1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "hw/hw.h" 25 #include "hw/i386/pc.h" 26 #include "hw/char/serial.h" 27 #include "hw/i386/apic.h" 28 #include "hw/block/fdc.h" 29 #include "hw/ide.h" 30 #include "hw/pci/pci.h" 31 #include "monitor/monitor.h" 32 #include "hw/nvram/fw_cfg.h" 33 #include "hw/timer/hpet.h" 34 #include "hw/i386/smbios.h" 35 #include "hw/loader.h" 36 #include "elf.h" 37 #include "multiboot.h" 38 #include "hw/timer/mc146818rtc.h" 39 #include "hw/timer/i8254.h" 40 #include "hw/audio/pcspk.h" 41 #include "hw/pci/msi.h" 42 #include "hw/sysbus.h" 43 #include "sysemu/sysemu.h" 44 #include "sysemu/kvm.h" 45 #include "kvm_i386.h" 46 #include "hw/xen/xen.h" 47 #include "sysemu/blockdev.h" 48 #include "hw/block/block.h" 49 #include "ui/qemu-spice.h" 50 #include "exec/memory.h" 51 #include "exec/address-spaces.h" 52 #include "sysemu/arch_init.h" 53 #include "qemu/bitmap.h" 54 #include "qemu/config-file.h" 55 #include "hw/acpi/acpi.h" 56 #include "hw/acpi/cpu_hotplug.h" 57 #include "hw/cpu/icc_bus.h" 58 #include "hw/boards.h" 59 #include "hw/pci/pci_host.h" 60 #include "acpi-build.h" 61 62 /* debug PC/ISA interrupts */ 63 //#define DEBUG_IRQ 64 65 #ifdef DEBUG_IRQ 66 #define DPRINTF(fmt, ...) \ 67 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 68 #else 69 #define DPRINTF(fmt, ...) 70 #endif 71 72 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */ 73 #define ACPI_DATA_SIZE 0x10000 74 #define BIOS_CFG_IOPORT 0x510 75 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 76 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 77 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 78 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 79 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 80 81 #define E820_NR_ENTRIES 16 82 83 struct e820_entry { 84 uint64_t address; 85 uint64_t length; 86 uint32_t type; 87 } QEMU_PACKED __attribute((__aligned__(4))); 88 89 struct e820_table { 90 uint32_t count; 91 struct e820_entry entry[E820_NR_ENTRIES]; 92 } QEMU_PACKED __attribute((__aligned__(4))); 93 94 static struct e820_table e820_reserve; 95 static struct e820_entry *e820_table; 96 static unsigned e820_entries; 97 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 98 99 void gsi_handler(void *opaque, int n, int level) 100 { 101 GSIState *s = opaque; 102 103 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 104 if (n < ISA_NUM_IRQS) { 105 qemu_set_irq(s->i8259_irq[n], level); 106 } 107 qemu_set_irq(s->ioapic_irq[n], level); 108 } 109 110 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 111 unsigned size) 112 { 113 } 114 115 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 116 { 117 return 0xffffffffffffffffULL; 118 } 119 120 /* MSDOS compatibility mode FPU exception support */ 121 static qemu_irq ferr_irq; 122 123 void pc_register_ferr_irq(qemu_irq irq) 124 { 125 ferr_irq = irq; 126 } 127 128 /* XXX: add IGNNE support */ 129 void cpu_set_ferr(CPUX86State *s) 130 { 131 qemu_irq_raise(ferr_irq); 132 } 133 134 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 135 unsigned size) 136 { 137 qemu_irq_lower(ferr_irq); 138 } 139 140 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 141 { 142 return 0xffffffffffffffffULL; 143 } 144 145 /* TSC handling */ 146 uint64_t cpu_get_tsc(CPUX86State *env) 147 { 148 return cpu_get_ticks(); 149 } 150 151 /* SMM support */ 152 153 static cpu_set_smm_t smm_set; 154 static void *smm_arg; 155 156 void cpu_smm_register(cpu_set_smm_t callback, void *arg) 157 { 158 assert(smm_set == NULL); 159 assert(smm_arg == NULL); 160 smm_set = callback; 161 smm_arg = arg; 162 } 163 164 void cpu_smm_update(CPUX86State *env) 165 { 166 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) { 167 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg); 168 } 169 } 170 171 172 /* IRQ handling */ 173 int cpu_get_pic_interrupt(CPUX86State *env) 174 { 175 X86CPU *cpu = x86_env_get_cpu(env); 176 int intno; 177 178 intno = apic_get_interrupt(cpu->apic_state); 179 if (intno >= 0) { 180 return intno; 181 } 182 /* read the irq from the PIC */ 183 if (!apic_accept_pic_intr(cpu->apic_state)) { 184 return -1; 185 } 186 187 intno = pic_read_irq(isa_pic); 188 return intno; 189 } 190 191 static void pic_irq_request(void *opaque, int irq, int level) 192 { 193 CPUState *cs = first_cpu; 194 X86CPU *cpu = X86_CPU(cs); 195 196 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 197 if (cpu->apic_state) { 198 CPU_FOREACH(cs) { 199 cpu = X86_CPU(cs); 200 if (apic_accept_pic_intr(cpu->apic_state)) { 201 apic_deliver_pic_intr(cpu->apic_state, level); 202 } 203 } 204 } else { 205 if (level) { 206 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 207 } else { 208 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 209 } 210 } 211 } 212 213 /* PC cmos mappings */ 214 215 #define REG_EQUIPMENT_BYTE 0x14 216 217 static int cmos_get_fd_drive_type(FDriveType fd0) 218 { 219 int val; 220 221 switch (fd0) { 222 case FDRIVE_DRV_144: 223 /* 1.44 Mb 3"5 drive */ 224 val = 4; 225 break; 226 case FDRIVE_DRV_288: 227 /* 2.88 Mb 3"5 drive */ 228 val = 5; 229 break; 230 case FDRIVE_DRV_120: 231 /* 1.2 Mb 5"5 drive */ 232 val = 2; 233 break; 234 case FDRIVE_DRV_NONE: 235 default: 236 val = 0; 237 break; 238 } 239 return val; 240 } 241 242 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 243 int16_t cylinders, int8_t heads, int8_t sectors) 244 { 245 rtc_set_memory(s, type_ofs, 47); 246 rtc_set_memory(s, info_ofs, cylinders); 247 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 248 rtc_set_memory(s, info_ofs + 2, heads); 249 rtc_set_memory(s, info_ofs + 3, 0xff); 250 rtc_set_memory(s, info_ofs + 4, 0xff); 251 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 252 rtc_set_memory(s, info_ofs + 6, cylinders); 253 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 254 rtc_set_memory(s, info_ofs + 8, sectors); 255 } 256 257 /* convert boot_device letter to something recognizable by the bios */ 258 static int boot_device2nibble(char boot_device) 259 { 260 switch(boot_device) { 261 case 'a': 262 case 'b': 263 return 0x01; /* floppy boot */ 264 case 'c': 265 return 0x02; /* hard drive boot */ 266 case 'd': 267 return 0x03; /* CD-ROM boot */ 268 case 'n': 269 return 0x04; /* Network boot */ 270 } 271 return 0; 272 } 273 274 static int set_boot_dev(ISADevice *s, const char *boot_device) 275 { 276 #define PC_MAX_BOOT_DEVICES 3 277 int nbds, bds[3] = { 0, }; 278 int i; 279 280 nbds = strlen(boot_device); 281 if (nbds > PC_MAX_BOOT_DEVICES) { 282 error_report("Too many boot devices for PC"); 283 return(1); 284 } 285 for (i = 0; i < nbds; i++) { 286 bds[i] = boot_device2nibble(boot_device[i]); 287 if (bds[i] == 0) { 288 error_report("Invalid boot device for PC: '%c'", 289 boot_device[i]); 290 return(1); 291 } 292 } 293 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 294 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 295 return(0); 296 } 297 298 static int pc_boot_set(void *opaque, const char *boot_device) 299 { 300 return set_boot_dev(opaque, boot_device); 301 } 302 303 typedef struct pc_cmos_init_late_arg { 304 ISADevice *rtc_state; 305 BusState *idebus[2]; 306 } pc_cmos_init_late_arg; 307 308 static void pc_cmos_init_late(void *opaque) 309 { 310 pc_cmos_init_late_arg *arg = opaque; 311 ISADevice *s = arg->rtc_state; 312 int16_t cylinders; 313 int8_t heads, sectors; 314 int val; 315 int i, trans; 316 317 val = 0; 318 if (ide_get_geometry(arg->idebus[0], 0, 319 &cylinders, &heads, §ors) >= 0) { 320 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 321 val |= 0xf0; 322 } 323 if (ide_get_geometry(arg->idebus[0], 1, 324 &cylinders, &heads, §ors) >= 0) { 325 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 326 val |= 0x0f; 327 } 328 rtc_set_memory(s, 0x12, val); 329 330 val = 0; 331 for (i = 0; i < 4; i++) { 332 /* NOTE: ide_get_geometry() returns the physical 333 geometry. It is always such that: 1 <= sects <= 63, 1 334 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 335 geometry can be different if a translation is done. */ 336 if (ide_get_geometry(arg->idebus[i / 2], i % 2, 337 &cylinders, &heads, §ors) >= 0) { 338 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 339 assert((trans & ~3) == 0); 340 val |= trans << (i * 2); 341 } 342 } 343 rtc_set_memory(s, 0x39, val); 344 345 qemu_unregister_reset(pc_cmos_init_late, opaque); 346 } 347 348 typedef struct RTCCPUHotplugArg { 349 Notifier cpu_added_notifier; 350 ISADevice *rtc_state; 351 } RTCCPUHotplugArg; 352 353 static void rtc_notify_cpu_added(Notifier *notifier, void *data) 354 { 355 RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg, 356 cpu_added_notifier); 357 ISADevice *s = arg->rtc_state; 358 359 /* increment the number of CPUs */ 360 rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1); 361 } 362 363 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size, 364 const char *boot_device, 365 ISADevice *floppy, BusState *idebus0, BusState *idebus1, 366 ISADevice *s) 367 { 368 int val, nb, i; 369 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE }; 370 static pc_cmos_init_late_arg arg; 371 static RTCCPUHotplugArg cpu_hotplug_cb; 372 373 /* various important CMOS locations needed by PC/Bochs bios */ 374 375 /* memory size */ 376 /* base memory (first MiB) */ 377 val = MIN(ram_size / 1024, 640); 378 rtc_set_memory(s, 0x15, val); 379 rtc_set_memory(s, 0x16, val >> 8); 380 /* extended memory (next 64MiB) */ 381 if (ram_size > 1024 * 1024) { 382 val = (ram_size - 1024 * 1024) / 1024; 383 } else { 384 val = 0; 385 } 386 if (val > 65535) 387 val = 65535; 388 rtc_set_memory(s, 0x17, val); 389 rtc_set_memory(s, 0x18, val >> 8); 390 rtc_set_memory(s, 0x30, val); 391 rtc_set_memory(s, 0x31, val >> 8); 392 /* memory between 16MiB and 4GiB */ 393 if (ram_size > 16 * 1024 * 1024) { 394 val = (ram_size - 16 * 1024 * 1024) / 65536; 395 } else { 396 val = 0; 397 } 398 if (val > 65535) 399 val = 65535; 400 rtc_set_memory(s, 0x34, val); 401 rtc_set_memory(s, 0x35, val >> 8); 402 /* memory above 4GiB */ 403 val = above_4g_mem_size / 65536; 404 rtc_set_memory(s, 0x5b, val); 405 rtc_set_memory(s, 0x5c, val >> 8); 406 