xref: /openbmc/qemu/hw/i386/pc.c (revision d341d9f3)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "hw/pci/pci_bus.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/timer/hpet.h"
36 #include "hw/smbios/smbios.h"
37 #include "hw/loader.h"
38 #include "elf.h"
39 #include "multiboot.h"
40 #include "hw/timer/mc146818rtc.h"
41 #include "hw/timer/i8254.h"
42 #include "hw/audio/pcspk.h"
43 #include "hw/pci/msi.h"
44 #include "hw/sysbus.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/kvm.h"
48 #include "sysemu/qtest.h"
49 #include "kvm_i386.h"
50 #include "hw/xen/xen.h"
51 #include "sysemu/block-backend.h"
52 #include "hw/block/block.h"
53 #include "ui/qemu-spice.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "sysemu/arch_init.h"
57 #include "qemu/bitmap.h"
58 #include "qemu/config-file.h"
59 #include "qemu/error-report.h"
60 #include "hw/acpi/acpi.h"
61 #include "hw/acpi/cpu_hotplug.h"
62 #include "hw/boards.h"
63 #include "hw/pci/pci_host.h"
64 #include "acpi-build.h"
65 #include "hw/mem/pc-dimm.h"
66 #include "qapi/visitor.h"
67 #include "qapi-visit.h"
68 #include "qom/cpu.h"
69 
70 /* debug PC/ISA interrupts */
71 //#define DEBUG_IRQ
72 
73 #ifdef DEBUG_IRQ
74 #define DPRINTF(fmt, ...)                                       \
75     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
76 #else
77 #define DPRINTF(fmt, ...)
78 #endif
79 
80 #define BIOS_CFG_IOPORT 0x510
81 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
82 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
83 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
84 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
85 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
86 
87 #define E820_NR_ENTRIES		16
88 
89 struct e820_entry {
90     uint64_t address;
91     uint64_t length;
92     uint32_t type;
93 } QEMU_PACKED __attribute((__aligned__(4)));
94 
95 struct e820_table {
96     uint32_t count;
97     struct e820_entry entry[E820_NR_ENTRIES];
98 } QEMU_PACKED __attribute((__aligned__(4)));
99 
100 static struct e820_table e820_reserve;
101 static struct e820_entry *e820_table;
102 static unsigned e820_entries;
103 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
104 
105 void gsi_handler(void *opaque, int n, int level)
106 {
107     GSIState *s = opaque;
108 
109     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
110     if (n < ISA_NUM_IRQS) {
111         qemu_set_irq(s->i8259_irq[n], level);
112     }
113     qemu_set_irq(s->ioapic_irq[n], level);
114 }
115 
116 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
117                            unsigned size)
118 {
119 }
120 
121 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
122 {
123     return 0xffffffffffffffffULL;
124 }
125 
126 /* MSDOS compatibility mode FPU exception support */
127 static qemu_irq ferr_irq;
128 
129 void pc_register_ferr_irq(qemu_irq irq)
130 {
131     ferr_irq = irq;
132 }
133 
134 /* XXX: add IGNNE support */
135 void cpu_set_ferr(CPUX86State *s)
136 {
137     qemu_irq_raise(ferr_irq);
138 }
139 
140 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
141                            unsigned size)
142 {
143     qemu_irq_lower(ferr_irq);
144 }
145 
146 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
147 {
148     return 0xffffffffffffffffULL;
149 }
150 
151 /* TSC handling */
152 uint64_t cpu_get_tsc(CPUX86State *env)
153 {
154     return cpu_get_ticks();
155 }
156 
157 /* IRQ handling */
158 int cpu_get_pic_interrupt(CPUX86State *env)
159 {
160     X86CPU *cpu = x86_env_get_cpu(env);
161     int intno;
162 
163     intno = apic_get_interrupt(cpu->apic_state);
164     if (intno >= 0) {
165         return intno;
166     }
167     /* read the irq from the PIC */
168     if (!apic_accept_pic_intr(cpu->apic_state)) {
169         return -1;
170     }
171 
172     intno = pic_read_irq(isa_pic);
173     return intno;
174 }
175 
176 static void pic_irq_request(void *opaque, int irq, int level)
177 {
178     CPUState *cs = first_cpu;
179     X86CPU *cpu = X86_CPU(cs);
180 
181     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
182     if (cpu->apic_state) {
183         CPU_FOREACH(cs) {
