         }
597         entry = &e820_reserve.entry[index++];
598 
599         entry->address = cpu_to_le64(address);
600         entry->length = cpu_to_le64(length);
601         entry->type = cpu_to_le32(type);
602 
603         e820_reserve.count = cpu_to_le32(index);
604     }
605 
606     /* new "etc/e820" file -- include ram too */
607     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
608     e820_table[e820_entries].address = cpu_to_le64(address);
609     e820_table[e820_entries].length = cpu_to_le64(length);
610     e820_table[e820_entries].type = cpu_to_le32(type);
611     e820_entries++;
612 
613     return e820_entries;
614 }
615 
616 int e820_get_num_entries(void)
617 {
618     return e820_entries;
619 }
620 
621 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
622 {
623     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
624         *address = le64_to_cpu(e820_table[idx].address);
625         *length = le64_to_cpu(e820_table[idx].length);
626         return true;
627     }
628     return false;
629 }
630 
631 /* Calculates the limit to CPU APIC ID values
632  *
633  * This function returns the limit for the APIC ID value, so that all
634  * CPU APIC IDs are < pc_apic_id_limit().
635  *
636  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
637  */
638 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
639 {
640     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
641 }
642 
643 static FWCfgState *bochs_bios_init(void)
644 {
645     FWCfgState *fw_cfg;
646     uint8_t *smbios_tables, *smbios_anchor;
647     size_t smbios_tables_len, smbios_anchor_len;
648     uint64_t *numa_fw_cfg;
649     int i, j;
650     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
651 
652     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
653     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
654      *
655      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
656      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
657      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
658      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
659      * may see".
660      *
661      * So, this means we must not use max_cpus, here, but the maximum possible
662      * APIC ID value, plus one.
663      *
664      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
665      *     the APIC ID, not the "CPU index"
666      */
667     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
668     fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
669     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
670     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
671                      acpi_tables, acpi_tables_len);
672     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
673 
674     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
675     if (smbios_tables) {
676         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
677                          smbios_tables, smbios_tables_len);
678     }
679 
680     smbios_get_tables(&smbios_tables, &smbios_tables_len,
681                       &smbios_anchor, &smbios_anchor_len);
682     if (smbios_anchor) {
683         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
684                         smbios_tables, smbios_tables_len);
685         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
686                         smbios_anchor, smbios_anchor_len);
687     }
688 
689     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
690                      &e820_reserve, sizeof(e820_reserve));
691     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
692                     sizeof(struct e820_entry) * e820_entries);
693 
694     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
695     /* allocate memory for the NUMA channel: one (64bit) word for the number
696      * of nodes, one word for each VCPU->node and one word for each node to
697      * hold the amount of memory.
698      */
699     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
700     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
701     for (i = 0; i < max_cpus; i++) {
702         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
703         assert(apic_id < apic_id_limit);
704         for (j = 0; j < nb_numa_nodes; j++) {
705             if (test_bit(i, numa_info[j].node_cpu)) {
706                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
707                 break;
708             }
709         }
710     }
711     for (i = 0; i < nb_numa_nodes; i++) {
712         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
713     }
714     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
715                      (1 + apic_id_limit + nb_numa_nodes) *
716                      sizeof(*numa_fw_cfg));
717 
718     return fw_cfg;
719 }
720 
721 static long get_file_size(FILE *f)
722 {
723     long where, size;
724 
725     /* XXX: on Unix systems, using fstat() probably makes more sense */
726 
727     where = ftell(f);
728     fseek(f, 0, SEEK_END);
729     size = ftell(f);
730     fseek(f, where, SEEK_SET);
731 
732     return size;
733 }
734 
735 static void load_linux(FWCfgState *fw_cfg,
736                        const char *kernel_filename,
737                        const char *initrd_filename,
738                        const char *kernel_cmdline,
739                        hwaddr max_ram_size)
740 {