rtc_set_memory(s, 0x5d, val >> 16); 407 408 /* set the number of CPU */ 409 rtc_set_memory(s, 0x5f, smp_cpus - 1); 410 /* init CPU hotplug notifier */ 411 cpu_hotplug_cb.rtc_state = s; 412 cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added; 413 qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier); 414 415 if (set_boot_dev(s, boot_device)) { 416 exit(1); 417 } 418 419 /* floppy type */ 420 if (floppy) { 421 for (i = 0; i < 2; i++) { 422 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 423 } 424 } 425 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 426 cmos_get_fd_drive_type(fd_type[1]); 427 rtc_set_memory(s, 0x10, val); 428 429 val = 0; 430 nb = 0; 431 if (fd_type[0] < FDRIVE_DRV_NONE) { 432 nb++; 433 } 434 if (fd_type[1] < FDRIVE_DRV_NONE) { 435 nb++; 436 } 437 switch (nb) { 438 case 0: 439 break; 440 case 1: 441 val |= 0x01; /* 1 drive, ready for boot */ 442 break; 443 case 2: 444 val |= 0x41; /* 2 drives, ready for boot */ 445 break; 446 } 447 val |= 0x02; /* FPU is there */ 448 val |= 0x04; /* PS/2 mouse installed */ 449 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 450 451 /* hard drives */ 452 arg.rtc_state = s; 453 arg.idebus[0] = idebus0; 454 arg.idebus[1] = idebus1; 455 qemu_register_reset(pc_cmos_init_late, &arg); 456 } 457 458 #define TYPE_PORT92 "port92" 459 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 460 461 /* port 92 stuff: could be split off */ 462 typedef struct Port92State { 463 ISADevice parent_obj; 464 465 MemoryRegion io; 466 uint8_t outport; 467 qemu_irq *a20_out; 468 } Port92State; 469 470 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 471 unsigned size) 472 { 473 Port92State *s = opaque; 474 int oldval = s->outport; 475 476 DPRINTF("port92: write 0x%02x\n", val); 477 s->outport = val; 478 qemu_set_irq(*s->a20_out, (val >> 1) & 1); 479 if ((val & 1) && !(oldval & 1)) { 480 qemu_system_reset_request(); 481 } 482 } 483 484 static uint64_t port92_read(void *opaque, hwaddr addr, 485 unsigned size) 486 { 487 Port92State *s = opaque; 488 uint32_t ret; 489 490 ret = s->outport; 491 DPRINTF("port92: read 0x%02x\n", ret); 492 return ret; 493 } 494 495 static void port92_init(ISADevice *dev, qemu_irq *a20_out) 496 { 497 Port92State *s = PORT92(dev); 498 499 s->a20_out = a20_out; 500 } 501 502 static const VMStateDescription vmstate_port92_isa = { 503 .name = "port92", 504 .version_id = 1, 505 .minimum_version_id = 1, 506 .fields = (VMStateField[]) { 507 VMSTATE_UINT8(outport, Port92State), 508 VMSTATE_END_OF_LIST() 509 } 510 }; 511 512 static void port92_reset(DeviceState *d) 513 { 514 Port92State *s = PORT92(d); 515 516 s->outport &= ~1; 517 } 518 519 static const MemoryRegionOps port92_ops = { 520 .read = port92_read, 521 .write = port92_write, 522 .impl = { 523 .min_access_size = 1, 524 .max_access_size = 1, 525 }, 526 .endianness = DEVICE_LITTLE_ENDIAN, 527 }; 528 529 static void port92_initfn(Object *obj) 530 { 531 Port92State *s = PORT92(obj); 532 533 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 534 535 s->outport = 0; 536 } 537 538 static void port92_realizefn(DeviceState *dev, Error **errp) 539 { 540 ISADevice *isadev = ISA_DEVICE(dev); 541 Port92State *s = PORT92(dev); 542 543 isa_register_ioport(isadev, &s->io, 0x92); 544 } 545 546 static void port92_class_initfn(ObjectClass *klass, void *data) 547 { 548 DeviceClass *dc = DEVICE_CLASS(klass); 549 550 dc->realize = port92_realizefn; 551 dc->reset = port92_reset; 552 dc->vmsd = &vmstate_port92_isa; 553 /* 554 * Reason: unlike ordinary ISA devices, this one needs additional 555 * wiring: its A20 output line needs to be wired up by 556 * port92_init(). 557 */ 558 dc->cannot_instantiate_with_device_add_yet = true; 559 } 560 561 static const TypeInfo port92_info = { 562 .name = TYPE_PORT92, 563 .parent = TYPE_ISA_DEVICE, 564 .instance_size = sizeof(Port92State), 565 .instance_init = port92_initfn, 566 .class_init = port92_class_initfn, 567 }; 568 569 static void port92_register_types(void) 570 { 571 type_register_static(&port92_info); 572 } 573 574 type_init(port92_register_types) 575 576 static void handle_a20_line_change(void *opaque, int irq, int level) 577 { 578 X86CPU *cpu = opaque; 579 580 /* XXX: send to all CPUs ? */ 581 /* XXX: add logic to handle multiple A20 line sources */ 582 x86_cpu_set_a20(cpu, level); 583 } 584 585 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 586 { 587 int index = le32_to_cpu(e820_reserve.count); 588 struct e820_entry *entry; 589 590 if (type != E820_RAM) { 591 /* old FW_CFG_E820_TABLE entry -- reservations only */ 592 if (index >= E820_NR_ENTRIES) { 593 return -EBUSY; 594 } 595 entry = &e820_reserve.entry[index++]; 596 597 entry->address = cpu_to_le64(address); 598 entry->length = cpu_to_le64(length); 599 entry->type = cpu_to_le32(type); 600 601 e820_reserve.count = cpu_to_le32(index); 602 } 603 604 /* new "etc/e820" file -- include ram too */ 605 e820_table = g_realloc(e820_table, 606 sizeof(struct e820_entry) * (e820_entries+1)); 607 e820_table[e820_entries].address = cpu_to_le64(address); 608 e820_table[e820_entries].length = cpu_to_le64(length); 609 e820_table[e820_entries].type = cpu_to_le32(type); 610 e820_entries++; 611 612 return e820_entries; 613 } 614 615 int e820_get_num_entries(void) 616 { 617 return e820_entries; 618 } 619 620 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 621 { 622 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 623 *address = le64_to_cpu(e820_table[idx].address); 624 *length = le64_to_cpu(e820_table[idx].length); 625 return true; 626 } 627 return false; 628 } 629 630 /* Calculates the limit to CPU APIC ID values 631 * 632 * This function returns the limit for the APIC ID value, so that all 633 * CPU APIC IDs are < pc_apic_id_limit(). 