184             cpu = X86_CPU(cs);
185             if (apic_accept_pic_intr(cpu->apic_state)) {
186                 apic_deliver_pic_intr(cpu->apic_state, level);
187             }
188         }
189     } else {
190         if (level) {
191             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
192         } else {
193             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
194         }
195     }
196 }
197 
198 /* PC cmos mappings */
199 
200 #define REG_EQUIPMENT_BYTE          0x14
201 
202 static int cmos_get_fd_drive_type(FDriveType fd0)
203 {
204     int val;
205 
206     switch (fd0) {
207     case FDRIVE_DRV_144:
208         /* 1.44 Mb 3"5 drive */
209         val = 4;
210         break;
211     case FDRIVE_DRV_288:
212         /* 2.88 Mb 3"5 drive */
213         val = 5;
214         break;
215     case FDRIVE_DRV_120:
216         /* 1.2 Mb 5"5 drive */
217         val = 2;
218         break;
219     case FDRIVE_DRV_NONE:
220     default:
221         val = 0;
222         break;
223     }
224     return val;
225 }
226 
227 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
228                          int16_t cylinders, int8_t heads, int8_t sectors)
229 {
230     rtc_set_memory(s, type_ofs, 47);
231     rtc_set_memory(s, info_ofs, cylinders);
232     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
233     rtc_set_memory(s, info_ofs + 2, heads);
234     rtc_set_memory(s, info_ofs + 3, 0xff);
235     rtc_set_memory(s, info_ofs + 4, 0xff);
236     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
237     rtc_set_memory(s, info_ofs + 6, cylinders);
238     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
239     rtc_set_memory(s, info_ofs + 8, sectors);
240 }
241 
242 /* convert boot_device letter to something recognizable by the bios */
243 static int boot_device2nibble(char boot_device)
244 {
245     switch(boot_device) {
246     case 'a':
247     case 'b':
248         return 0x01; /* floppy boot */
249     case 'c':
250         return 0x02; /* hard drive boot */
251     case 'd':
252         return 0x03; /* CD-ROM boot */
253     case 'n':
254         return 0x04; /* Network boot */
255     }
256     return 0;
257 }
258 
259 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
260 {
261 #define PC_MAX_BOOT_DEVICES 3
262     int nbds, bds[3] = { 0, };
263     int i;
264 
265     nbds = strlen(boot_device);
266     if (nbds > PC_MAX_BOOT_DEVICES) {
267         error_setg(errp, "Too many boot devices for PC");
268         return;
269     }
270     for (i = 0; i < nbds; i++) {
271         bds[i] = boot_device2nibble(boot_device[i]);
272         if (bds[i] == 0) {
273             error_setg(errp, "Invalid boot device for PC: '%c'",
274                        boot_device[i]);
275             return;
276         }
277     }
278     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
279     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
280 }
281 
282 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
283 {
284     set_boot_dev(opaque, boot_device, errp);
285 }
286 
287 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
288 {
289     int val, nb, i;
290     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
291 
292     /* floppy type */
293     if (floppy) {
294         for (i = 0; i < 2; i++) {
295             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
296         }
297     }
298     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
299         cmos_get_fd_drive_type(fd_type[1]);
300     rtc_set_memory(rtc_state, 0x10, val);
301 
302     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
303     nb = 0;
304     if (fd_type[0] < FDRIVE_DRV_NONE) {
305         nb++;
306     }
307     if (fd_type[1] < FDRIVE_DRV_NONE) {
308         nb++;
309     }
310     switch (nb) {
311     case 0:
312         break;
313     case 1:
314         val |= 0x01; /* 1 drive, ready for boot */
315         break;
316     case 2:
317         val |= 0x41; /* 2 drives, ready for boot */
318         break;
319     }
320     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
321 }
322 
323 typedef struct pc_cmos_init_late_arg {
324     ISADevice *rtc_state;