741     uint16_t protocol;
742     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
743     uint32_t initrd_max;
744     uint8_t header[8192], *setup, *kernel, *initrd_data;
745     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
746     FILE *f;
747     char *vmode;
748 
749     /* Align to 16 bytes as a paranoia measure */
750     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
751 
752     /* load the kernel header */
753     f = fopen(kernel_filename, "rb");
754     if (!f || !(kernel_size = get_file_size(f)) ||
755         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
756         MIN(ARRAY_SIZE(header), kernel_size)) {
757         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
758                 kernel_filename, strerror(errno));
759         exit(1);
760     }
761 
762     /* kernel protocol version */
763 #if 0
764     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
765 #endif
766     if (ldl_p(header+0x202) == 0x53726448) {
767         protocol = lduw_p(header+0x206);
768     } else {
769         /* This looks like a multiboot kernel. If it is, let's stop
770            treating it like a Linux kernel. */
771         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
772                            kernel_cmdline, kernel_size, header)) {
773             return;
774         }
775         protocol = 0;
776     }
777 
778     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
779         /* Low kernel */
780         real_addr    = 0x90000;
781         cmdline_addr = 0x9a000 - cmdline_size;
782         prot_addr    = 0x10000;
783     } else if (protocol < 0x202) {
784         /* High but ancient kernel */
785         real_addr    = 0x90000;
786         cmdline_addr = 0x9a000 - cmdline_size;
787         prot_addr    = 0x100000;
788     } else {
789         /* High and recent kernel */
790         real_addr    = 0x10000;
791         cmdline_addr = 0x20000;
792         prot_addr    = 0x100000;
793     }
794 
795 #if 0
796     fprintf(stderr,
797             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
798             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
799             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
800             real_addr,
801             cmdline_addr,
802             prot_addr);
803 #endif
804 
805     /* highest address for loading the initrd */
806     if (protocol >= 0x203) {
807         initrd_max = ldl_p(header+0x22c);
808     } else {
809         initrd_max = 0x37ffffff;
810     }
811 
812     if (initrd_max >= max_ram_size - acpi_data_size) {
813         initrd_max = max_ram_size - acpi_data_size - 1;
814     }
815 
816     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
817     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
818     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
819 
820     if (protocol >= 0x202) {
821         stl_p(header+0x228, cmdline_addr);
822     } else {
823         stw_p(header+0x20, 0xA33F);
824         stw_p(header+0x22, cmdline_addr-real_addr);
825     }
826 
827     /* handle vga= parameter */
828     vmode = strstr(kernel_cmdline, "vga=");
829     if (vmode) {
830         unsigned int video_mode;
831         /* skip "vga=" */
832         vmode += 4;
833         if (!strncmp(vmode, "normal", 6)) {
834             video_mode = 0xffff;
835         } else if (!strncmp(vmode, "ext", 3)) {
836             video_mode = 0xfffe;
837         } else if (!strncmp(vmode, "ask", 3)) {
838             video_mode = 0xfffd;
839         } else {
840             video_mode = strtol(vmode, NULL, 0);
841         }
842         stw_p(header+0x1fa, video_mode);
843     }
844 
845     /* loader type */
846     /* High nybble = B reserved for QEMU; low nybble is revision number.
847        If this code is substantially changed, you may want to consider
848        incrementing the revision. */
849     if (protocol >= 0x200) {
850         header[0x210] = 0xB0;
851     }
852     /* heap */
853     if (protocol >= 0x201) {
854         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
855         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
856     }
857 
858     /* load initrd */
859     if (initrd_filename) {
860         if (protocol < 0x200) {
861             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
862             exit(1);
863         }
864 
865         initrd_size = get_image_size(initrd_filename);
866         if (initrd_size < 0) {
867             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
868                     initrd_filename, strerror(errno));
869             exit(1);
870         }
871 
872         initrd_addr = (initrd_max-initrd_size) & ~4095;
873 
874         initrd_data = g_malloc(initrd_size);
875         load_image(initrd_filename, initrd_data);
876 
877         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
878         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
879         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
880 
881         stl_p(header+0x218, initrd_addr);
882         stl_p(header+0x21c, initrd_size);
883     }
884 
885     /* load kernel and setup */
886     setup_size = header[0x1f1];
887     if (setup_size == 0) {
888         setup_size = 4;
889     }
890     setup_size = (setup_size+1)*512;
891     kernel_size -= setup_size;
892 
893     setup  = g_malloc(setup_size);
894     kernel = g_malloc(kernel_size);