634 * 635 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 636 */ 637 static unsigned int pc_apic_id_limit(unsigned int max_cpus) 638 { 639 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 640 } 641 642 static FWCfgState *bochs_bios_init(void) 643 { 644 FWCfgState *fw_cfg; 645 uint8_t *smbios_tables, *smbios_anchor; 646 size_t smbios_tables_len, smbios_anchor_len; 647 uint64_t *numa_fw_cfg; 648 int i, j; 649 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus); 650 651 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0); 652 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 653 * 654 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug 655 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC 656 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the 657 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS 658 * may see". 659 * 660 * So, this means we must not use max_cpus, here, but the maximum possible 661 * APIC ID value, plus one. 662 * 663 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is 664 * the APIC ID, not the "CPU index" 665 */ 666 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit); 667 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); 668 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 669 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 670 acpi_tables, acpi_tables_len); 671 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 672 673 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 674 if (smbios_tables) { 675 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, 676 smbios_tables, smbios_tables_len); 677 } 678 679 smbios_get_tables(&smbios_tables, &smbios_tables_len, 680 &smbios_anchor, &smbios_anchor_len); 681 if (smbios_anchor) { 682 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 683 smbios_tables, smbios_tables_len); 684 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 685 smbios_anchor, smbios_anchor_len); 686 } 687 688 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 689 &e820_reserve, sizeof(e820_reserve)); 690 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 691 sizeof(struct e820_entry) * e820_entries); 692 693 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 694 /* allocate memory for the NUMA channel: one (64bit) word for the number 695 * of nodes, one word for each VCPU->node and one word for each node to 696 * hold the amount of memory. 697 */ 698 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes); 699 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 700 for (i = 0; i < max_cpus; i++) { 701 unsigned int apic_id = x86_cpu_apic_id_from_index(i); 702 assert(apic_id < apic_id_limit); 703 for (j = 0; j < nb_numa_nodes; j++) { 704 if (test_bit(i, node_cpumask[j])) { 705 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j); 706 break; 707 } 708 } 709 } 710 for (i = 0; i < nb_numa_nodes; i++) { 711 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]); 712 } 713 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 714 (1 + apic_id_limit + nb_numa_nodes) * 715 sizeof(*numa_fw_cfg)); 716 717 return fw_cfg; 718 } 719 720 static long get_file_size(FILE *f) 721 { 722 long where, size; 723 724 /* XXX: on Unix systems, using fstat() probably makes more sense */ 725 726 where = ftell(f); 727 fseek(f, 0, SEEK_END); 728 size = ftell(f); 729 fseek(f, where, SEEK_SET); 730 731 return size; 732 } 733 734 static void load_linux(FWCfgState *fw_cfg, 735 const char *kernel_filename, 736 const char *initrd_filename, 737 const char *kernel_cmdline, 738 hwaddr max_ram_size) 739 { 740 uint16_t protocol; 741 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 742 uint32_t initrd_max; 743 uint8_t header[8192], *setup, *kernel, *initrd_data; 744 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 745 FILE *f; 746 char *vmode; 747 748 /* Align to 16 bytes as a paranoia measure */ 749 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 750 751 /* load the kernel header */ 752 f = fopen(kernel_filename, "rb"); 753 if (!f || !