325     BusState *idebus[2];
326 } pc_cmos_init_late_arg;
327 
328 typedef struct check_fdc_state {
329     ISADevice *floppy;
330     bool multiple;
331 } CheckFdcState;
332 
333 static int check_fdc(Object *obj, void *opaque)
334 {
335     CheckFdcState *state = opaque;
336     Object *fdc;
337     uint32_t iobase;
338     Error *local_err = NULL;
339 
340     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
341     if (!fdc) {
342         return 0;
343     }
344 
345     iobase = object_property_get_int(obj, "iobase", &local_err);
346     if (local_err || iobase != 0x3f0) {
347         error_free(local_err);
348         return 0;
349     }
350 
351     if (state->floppy) {
352         state->multiple = true;
353     } else {
354         state->floppy = ISA_DEVICE(obj);
355     }
356     return 0;
357 }
358 
359 static const char * const fdc_container_path[] = {
360     "/unattached", "/peripheral", "/peripheral-anon"
361 };
362 
363 /*
364  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
365  * and ACPI objects.
366  */
367 ISADevice *pc_find_fdc0(void)
368 {
369     int i;
370     Object *container;
371     CheckFdcState state = { 0 };
372 
373     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
374         container = container_get(qdev_get_machine(), fdc_container_path[i]);
375         object_child_foreach(container, check_fdc, &state);
376     }
377 
378     if (state.multiple) {
379         error_report("warning: multiple floppy disk controllers with "
380                      "iobase=0x3f0 have been found");
381         error_printf("the one being picked for CMOS setup might not reflect "
382                      "your intent");
383     }
384 
385     return state.floppy;
386 }
387 
388 static void pc_cmos_init_late(void *opaque)
389 {
390     pc_cmos_init_late_arg *arg = opaque;
391     ISADevice *s = arg->rtc_state;
392     int16_t cylinders;
393     int8_t heads, sectors;
394     int val;
395     int i, trans;
396 
397     val = 0;
398     if (ide_get_geometry(arg->idebus[0], 0,
399                          &cylinders, &heads, &sectors) >= 0) {
400         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
401         val |= 0xf0;
402     }
403     if (ide_get_geometry(arg->idebus[0], 1,
404                          &cylinders, &heads, &sectors) >= 0) {
405         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
406         val |= 0x0f;
407     }
408     rtc_set_memory(s, 0x12, val);
409 
410     val = 0;
411     for (i = 0; i < 4; i++) {
412         /* NOTE: ide_get_geometry() returns the physical
413            geometry.  It is always such that: 1 <= sects <= 63, 1
414            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
415            geometry can be different if a translation is done. */
416         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
417                              &cylinders, &heads, &sectors) >= 0) {
418             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
419             assert((trans & ~3) == 0);
420             val |= trans << (i * 2);
421         }
422     }
423     rtc_set_memory(s, 0x39, val);
424 
425     pc_cmos_init_floppy(s, pc_find_fdc0());
426 
427     qemu_unregister_reset(pc_cmos_init_late, opaque);
428 }
429 
430 void pc_cmos_init(PCMachineState *pcms,
431                   BusState *idebus0, BusState *idebus1,
432                   ISADevice *s)
433 {
434     int val;
435     static pc_cmos_init_late_arg arg;
436 
437     /* various important CMOS locations needed by PC/Bochs bios */
438 
439     /* memory size */
440     /* base memory (first MiB) */
441     val = MIN(pcms->below_4g_mem_size / 1024, 640);
442     rtc_set_memory(s, 0x15, val);
443     rtc_set_memory(s, 0x16, val >> 8);
444     /* extended memory (next 64MiB) */
445     if (pcms->below_4g_mem_size > 1024 * 1024) {
446         val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
447     } else {
448         val = 0;
449     }
450     if (val > 65535)
451         val = 65535;
452     rtc_set_memory(s, 0x17, val);
453     rtc_set_memory(s, 0x18, val >> 8);
454     rtc_set_memory(s, 0x30, val);
455     rtc_set_memory(s, 0x31, val >> 8);