895     fseek(f, 0, SEEK_SET);
896     if (fread(setup, 1, setup_size, f) != setup_size) {
897         fprintf(stderr, "fread() failed\n");
898         exit(1);
899     }
900     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
901         fprintf(stderr, "fread() failed\n");
902         exit(1);
903     }
904     fclose(f);
905     memcpy(setup, header, MIN(sizeof(header), setup_size));
906 
907     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
908     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
909     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
910 
911     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
912     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
913     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
914 
915     option_rom[nb_option_roms].name = "linuxboot.bin";
916     option_rom[nb_option_roms].bootindex = 0;
917     nb_option_roms++;
918 }
919 
920 #define NE2000_NB_MAX 6
921 
922 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
923                                               0x280, 0x380 };
924 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
925 
926 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
927 {
928     static int nb_ne2k = 0;
929 
930     if (nb_ne2k == NE2000_NB_MAX)
931         return;
932     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
933                     ne2000_irq[nb_ne2k], nd);
934     nb_ne2k++;
935 }
936 
937 DeviceState *cpu_get_current_apic(void)
938 {
939     if (current_cpu) {
940         X86CPU *cpu = X86_CPU(current_cpu);
941         return cpu->apic_state;
942     } else {
943         return NULL;
944     }
945 }
946 
947 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
948 {
949     X86CPU *cpu = opaque;
950 
951     if (level) {
952         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
953     }
954 }
955 
956 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
957                           DeviceState *icc_bridge, Error **errp)
958 {
959     X86CPU *cpu;
960     Error *local_err = NULL;
961 
962     cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
963     if (local_err != NULL) {
964         error_propagate(errp, local_err);
965         return NULL;
966     }
967 
968     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
969     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
970 
971     if (local_err) {
972         error_propagate(errp, local_err);
973         object_unref(OBJECT(cpu));
974         cpu = NULL;
975     }
976     return cpu;
977 }
978 
979 static const char *current_cpu_model;
980 
981 void pc_hot_add_cpu(const int64_t id, Error **errp)
982 {
983     DeviceState *icc_bridge;
984     int64_t apic_id = x86_cpu_apic_id_from_index(id);
985 
986     if (id < 0) {
987         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
988         return;
989     }
990 
991     if (cpu_exists(apic_id)) {
992         error_setg(errp, "Unable to add CPU: %" PRIi64
993                    ", it already exists", id);
994         return;
995     }
996 
997     if (id >= max_cpus) {
998         error_setg(errp, "Unable to add CPU: %" PRIi64
999                    ", max allowed: %d", id, max_cpus - 1);
1000         return;
1001     }
1002 
1003     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1004         error_setg(errp, "Unable to add CPU: %" PRIi64
1005                    ", resulting APIC ID (%" PRIi64 ") is too large",
1006                    id, apic_id);
1007         return;
1008     }
1009 
1010     icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1011                                                  TYPE_ICC_BRIDGE, NULL));
1012     pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
1013 }
1014 
1015 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1016 {
1017     int i;
1018     X86CPU *cpu = NULL;
1019     Error *error = NULL;
1020     unsigned long apic_id_limit;
1021 
1022     /* init CPUs */
1023     if (cpu_model == NULL) {
1024 #ifdef TARGET_X86_64
1025         cpu_model = "qemu64";
1026 #else
1027         cpu_model = "qemu32";
1028 #endif
1029     }
1030     current_cpu_model = cpu_model;
1031 
1032     apic_id_limit = pc_apic_id_limit(max_cpus);
1033     if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1034         error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1035                      apic_id_limit - 1);
1036         exit(1);
1037     }
1038 
1039     for (i = 0; i < smp_cpus; i++) {
1040         cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1041                          icc_bridge, &error);
1042         if (error) {
1043             error_report("%s", error_get_pretty(error));
1044             error_free(error);
1045             exit(1);
1046         }
1047     }
1048 
1049     /* map APIC MMIO area if CPU has APIC */
1050     if (cpu && cpu->apic_state) {
1051         /* XXX: what if the base changes? */
1052         sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1053                                 APIC_DEFAULT_ADDRESS, 0x1000);
1054     }
1055 
1056     /* tell smbios about cpuid version and features */
1057     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1058 }
1059 
1060 /* pci-info ROM file. Little endian format */
1061 typedef struct PcRomPciInfo {
1062     uint64_t w32_min;
1063     uint64_t w32_max;
1064     uint64_t w64_min;
1065     uint64_t w64_max;
1066 } PcRomPciInfo;
1067 