(kernel_size = get_file_size(f)) || 754 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 755 MIN(ARRAY_SIZE(header), kernel_size)) { 756 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 757 kernel_filename, strerror(errno)); 758 exit(1); 759 } 760 761 /* kernel protocol version */ 762 #if 0 763 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 764 #endif 765 if (ldl_p(header+0x202) == 0x53726448) { 766 protocol = lduw_p(header+0x206); 767 } else { 768 /* This looks like a multiboot kernel. If it is, let's stop 769 treating it like a Linux kernel. */ 770 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 771 kernel_cmdline, kernel_size, header)) { 772 return; 773 } 774 protocol = 0; 775 } 776 777 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 778 /* Low kernel */ 779 real_addr = 0x90000; 780 cmdline_addr = 0x9a000 - cmdline_size; 781 prot_addr = 0x10000; 782 } else if (protocol < 0x202) { 783 /* High but ancient kernel */ 784 real_addr = 0x90000; 785 cmdline_addr = 0x9a000 - cmdline_size; 786 prot_addr = 0x100000; 787 } else { 788 /* High and recent kernel */ 789 real_addr = 0x10000; 790 cmdline_addr = 0x20000; 791 prot_addr = 0x100000; 792 } 793 794 #if 0 795 fprintf(stderr, 796 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 797 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 798 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 799 real_addr, 800 cmdline_addr, 801 prot_addr); 802 #endif 803 804 /* highest address for loading the initrd */ 805 if (protocol >= 0x203) { 806 initrd_max = ldl_p(header+0x22c); 807 } else { 808 initrd_max = 0x37ffffff; 809 } 810 811 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE) 812 initrd_max = max_ram_size-ACPI_DATA_SIZE-1; 813 814 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 815 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 816 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 817 818 if (protocol >= 0x202) { 819 stl_p(header+0x228, cmdline_addr); 820 } else { 821 stw_p(header+0x20, 0xA33F); 822 stw_p(header+0x22, cmdline_addr-real_addr); 823 } 824 825 /* handle vga= parameter */ 826 vmode = strstr(kernel_cmdline, "vga="); 827 if (vmode) { 828 unsigned int video_mode; 829 /* skip "vga=" */ 830 vmode += 4; 831 if (!strncmp(vmode, "normal", 6)) { 832 video_mode = 0xffff; 833 } else if (!strncmp(vmode, "ext", 3)) { 834 video_mode = 0xfffe; 835 } else if (!strncmp(vmode, "ask", 3)) { 836 video_mode = 0xfffd; 837 } else { 838 video_mode = strtol(vmode, NULL, 0); 839 } 840 stw_p(header+0x1fa, video_mode); 841 } 842 843 /* loader type */ 844 /* High nybble = B reserved for QEMU; low nybble is revision number. 845 If this code is substantially changed, you may want to consider 846 incrementing the revision. */ 847 if (protocol >= 0x200) { 848 header[0x210] = 0xB0; 849 } 850 /* heap */ 851 if (protocol >= 0x201) { 852 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 853 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 854 } 855 856 /* load initrd */ 857 if (initrd_filename) { 858 if (protocol < 0x200) { 859 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 860 exit(1); 861 } 862 863 initrd_size = get_image_size(initrd_filename); 864 if (initrd_size < 0) { 865 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 866 initrd_filename, strerror(errno)); 867 exit(1); 868 } 869 870 initrd_addr = (initrd_max-initrd_size) & ~4095; 871 872 initrd_data = g_malloc(initrd_size); 873 load_image(initrd_filename, initrd_data); 874 875 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 876 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 877 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 878 879 stl_p(header+0x218, initrd_addr); 880 stl_p(header+0x21c, initrd_size); 881 } 882 883 /* load kernel and setup */ 884 setup_size = header[0x1f1]; 885 if (setup_size == 0) { 886 setup_size = 4; 887 } 888 setup_size = (setup_size+1)*512; 889 kernel_size -= setup_size; 890 891 setup = g_malloc(setup_size); 892 kernel = g_malloc(kernel_size); 893 fseek(f, 0, SEEK_SET); 894 if (fread(setup, 1, setup_size, f) != setup_size) { 895 fprintf(stderr, "fread() failed\n"); 896 exit(1); 897 } 898 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 899 fprintf(stderr, "fread() failed\n"); 900 exit(1); 901 } 902 fclose(f); 903 memcpy(setup, header, MIN(sizeof(header), setup_size)); 904 905 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 906 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 907 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 908 909 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 910 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 911 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 912 913 option_rom[nb_option_roms].name = "linuxboot.bin"; 914 option_rom[nb_option_roms].bootindex = 0; 915 nb_option_roms++; 916 } 917 918 #define NE2000_NB_MAX 6 919 920 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 921 0x280, 0x380 }; 922 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 923 924 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 925 { 926 static int nb_ne2k = 0; 927 928 if (nb_ne2k == NE2000_NB_MAX) 929 return; 930 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 931 ne2000_irq[nb_ne2k], nd); 932 nb_ne2k++; 933 } 934 935 DeviceState *cpu_get_current_apic(void) 936 { 937 if (current_cpu) { 938 X86CPU *cpu = X86_CPU(current_cpu); 939 return cpu->apic_state; 