456     /* memory between 16MiB and 4GiB */
457     if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
458         val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
459     } else {
460         val = 0;
461     }
462     if (val > 65535)
463         val = 65535;
464     rtc_set_memory(s, 0x34, val);
465     rtc_set_memory(s, 0x35, val >> 8);
466     /* memory above 4GiB */
467     val = pcms->above_4g_mem_size / 65536;
468     rtc_set_memory(s, 0x5b, val);
469     rtc_set_memory(s, 0x5c, val >> 8);
470     rtc_set_memory(s, 0x5d, val >> 16);
471 
472     /* set the number of CPU */
473     rtc_set_memory(s, 0x5f, smp_cpus - 1);
474 
475     object_property_add_link(OBJECT(pcms), "rtc_state",
476                              TYPE_ISA_DEVICE,
477                              (Object **)&pcms->rtc,
478                              object_property_allow_set_link,
479                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
480     object_property_set_link(OBJECT(pcms), OBJECT(s),
481                              "rtc_state", &error_abort);
482 
483     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
484 
485     val = 0;
486     val |= 0x02; /* FPU is there */
487     val |= 0x04; /* PS/2 mouse installed */
488     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
489 
490     /* hard drives and FDC */
491     arg.rtc_state = s;
492     arg.idebus[0] = idebus0;
493     arg.idebus[1] = idebus1;
494     qemu_register_reset(pc_cmos_init_late, &arg);
495 }
496 
497 #define TYPE_PORT92 "port92"
498 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
499 
500 /* port 92 stuff: could be split off */
501 typedef struct Port92State {
502     ISADevice parent_obj;
503 
504     MemoryRegion io;
505     uint8_t outport;
506     qemu_irq *a20_out;
507 } Port92State;
508 
509 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
510                          unsigned size)
511 {
512     Port92State *s = opaque;
513     int oldval = s->outport;
514 
515     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
516     s->outport = val;
517     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
518     if ((val & 1) && !(oldval & 1)) {
519         qemu_system_reset_request();
520     }
521 }
522 
523 static uint64_t port92_read(void *opaque, hwaddr addr,
524                             unsigned size)
525 {
526     Port92State *s = opaque;
527     uint32_t ret;
528 
529     ret = s->outport;
530     DPRINTF("port92: read 0x%02x\n", ret);
531     return ret;
532 }
533 
534 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
535 {
536     Port92State *s = PORT92(dev);
537 
538     s->a20_out = a20_out;
539 }
540 
541 static const VMStateDescription vmstate_port92_isa = {
542     .name = "port92",
543     .version_id = 1,
544     .minimum_version_id = 1,
545     .fields = (VMStateField[]) {
546         VMSTATE_UINT8(outport, Port92State),
547         VMSTATE_END_OF_LIST()
548     }
549 };
550 
551 static void port92_reset(DeviceState *d)
552 {
553     Port92State *s = PORT92(d);
554 
555     s->outport &= ~1;
556 }
557 
558 static const MemoryRegionOps port92_ops = {
559     .read = port92_read,
560     .write = port92_write,
561     .impl = {
562         .min_access_size = 1,
563         .max_access_size = 1,
564     },
565     .endianness = DEVICE_LITTLE_ENDIAN,
566 };
567 
568 static void port92_initfn(Object *obj)
569 {
570     Port92State *s = PORT92(obj);
571 
572     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
573 
574     s->outport = 0;
575 }
576 
577 static void port92_realizefn(DeviceState *dev, Error **errp)
578 {
579     ISADevice *isadev = ISA_DEVICE(dev);
580     Port92State *s = PORT92(dev);
581 
582     isa_register_ioport(isadev, &s->io, 0x92);
583 }
584 
585 static void port92_class_initfn(ObjectClass *klass, void *data)
586 {
587     DeviceClass *dc = DEVICE_CLASS(klass);
588 
589     dc->realize = port92_realizefn;
590     dc->reset = port92_reset;
591     dc->vmsd = &vmstate_port92_isa;
592     /*
593      * Reason: unlike ordinary ISA devices, this one needs additional
594      * wiring: its A20 output line needs to be wired up by
595      * port92_init().