1068 typedef struct PcGuestInfoState {
1069     PcGuestInfo info;
1070     Notifier machine_done;
1071 } PcGuestInfoState;
1072 
1073 static
1074 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1075 {
1076     PcGuestInfoState *guest_info_state = container_of(notifier,
1077                                                       PcGuestInfoState,
1078                                                       machine_done);
1079     acpi_setup(&guest_info_state->info);
1080 }
1081 
1082 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1083                                 ram_addr_t above_4g_mem_size)
1084 {
1085     PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1086     PcGuestInfo *guest_info = &guest_info_state->info;
1087     int i, j;
1088 
1089     guest_info->ram_size_below_4g = below_4g_mem_size;
1090     guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1091     guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1092     guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1093     guest_info->numa_nodes = nb_numa_nodes;
1094     guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1095                                     sizeof *guest_info->node_mem);
1096     for (i = 0; i < nb_numa_nodes; i++) {
1097         guest_info->node_mem[i] = numa_info[i].node_mem;
1098     }
1099 
1100     guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1101                                      sizeof *guest_info->node_cpu);
1102 
1103     for (i = 0; i < max_cpus; i++) {
1104         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1105         assert(apic_id < guest_info->apic_id_limit);
1106         for (j = 0; j < nb_numa_nodes; j++) {
1107             if (test_bit(i, numa_info[j].node_cpu)) {
1108                 guest_info->node_cpu[apic_id] = j;
1109                 break;
1110             }
1111         }
1112     }
1113 
1114     guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1115     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1116     return guest_info;
1117 }
1118 
1119 /* setup pci memory address space mapping into system address space */
1120 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1121                             MemoryRegion *pci_address_space)
1122 {
1123     /* Set to lower priority than RAM */
1124     memory_region_add_subregion_overlap(system_memory, 0x0,
1125                                         pci_address_space, -1);
1126 }
1127 
1128 void pc_acpi_init(const char *default_dsdt)
1129 {
1130     char *filename;
1131 
1132     if (acpi_tables != NULL) {
1133         /* manually set via -acpitable, leave it alone */
1134         return;
1135     }
1136 
1137     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1138     if (filename == NULL) {
1139         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1140     } else {
1141         char *arg;
1142         QemuOpts *opts;
1143         Error *err = NULL;
1144 
1145         arg = g_strdup_printf("file=%s", filename);
1146 
1147         /* creates a deep copy of "arg" */
1148         opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1149         g_assert(opts != NULL);
1150 
1151         acpi_table_add_builtin(opts, &err);
1152         if (err) {
1153             error_report("WARNING: failed to load %s: %s", filename,
1154                          error_get_pretty(err));
1155             error_free(err);
1156         }
1157         g_free(arg);
1158         g_free(filename);
1159     }
1160 }
1161 
1162 FWCfgState *xen_load_linux(const char *kernel_filename,
1163                            const char *kernel_cmdline,
1164                            const char *initrd_filename,
1165                            ram_addr_t below_4g_mem_size,
1166                            PcGuestInfo *guest_info)
1167 {
1168     int i;
1169     FWCfgState *fw_cfg;
1170 
1171     assert(kernel_filename != NULL);
1172 
1173     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1174     rom_set_fw(fw_cfg);
1175 
1176     load_linux(fw_cfg, kernel_filename, initrd_filename,
1177                kernel_cmdline, below_4g_mem_size);
1178     for (i = 0; i < nb_option_roms; i++) {
1179         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1180                !strcmp(option_rom[i].name, "multiboot.bin"));
1181         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1182     }
1183     guest_info->fw_cfg = fw_cfg;
1184     return fw_cfg;
1185 }
1186 
1187 FWCfgState *pc_memory_init(MachineState *machine,
1188                            MemoryRegion *system_memory,
1189                            ram_addr_t below_4g_mem_size,
1190                            ram_addr_t above_4g_mem_size,
1191                            MemoryRegion *rom_memory,
1192                            MemoryRegion **ram_memory,
1193                            PcGuestInfo *guest_info)
1194 {
1195     int linux_boot, i;
1196     MemoryRegion *ram, *option_rom_mr;
1197     MemoryRegion *ram_below_4g, *ram_above_4g;
1198     FWCfgState *fw_cfg;
1199     PCMachineState *pcms = PC_MACHINE(machine);
1200 
1201     assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1202 
1203     linux_boot = (machine->kernel_filename != NULL);
1204 
1205     /* Allocate RAM.  We allocate it as a single memory region and use
1206      * aliases to address portions of it, mostly for backwards compatibility
1207      * with older qemus that used qemu_ram_alloc().