940 } else { 941 return NULL; 942 } 943 } 944 945 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 946 { 947 X86CPU *cpu = opaque; 948 949 if (level) { 950 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 951 } 952 } 953 954 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id, 955 DeviceState *icc_bridge, Error **errp) 956 { 957 X86CPU *cpu; 958 Error *local_err = NULL; 959 960 cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err); 961 if (local_err != NULL) { 962 error_propagate(errp, local_err); 963 return NULL; 964 } 965 966 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err); 967 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err); 968 969 if (local_err) { 970 error_propagate(errp, local_err); 971 object_unref(OBJECT(cpu)); 972 cpu = NULL; 973 } 974 return cpu; 975 } 976 977 static const char *current_cpu_model; 978 979 void pc_hot_add_cpu(const int64_t id, Error **errp) 980 { 981 DeviceState *icc_bridge; 982 int64_t apic_id = x86_cpu_apic_id_from_index(id); 983 984 if (id < 0) { 985 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 986 return; 987 } 988 989 if (cpu_exists(apic_id)) { 990 error_setg(errp, "Unable to add CPU: %" PRIi64 991 ", it already exists", id); 992 return; 993 } 994 995 if (id >= max_cpus) { 996 error_setg(errp, "Unable to add CPU: %" PRIi64 997 ", max allowed: %d", id, max_cpus - 1); 998 return; 999 } 1000 1001 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1002 error_setg(errp, "Unable to add CPU: %" PRIi64 1003 ", resulting APIC ID (%" PRIi64 ") is too large", 1004 id, apic_id); 1005 return; 1006 } 1007 1008 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge", 1009 TYPE_ICC_BRIDGE, NULL)); 1010 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp); 1011 } 1012 1013 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge) 1014 { 1015 int i; 1016 X86CPU *cpu = NULL; 1017 Error *error = NULL; 1018 unsigned long apic_id_limit; 1019 1020 /* init CPUs */ 1021 if (cpu_model == NULL) { 1022 #ifdef TARGET_X86_64 1023 cpu_model = "qemu64"; 1024 #else 1025 cpu_model = "qemu32"; 1026 #endif 1027 } 1028 current_cpu_model = cpu_model; 1029 1030 apic_id_limit = pc_apic_id_limit(max_cpus); 1031 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) { 1032 error_report("max_cpus is too large. APIC ID of last CPU is %lu", 1033 apic_id_limit - 1); 1034 exit(1); 1035 } 1036 1037 for (i = 0; i < smp_cpus; i++) { 1038 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i), 1039 icc_bridge, &error); 1040 if (error) { 1041 error_report("%s", error_get_pretty(error)); 1042 error_free(error); 1043 exit(1); 1044 } 1045 } 1046 1047 /* map APIC MMIO area if CPU has APIC */ 1048 if (cpu && cpu->apic_state) { 1049 /* XXX: what if the base changes? */ 1050 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0, 1051 APIC_DEFAULT_ADDRESS, 0x1000); 1052 } 1053 1054 /* tell smbios about cpuid version and features */ 1055 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 1056 } 1057 1058 /* pci-info ROM file. Little endian format */ 1059 typedef struct PcRomPciInfo { 1060 uint64_t w32_min; 1061 uint64_t w32_max; 1062 uint64_t w64_min; 1063 uint64_t w64_max; 1064 } PcRomPciInfo; 1065 1066 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info) 1067 { 1068 PcRomPciInfo *info; 1069 Object *pci_info; 1070 bool ambiguous = false; 1071 1072 if (!guest_info->has_pci_info || !guest_info->fw_cfg) { 1073 return; 1074 } 1075 pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous); 1076 g_assert(!ambiguous); 1077 if (!pci_info) { 1078 return; 1079 } 1080 1081 info = g_malloc(sizeof *info); 1082 info->w32_min = cpu_to_le64(object_property_get_int(pci_info, 1083 PCI_HOST_PROP_PCI_HOLE_START, NULL)); 1084 info->w32_max = cpu_to_le64(object_property_get_int(pci_info, 1085 PCI_HOST_PROP_PCI_HOLE_END, NULL)); 1086 info->w64_min = cpu_to_le64(object_property_get_int(pci_info, 1087 PCI_HOST_PROP_PCI_HOLE64_START, NULL)); 1088 info->w64_max = cpu_to_le64(object_property_get_int(pci_info, 1089 PCI_HOST_PROP_PCI_HOLE64_END, NULL)); 1090 /* Pass PCI hole info to guest via a side channel. 1091 * Required so guest PCI enumeration does the right thing. */ 1092 fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info); 1093 } 1094 1095 typedef struct PcGuestInfoState { 1096 PcGuestInfo info; 1097 Notifier machine_done; 1098 } PcGuestInfoState; 1099 1100 static 1101 void pc_guest_info_machine_done(Notifier *notifier, void *data) 1102 { 1103 PcGuestInfoState *guest_info_state = container_of(notifier, 1104 PcGuestInfoState, 1105 machine_done); 1106 pc_fw_cfg_guest_info(&guest_info_state->info); 1107 acpi_setup(&guest_info_state->info); 1108 } 1109 1110 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size, 1111 ram_addr_t above_4g_mem_size) 1112 { 1113 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 1114 PcGuestInfo *guest_info = &guest_info_state->info; 1115 int i, j; 1116 1117 guest_info->ram_size_below_4g = below_4g_mem_size; 1118 guest_info->ram_size = below_4g_mem_size + above_4g_mem_size; 1119 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus); 