596      */
597     dc->cannot_instantiate_with_device_add_yet = true;
598 }
599 
600 static const TypeInfo port92_info = {
601     .name          = TYPE_PORT92,
602     .parent        = TYPE_ISA_DEVICE,
603     .instance_size = sizeof(Port92State),
604     .instance_init = port92_initfn,
605     .class_init    = port92_class_initfn,
606 };
607 
608 static void port92_register_types(void)
609 {
610     type_register_static(&port92_info);
611 }
612 
613 type_init(port92_register_types)
614 
615 static void handle_a20_line_change(void *opaque, int irq, int level)
616 {
617     X86CPU *cpu = opaque;
618 
619     /* XXX: send to all CPUs ? */
620     /* XXX: add logic to handle multiple A20 line sources */
621     x86_cpu_set_a20(cpu, level);
622 }
623 
624 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
625 {
626     int index = le32_to_cpu(e820_reserve.count);
627     struct e820_entry *entry;
628 
629     if (type != E820_RAM) {
630         /* old FW_CFG_E820_TABLE entry -- reservations only */
631         if (index >= E820_NR_ENTRIES) {
632             return -EBUSY;
633         }
634         entry = &e820_reserve.entry[index++];
635 
636         entry->address = cpu_to_le64(address);
637         entry->length = cpu_to_le64(length);
638         entry->type = cpu_to_le32(type);
639 
640         e820_reserve.count = cpu_to_le32(index);
641     }
642 
643     /* new "etc/e820" file -- include ram too */
644     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
645     e820_table[e820_entries].address = cpu_to_le64(address);
646     e820_table[e820_entries].length = cpu_to_le64(length);
647     e820_table[e820_entries].type = cpu_to_le32(type);
648     e820_entries++;
649 
650     return e820_entries;
651 }
652 
653 int e820_get_num_entries(void)
654 {
655     return e820_entries;
656 }
657 
658 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
659 {
660     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
661         *address = le64_to_cpu(e820_table[idx].address);
662         *length = le64_to_cpu(e820_table[idx].length);
663         return true;
664     }
665     return false;
666 }
667 
668 /* Enables contiguous-apic-ID mode, for compatibility */
669 static bool compat_apic_id_mode;
670 
671 void enable_compat_apic_id_mode(void)
672 {
673     compat_apic_id_mode = true;
674 }
675 
676 /* Calculates initial APIC ID for a specific CPU index
677  *
678  * Currently we need to be able to calculate the APIC ID from the CPU index
679  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
680  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
681  * all CPUs up to max_cpus.
682  */
683 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
684 {
685     uint32_t correct_id;
686     static bool warned;
687 
688     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
689     if (compat_apic_id_mode) {
690         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
691             error_report("APIC IDs set in compatibility mode, "
692                          "CPU topology won't match the configuration");
693             warned = true;
694         }
695         return cpu_index;
696     } else {
697         return correct_id;
698     }
699 }
700 
701 /* Calculates the limit to CPU APIC ID values
702  *
703  * This function returns the limit for the APIC ID value, so that all
704  * CPU APIC IDs are < pc_apic_id_limit().