1208      */
1209     ram = g_malloc(sizeof(*ram));
1210     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1211                                          machine->ram_size);
1212     *ram_memory = ram;
1213     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1214     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1215                              0, below_4g_mem_size);
1216     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1217     e820_add_entry(0, below_4g_mem_size, E820_RAM);
1218     if (above_4g_mem_size > 0) {
1219         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1220         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1221                                  below_4g_mem_size, above_4g_mem_size);
1222         memory_region_add_subregion(system_memory, 0x100000000ULL,
1223                                     ram_above_4g);
1224         e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1225     }
1226 
1227     if (!guest_info->has_reserved_memory &&
1228         (machine->ram_slots ||
1229          (machine->maxram_size > machine->ram_size))) {
1230         MachineClass *mc = MACHINE_GET_CLASS(machine);
1231 
1232         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1233                      mc->name);
1234         exit(EXIT_FAILURE);
1235     }
1236 
1237     /* initialize hotplug memory address space */
1238     if (guest_info->has_reserved_memory &&
1239         (machine->ram_size < machine->maxram_size)) {
1240         ram_addr_t hotplug_mem_size =
1241             machine->maxram_size - machine->ram_size;
1242 
1243         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1244             error_report("unsupported amount of memory slots: %"PRIu64,
1245                          machine->ram_slots);
1246             exit(EXIT_FAILURE);
1247         }
1248 
1249         pcms->hotplug_memory_base =
1250             ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1251 
1252         if (pcms->enforce_aligned_dimm) {
1253             /* size hotplug region assuming 1G page max alignment per slot */
1254             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1255         }
1256 
1257         if ((pcms->hotplug_memory_base + hotplug_mem_size) <
1258             hotplug_mem_size) {
1259             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1260                          machine->maxram_size);
1261             exit(EXIT_FAILURE);
1262         }
1263 
1264         memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
1265                            "hotplug-memory", hotplug_mem_size);
1266         memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
1267                                     &pcms->hotplug_memory);
1268     }
1269 
1270     /* Initialize PC system firmware */
1271     pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1272 
1273     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1274     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1275                            &error_abort);
1276     vmstate_register_ram_global(option_rom_mr);
1277     memory_region_add_subregion_overlap(rom_memory,
1278                                         PC_ROM_MIN_VGA,
1279                                         option_rom_mr,
1280                                         1);
1281 
1282     fw_cfg = bochs_bios_init();
1283     rom_set_fw(fw_cfg);
1284 
1285     if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
1286         uint64_t *val = g_malloc(sizeof(*val));
1287         *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
1288         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1289     }
1290 
1291     if (linux_boot) {
1292         load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
1293                    machine->kernel_cmdline, below_4g_mem_size);
1294     }
1295 
1296     for (i = 0; i < nb_option_roms; i++) {
1297         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1298     }
1299     guest_info->fw_cfg = fw_cfg;
1300     return fw_cfg;
1301 }
1302 
1303 qemu_irq *pc_allocate_cpu_irq(void)
1304 {
1305     return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1306 }
1307 
1308 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1309 {
1310     DeviceState *dev = NULL;
1311 
1312     if (pci_bus) {
1313         PCIDevice *pcidev = pci_vga_init(pci_bus);
1314         dev = pcidev ? &pcidev->qdev : NULL;
1315     } else if (isa_bus) {
1316         ISADevice *isadev = isa_vga_init(isa_bus);
1317         dev = isadev ? DEVICE(isadev) : NULL;
1318     }
1319     return dev;
1320 }
1321 
1322 static void cpu_request_exit(void *opaque, int irq, int level)
1323 {
1324     CPUState *cpu = current_cpu;
1325 
1326     if (cpu && level) {
1327         cpu_exit(cpu);
1328     }
1329 }
1330 
1331 static const MemoryRegionOps ioport80_io_ops = {
1332     .write = ioport80_write,
1333     .read = ioport80_read,
1334     .endianness = DEVICE_NATIVE_ENDIAN,
1335     .impl = {
1336         .min_access_size = 1,
1337         .max_access_size = 1,
1338     },
1339 };
1340 
1341 static const MemoryRegionOps ioportF0_io_ops = {
1342     .write = ioportF0_write,
1343     .read = ioportF0_read,
1344     .endianness = DEVICE_NATIVE_ENDIAN,
1345     .impl = {
1346         .min_access_size = 1,
1347         .max_access_size = 1,
1348     },
1349 };
1350 
1351 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1352                           ISADevice **rtc_state,
1353                           ISADevice **floppy,
1354                           bool no_vmport,
1355                           uint32 hpet_irqs)
1356 {
1357     int i;
1358     DriveInfo *fd[MAX_FD];
1359     DeviceState *hpet = NULL;
1360     int pit_isa_irq = 0;
1361     qemu_irq pit_alt_irq = NULL;
1362     qemu_irq rtc_irq = NULL;
1363     qemu_irq *a20_line;
1364     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1365     qemu_irq *cpu_exit_irq;
1366     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1367     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1368 
1369     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1370     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1371 
1372     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1373     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1374 
1375     /*
1376      * Check if an HPET shall be created.
1377      *
1378      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1379      * when the HPET wants to take over. Thus we have to disable the latter.
1380      */
1381     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1382         /* In order to set property, here not using sysbus_try_create_simple */
1383         hpet = qdev_try_create(NULL, TYPE_HPET);
1384         if (hpet) {
1385             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1386              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1387              * IRQ8 and IRQ2.