1120 guest_info->apic_xrupt_override = kvm_allows_irq0_override(); 1121 guest_info->numa_nodes = nb_numa_nodes; 1122 guest_info->node_mem = g_memdup(node_mem, guest_info->numa_nodes * 1123 sizeof *guest_info->node_mem); 1124 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit * 1125 sizeof *guest_info->node_cpu); 1126 1127 for (i = 0; i < max_cpus; i++) { 1128 unsigned int apic_id = x86_cpu_apic_id_from_index(i); 1129 assert(apic_id < guest_info->apic_id_limit); 1130 for (j = 0; j < nb_numa_nodes; j++) { 1131 if (test_bit(i, node_cpumask[j])) { 1132 guest_info->node_cpu[apic_id] = j; 1133 break; 1134 } 1135 } 1136 } 1137 1138 guest_info_state->machine_done.notify = pc_guest_info_machine_done; 1139 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 1140 return guest_info; 1141 } 1142 1143 /* setup pci memory address space mapping into system address space */ 1144 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1145 MemoryRegion *pci_address_space) 1146 { 1147 /* Set to lower priority than RAM */ 1148 memory_region_add_subregion_overlap(system_memory, 0x0, 1149 pci_address_space, -1); 1150 } 1151 1152 void pc_acpi_init(const char *default_dsdt) 1153 { 1154 char *filename; 1155 1156 if (acpi_tables != NULL) { 1157 /* manually set via -acpitable, leave it alone */ 1158 return; 1159 } 1160 1161 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1162 if (filename == NULL) { 1163 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt); 1164 } else { 1165 char *arg; 1166 QemuOpts *opts; 1167 Error *err = NULL; 1168 1169 arg = g_strdup_printf("file=%s", filename); 1170 1171 /* creates a deep copy of "arg" */ 1172 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0); 1173 g_assert(opts != NULL); 1174 1175 acpi_table_add_builtin(opts, &err); 1176 if (err) { 1177 error_report("WARNING: failed to load %s: %s", filename, 1178 error_get_pretty(err)); 1179 error_free(err); 1180 } 1181 g_free(arg); 1182 g_free(filename); 1183 } 1184 } 1185 1186 FWCfgState *pc_memory_init(MemoryRegion *system_memory, 1187 const char *kernel_filename, 1188 const char *kernel_cmdline, 1189 const char *initrd_filename, 1190 ram_addr_t below_4g_mem_size, 1191 ram_addr_t above_4g_mem_size, 1192 MemoryRegion *rom_memory, 1193 MemoryRegion **ram_memory, 1194 PcGuestInfo *guest_info) 1195 { 1196 int linux_boot, i; 1197 MemoryRegion *ram, *option_rom_mr; 1198 MemoryRegion *ram_below_4g, *ram_above_4g; 1199 FWCfgState *fw_cfg; 1200 1201 linux_boot = (kernel_filename != NULL); 1202 1203 /* Allocate RAM. We allocate it as a single memory region and use 1204 * aliases to address portions of it, mostly for backwards compatibility 1205 * with older qemus that used qemu_ram_alloc(). 1206 */ 1207 ram = g_malloc(sizeof(*ram)); 1208 memory_region_init_ram(ram, NULL, "pc.ram", 1209 below_4g_mem_size + above_4g_mem_size); 1210 vmstate_register_ram_global(ram); 1211 *ram_memory = ram; 1212 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1213 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1214 0, below_4g_mem_size); 1215 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1216 e820_add_entry(0, below_4g_mem_size, E820_RAM); 1217 if (above_4g_mem_size > 0) { 1218 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1219 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1220 below_4g_mem_size, above_4g_mem_size); 1221 memory_region_add_subregion(system_memory, 0x100000000ULL, 1222 ram_above_4g); 1223 e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM); 1224 } 1225 1226 1227 /* Initialize PC system firmware */ 1228 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw); 1229 1230 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1231 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE); 1232 vmstate_register_ram_global(option_rom_mr); 1233 memory_region_add_subregion_overlap(rom_memory, 1234 PC_ROM_MIN_VGA, 1235 option_rom_mr, 1236 1); 1237 1238 fw_cfg = bochs_bios_init(); 1239 rom_set_fw(fw_cfg); 1240 1241 if (linux_boot) { 1242 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size); 1243 } 1244 1245 for (i = 0; i < nb_option_roms; i++) { 1246 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1247 } 1248 guest_info->fw_cfg = fw_cfg; 1249 return fw_cfg; 1250 } 1251 1252 qemu_irq *pc_allocate_cpu_irq(void) 1253 { 1254 return qemu_allocate_irqs(pic_irq_request, NULL, 1); 1255 } 1256 1257 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1258 { 1259 DeviceState *dev = NULL; 1260 1261 if (pci_bus) { 1262 PCIDevice *pcidev = pci_vga_init(pci_bus); 1263 dev = pcidev ? &pcidev->qdev : NULL; 1264 } else if (isa_bus) { 1265 ISADevice *isadev = isa_vga_init(isa_bus); 1266 dev = isadev ? DEVICE(isadev) : NULL; 1267 } 1268 return dev; 1269 } 1270 1271 static void cpu_request_exit(void *opaque, int irq, int level) 1272 { 1273 CPUState *cpu = current_cpu; 1274 1275 if (cpu && level) { 1276 cpu_exit(cpu); 1277 } 1278 } 1279 1280 static const MemoryRegionOps ioport80_io_ops = { 1281 .write = ioport80_write, 1282 .read = ioport80_read, 1283 .endianness = DEVICE_NATIVE_ENDIAN, 1284 .impl = { 1285 .min_access_size = 1, 1286 .max_access_size = 1, 1287 }, 1288 }; 1289 1290 static const MemoryRegionOps ioportF0_io_ops = { 1291 .write = ioportF0_write, 1292 .read = ioportF0_read, 1293 .endianness = DEVICE_NATIVE_ENDIAN, 1294 .impl = { 1295 .min_access_size = 1, 1296 .max_access_size = 1, 1297 }, 1298 }; 1299 1300 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1301 ISADevice **rtc_state, 1302 ISADevice **floppy, 1303 bool no_vmport, 1304 uint32 hpet_irqs) 1305 { 1306 int i; 1307 DriveInfo *fd[MAX_FD]; 1308 DeviceState *hpet = NULL; 1309 int pit_isa_irq = 0; 1310 qemu_irq pit_alt_irq = NULL; 1311 qemu_irq rtc_irq = NULL; 1312 qemu_irq *a20_line; 1313 ISADevice *i8042, *port92, *vmmouse, *pit = NULL; 1314 qemu_irq *cpu_exit_irq; 1315 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1316 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1317 1318 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1319 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1320 1321 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1322 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1323 1324 /* 1325 * Check if an HPET shall be created. 1326 * 1327 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1328 * when the HPET wants to take over. Thus we have to disable the latter. 1329 */ 1330 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1331 /* In order to set property, here not using sysbus_try_create_simple */ 1332 hpet = qdev_try_create(NULL, TYPE_HPET); 1333 if (hpet) { 1334 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1335 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1336 * IRQ8 and IRQ2. 1337 */ 1338 uint8_t compat = object_property_get_int(OBJECT(hpet), 1339 HPET_INTCAP, NULL); 1340 if (!compat) { 1341 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1342 } 1343 qdev_init_nofail(hpet); 1344 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1345 1346 for (i = 0; i < GSI_NUM_PINS; i++) { 1347 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1348 } 1349 pit_isa_irq = -1; 1350 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1351 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1352 } 1353 } 1354 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq); 1355 1356 qemu_register_boot_set(pc_boot_set, *rtc_state); 1357 1358 if (!xen_enabled()) { 1359 if (kvm_irqchip_in_kernel()) { 1360 pit = kvm_pit_init(isa_bus, 0x40); 1361 } else { 1362 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1363 } 1364 if (hpet) { 1365 /* connect PIT to output control line of the HPET */ 1366 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1367 } 1368 pcspk_init(isa_bus, pit); 1369 } 1370 1371 for(i = 0; i < MAX_SERIAL_PORTS; i++) { 1372 if (serial_hds[i]) { 1373 serial_isa_init(isa_bus, i, serial_hds[i]); 1374 } 1375 } 1376 1377 for(i = 0; i < MAX_PARALLEL_PORTS; i++) { 1378 if (parallel_hds[i]) { 1379 parallel_init(isa_bus, i, parallel_hds[i]); 1380 } 1381 } 1382 1383 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1384 i8042 = isa_create_simple(isa_bus, "i8042"); 1385 i8042_setup_a20_line(i8042, &a20_line[0]); 1386 if (!no_vmport) { 1387 vmport_init(isa_bus); 1388 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1389 } else { 1390 vmmouse = NULL; 1391 } 1392 if (vmmouse) { 1393 DeviceState *dev = DEVICE(vmmouse); 1394 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1395 qdev_init_nofail(dev); 1396 } 1397 port92 = isa_create_simple(isa_bus, "port92"); 1398 port92_init(port92, &a20_line[1]); 1399 1400 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1); 1401 DMA_init(0, cpu_exit_irq); 1402 1403 for(i = 0; i < MAX_FD; i++) { 1404 fd[i] = drive_get(IF_FLOPPY, 0, i); 1405 } 1406 *floppy = fdctrl_init_isa(isa_bus, fd); 1407 } 1408 1409 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) 1410 { 1411 int i; 1412 1413 for (i = 0; i < nb_nics; i++) { 1414 NICInfo *nd = &nd_table[i]; 1415 1416 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { 1417 pc_init_ne2k_isa(isa_bus, nd); 1418 } else { 1419 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL); 1420 } 1421 } 1422 } 1423 1424 void pc_pci_device_init(PCIBus *pci_bus) 1425 { 1426 int max_bus; 1427 int bus; 1428 1429 max_bus = drive_get_max_bus(IF_SCSI); 1430 for (bus = 0; bus <= max_bus; bus++) { 1431 pci_create_simple(pci_bus, -1, "lsi53c895a"); 1432 } 1433 } 1434 1435 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1436 { 1437 DeviceState *dev; 1438 SysBusDevice *d; 1439 unsigned int i; 1440 1441 if (kvm_irqchip_in_kernel()) { 1442 dev = qdev_create(NULL, "kvm-ioapic"); 1443 } else { 1444 dev = qdev_create(NULL, "ioapic"); 1445 } 1446 if (parent_name) { 1447 object_property_add_child(object_resolve_path(parent_name, NULL), 1448 "ioapic", OBJECT(dev), NULL); 1449 } 1450 qdev_init_nofail(dev); 1451 d = SYS_BUS_DEVICE(dev); 1452 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1453 1454 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1455 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1456 } 1457 } 1458