1388              */
1389             uint8_t compat = object_property_get_int(OBJECT(hpet),
1390                     HPET_INTCAP, NULL);
1391             if (!compat) {
1392                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1393             }
1394             qdev_init_nofail(hpet);
1395             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1396 
1397             for (i = 0; i < GSI_NUM_PINS; i++) {
1398                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1399             }
1400             pit_isa_irq = -1;
1401             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1402             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1403         }
1404     }
1405     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1406 
1407     qemu_register_boot_set(pc_boot_set, *rtc_state);
1408 
1409     if (!xen_enabled()) {
1410         if (kvm_irqchip_in_kernel()) {
1411             pit = kvm_pit_init(isa_bus, 0x40);
1412         } else {
1413             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1414         }
1415         if (hpet) {
1416             /* connect PIT to output control line of the HPET */
1417             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1418         }
1419         pcspk_init(isa_bus, pit);
1420     }
1421 
1422     for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1423         if (serial_hds[i]) {
1424             serial_isa_init(isa_bus, i, serial_hds[i]);
1425         }
1426     }
1427 
1428     for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1429         if (parallel_hds[i]) {
1430             parallel_init(isa_bus, i, parallel_hds[i]);
1431         }
1432     }
1433 
1434     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1435     i8042 = isa_create_simple(isa_bus, "i8042");
1436     i8042_setup_a20_line(i8042, &a20_line[0]);
1437     if (!no_vmport) {
1438         vmport_init(isa_bus);
1439         vmmouse = isa_try_create(isa_bus, "vmmouse");
1440     } else {
1441         vmmouse = NULL;
1442     }
1443     if (vmmouse) {
1444         DeviceState *dev = DEVICE(vmmouse);
1445         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1446         qdev_init_nofail(dev);
1447     }
1448     port92 = isa_create_simple(isa_bus, "port92");
1449     port92_init(port92, &a20_line[1]);
1450 
1451     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1452     DMA_init(0, cpu_exit_irq);
1453 
1454     for(i = 0; i < MAX_FD; i++) {
1455         fd[i] = drive_get(IF_FLOPPY, 0, i);
1456     }
1457     *floppy = fdctrl_init_isa(isa_bus, fd);
1458 }
1459 
1460 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1461 {
1462     int i;
1463 
1464     for (i = 0; i < nb_nics; i++) {
1465         NICInfo *nd = &nd_table[i];
1466 
1467         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1468             pc_init_ne2k_isa(isa_bus, nd);
1469         } else {
1470             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1471         }
1472     }
1473 }
1474 
1475 void pc_pci_device_init(PCIBus *pci_bus)
1476 {
1477     int max_bus;
1478     int bus;
1479 
1480     max_bus = drive_get_max_bus(IF_SCSI);
1481     for (bus = 0; bus <= max_bus; bus++) {
1482         pci_create_simple(pci_bus, -1, "lsi53c895a");
1483     }
1484 }
1485 
1486 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1487 {
1488     DeviceState *dev;
1489     SysBusDevice *d;
1490     unsigned int i;
1491 
1492     if (kvm_irqchip_in_kernel()) {
1493         dev = qdev_create(NULL, "kvm-ioapic");
1494     } else {
1495         dev = qdev_create(NULL, "ioapic");
1496     }
1497     if (parent_name) {
1498         object_property_add_child(object_resolve_path(parent_name, NULL),
1499                                   "ioapic", OBJECT(dev), NULL);
1500     }
1501     qdev_init_nofail(dev);
1502     d = SYS_BUS_DEVICE(dev);
1503     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1504 
1505     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1506         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1507     }
1508 }
1509 
1510 static void pc_generic_machine_class_init(ObjectClass *oc, void *data)
1511 {
1512     MachineClass *mc = MACHINE_CLASS(oc);
1513     QEMUMachine *qm = data;
1514 
1515     mc->family = qm->family;
1516     mc->name = qm->name;
1517     mc->alias = qm->alias;
1518     mc->desc = qm->desc;
1519     mc->init = qm->init;
1520     mc->reset = qm->reset;
1521     mc->hot_add_cpu = qm->hot_add_cpu;
1522     mc->kvm_type = qm->kvm_type;
1523     mc->block_default_type = qm->block_default_type;
1524     mc->units_per_default_bus = qm->units_per_default_bus;
1525     mc->max_cpus = qm->max_cpus;
1526     mc->no_serial = qm->no_serial;
1527     mc->no_parallel = qm->no_parallel;
1528     mc->use_virtcon = qm->use_virtcon;
1529     mc->use_sclp = qm->use_sclp;
1530     mc->no_floppy = qm->no_floppy;
1531     mc->no_cdrom = qm->no_cdrom;
1532     mc->no_sdcard = qm->no_sdcard;
1533     mc->is_default = qm->is_default;
1534     mc->default_machine_opts = qm->default_machine_opts;
1535     mc->default_boot_order = qm->default_boot_order;
1536     mc->default_display = qm->default_display;
1537     mc->compat_props = qm->compat_props;
1538     mc->hw_version = qm->hw_version;
1539 }
1540 
1541 void qemu_register_pc_machine(QEMUMachine *m)
1542 {
1543     char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL);
1544     TypeInfo ti = {
1545         .name       = name,
1546         .parent     = TYPE_PC_MACHINE,
1547         .class_init = pc_generic_machine_class_init,
1548         .class_data = (void *)m,
1549     };
1550 
1551     type_register(&ti);
1552     g_free(name);
1553 }
1554 
1555 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1556                          DeviceState *dev, Error **errp)
1557 {
1558     int slot;
1559     HotplugHandlerClass *hhc;
1560     Error *local_err = NULL;
1561     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1562     MachineState *machine = MACHINE(hotplug_dev);
1563     PCDIMMDevice *dimm = PC_DIMM(dev);
1564     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1565     MemoryRegion *mr = ddc->get_memory_region(dimm);
1566     uint64_t existing_dimms_capacity = 0;
1567     uint64_t align = TARGET_PAGE_SIZE;
1568     uint64_t addr;
1569 
1570     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
1571     if (local_err) {
1572         goto out;
1573     }
1574 
1575     if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1576         align = memory_region_get_alignment(mr);
1577     }
1578 
1579     addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
1580                                  memory_region_size(&pcms->hotplug_memory),
1581                                  !addr ? NULL : &addr, align,
1582                                  memory_region_size(mr), &local_err);
1583     if (local_err) {
1584         goto out;
1585     }
1586 
1587     existing_dimms_capacity = pc_existing_dimms_capacity(&local_err);
1588     if (local_err) {
1589         goto out;
1590     }
1591 
1592     if (existing_dimms_capacity + memory_region_size(mr) >
1593         machine->maxram_size - machine->ram_size) {
1594         error_setg(&local_err, "not enough space, currently 0x%" PRIx64
1595                    " in use of total hot pluggable 0x" RAM_ADDR_FMT,
1596                    existing_dimms_capacity,
1597                    machine->maxram_size - machine->ram_size);
1598         goto out;
1599     }
1600 
1601     object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
1602     if (local_err) {
1603         goto out;
1604     }
1605     trace_mhp_pc_dimm_assigned_address(addr);
1606 
1607     slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
1608     if (local_err) {
1609         goto out;
1610     }
1611 
1612     slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
1613                                  machine->ram_slots, &local_err);
1614     if (local_err) {
1615         goto out;
1616     }
1617     object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
1618     if (local_err) {
1619         goto out;
1620     }
1621     trace_mhp_pc_dimm_assigned_slot(slot);
1622 
1623     if (!pcms->acpi_dev) {
1624         error_setg(&local_err,
1625                    "memory hotplug is not enabled: missing acpi device");
1626         goto out;
1627     }
1628 
1629     if (kvm_enabled() && !kvm_has_free_slot(machine)) {
1630         error_setg(&local_err, "hypervisor has no free memory slots left");
1631         goto out;
1632     }
1633 
1634     memory_region_add_subregion(&pcms->hotplug_memory,
1635                                 addr - pcms->hotplug_memory_base, mr);
1636     vmstate_register_ram(mr, dev);
1637 
1638     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1639     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1640 out:
1641     error_propagate(errp, local_err);
1642 }
1643 
1644 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1645                         DeviceState *dev, Error **errp)
1646 {
1647     HotplugHandlerClass *hhc;
1648     Error *local_err = NULL;
1649     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1650 
1651     if (!dev->hotplugged) {
1652         goto out;
1653     }
1654 
1655     if (!pcms->acpi_dev) {
1656         error_setg(&local_err,
1657                    "cpu hotplug is not enabled: missing acpi device");
1658         goto out;
1659     }
1660 
1661     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1662     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1663     if (local_err) {
1664         goto out;
1665     }
1666 
1667     /* increment the number of CPUs */
1668     rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1669 out:
1670     error_propagate(errp, local_err);
1671 }
1672 
1673 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1674                                       DeviceState *dev, Error **errp)
1675 {
1676     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1677         pc_dimm_plug(hotplug_dev, dev, errp);
1678     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1679         pc_cpu_plug(hotplug_dev, dev, errp);
1680     }
1681 }
1682 
1683 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1684                                              DeviceState *dev)
1685 {
1686     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1687 
1688     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1689         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1690         return HOTPLUG_HANDLER(machine);
1691     }
1692 
1693     return pcmc->get_hotplug_handler ?
1694         pcmc->get_hotplug_handler(machine, dev) : NULL;
1695 }
1696 
1697 static void
1698 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1699                                           const char *name, Error **errp)
1700 {
1701     PCMachineState *pcms = PC_MACHINE(obj);
1702     int64_t value = memory_region_size(&pcms->hotplug_memory);
1703 
1704     visit_type_int(v, &value, name, errp);
1705 }
1706 
1707 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1708                                          void *opaque, const char *name,
1709                                          Error **errp)
1710 {
1711     PCMachineState *pcms = PC_MACHINE(obj);
1712     uint64_t value = pcms->max_ram_below_4g;
1713 
1714     visit_type_size(v, &value, name, errp);
1715 }
1716 
1717 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1718                                          void *opaque, const char *name,
1719                                          Error **errp)
1720 {
1721     PCMachineState *pcms = PC_MACHINE(obj);
1722     Error *error = NULL;
1723     uint64_t value;
1724 
1725     visit_type_size(v, &value, name, &error);
1726     if (error) {
1727         error_propagate(errp, error);
1728         return;
1729     }
1730     if (value > (1ULL << 32)) {
1731         error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1732                   "Machine option 'max-ram-below-4g=%"PRIu64
1733                   "' expects size less than or equal to 4G", value);
1734         error_propagate(errp, error);
1735         return;
1736     }
1737 
1738     if (value < (1ULL << 20)) {
1739         error_report("Warning: small max_ram_below_4g(%"PRIu64
1740                      ") less than 1M.  BIOS may not work..",
1741                      value);
1742     }
1743 
1744     pcms->max_ram_below_4g = value;
1745 }
1746 
1747 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1748                                   const char *name, Error **errp)
1749 {
1750     PCMachineState *pcms = PC_MACHINE(obj);
1751     OnOffAuto vmport = pcms->vmport;
1752 
1753     visit_type_OnOffAuto(v, &vmport, name, errp);
1754 }
1755 
1756 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1757                                   const char *name, Error **errp)
1758 {
1759     PCMachineState *pcms = PC_MACHINE(obj);
1760 
1761     visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1762 }
1763 
1764 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1765 {
1766     PCMachineState *pcms = PC_MACHINE(obj);
1767 
1768     return pcms->enforce_aligned_dimm;
1769 }
1770 
1771 static void pc_machine_initfn(Object *obj)
1772 {
1773     PCMachineState *pcms = PC_MACHINE(obj);
1774 
1775     object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1776                         pc_machine_get_hotplug_memory_region_size,
1777                         NULL, NULL, NULL, NULL);
1778 
1779     pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1780     object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1781                         pc_machine_get_max_ram_below_4g,
1782                         pc_machine_set_max_ram_below_4g,
1783                         NULL, NULL, NULL);
1784     object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1785                                     "Maximum ram below the 4G boundary (32bit boundary)",
1786                                     NULL);
1787 
1788     pcms->vmport = ON_OFF_AUTO_AUTO;
1789     object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1790                         pc_machine_get_vmport,
1791                         pc_machine_set_vmport,
1792                         NULL, NULL, NULL);
1793     object_property_set_description(obj, PC_MACHINE_VMPORT,
1794                                     "Enable vmport (pc & q35)",
1795                                     NULL);
1796 
1797     pcms->enforce_aligned_dimm = true;
1798     object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1799                              pc_machine_get_aligned_dimm,
1800                              NULL, NULL);
1801 }
1802 
1803 static void pc_machine_class_init(ObjectClass *oc, void *data)
1804 {
1805     MachineClass *mc = MACHINE_CLASS(oc);
1806     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1807     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1808 
1809     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1810     mc->get_hotplug_handler = pc_get_hotpug_handler;
1811     hc->plug = pc_machine_device_plug_cb;
1812 }
1813 
1814 static const TypeInfo pc_machine_info = {
1815     .name = TYPE_PC_MACHINE,
1816     .parent = TYPE_MACHINE,
1817     .abstract = true,
1818     .instance_size = sizeof(PCMachineState),
1819     .instance_init = pc_machine_initfn,
1820     .class_size = sizeof(PCMachineClass),
1821     .class_init = pc_machine_class_init,
1822     .interfaces = (InterfaceInfo[]) {
1823          { TYPE_HOTPLUG_HANDLER },
1824          { }
1825     },
1826 };
1827 
1828 static void pc_machine_register_types(void)
1829 {
1830     type_register_static(&pc_machine_info);
1831 }
1832 
1833 type_init(pc_machine_register_types)
1834