705  *
706  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
707  */
708 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
709 {
710     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
711 }
712 
713 static void pc_build_smbios(FWCfgState *fw_cfg)
714 {
715     uint8_t *smbios_tables, *smbios_anchor;
716     size_t smbios_tables_len, smbios_anchor_len;
717     struct smbios_phys_mem_area *mem_array;
718     unsigned i, array_count;
719 
720     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
721     if (smbios_tables) {
722         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
723                          smbios_tables, smbios_tables_len);
724     }
725 
726     /* build the array of physical mem area from e820 table */
727     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
728     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
729         uint64_t addr, len;
730 
731         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
732             mem_array[array_count].address = addr;
733             mem_array[array_count].length = len;
734             array_count++;
735         }
736     }
737     smbios_get_tables(mem_array, array_count,
738                       &smbios_tables, &smbios_tables_len,
739                       &smbios_anchor, &smbios_anchor_len);
740     g_free(mem_array);
741 
742     if (smbios_anchor) {
743         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
744                         smbios_tables, smbios_tables_len);
745         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
746                         smbios_anchor, smbios_anchor_len);
747     }
748 }
749 
750 static FWCfgState *bochs_bios_init(AddressSpace *as)
751 {
752     FWCfgState *fw_cfg;
753     uint64_t *numa_fw_cfg;
754     int i, j;
755     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
756 
757     fw_cfg = fw_cfg_init_io_dma(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 4, as);
758 
759     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
760      *
761      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
762      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
763      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
764      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
765      * may see".
766      *
767      * So, this means we must not use max_cpus, here, but the maximum possible
768      * APIC ID value, plus one.
769      *
770      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
771      *     the APIC ID, not the "CPU index"
772      */
773     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
774     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
775     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
776                      acpi_tables, acpi_tables_len);
777     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
778 
779     pc_build_smbios(fw_cfg);
780 
781     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
782                      &e820_reserve, sizeof(e820_reserve));
783     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
784                     sizeof(struct e820_entry) * e820_entries);
785 
786     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
787     /* allocate memory for the NUMA channel: one (64bit) word for the number
788      * of nodes, one word for each VCPU->node and one word for each node to
789      * hold the amount of memory.
790      */
791     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
792     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
793     for (i = 0; i < max_cpus; i++) {
794         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
795         assert(apic_id < apic_id_limit);
796         for (j = 0; j < nb_numa_nodes; j++) {
797             if (test_bit(i, numa_info[j].node_cpu)) {
798                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
799                 break;
800             }
801         }
802     }
803     for (i = 0; i < nb_numa_nodes; i++) {
804         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
805     }
806     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
807                      (1 + apic_id_limit + nb_numa_nodes) *
808                      sizeof(*numa_fw_cfg));
809 
810     return fw_cfg;
811 }
812 
813 static long get_file_size(FILE *f)
814 {
815     long where, size;
816 
817     /* XXX: on Unix systems, using fstat() probably makes more sense */
818 
819     where = ftell(f);
820     fseek(f, 0, SEEK_END);
821     size = ftell(f);
822     fseek(f, where, SEEK_SET);
823 
824     return size;
825 }
826 
827 static void load_linux(PCMachineState *pcms,
828                        FWCfgState *fw_cfg)
829 {
830     uint16_t protocol;
831     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
832     uint32_t initrd_max;
833     uint8_t header[8192], *setup, *kernel, *initrd_data;
834     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
835     FILE *f;
836     char *vmode;
837     MachineState *machine = MACHINE(pcms);
838     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
839     const char *kernel_filename = machine->kernel_filename;
840     const char *initrd_filename = machine->initrd_filename;
841     const char *kernel_cmdline = machine->kernel_cmdline;
842 
843     /* Align to 16 bytes as a paranoia measure */
844     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
845 
846     /* load the kernel header */
847     f = fopen(kernel_filename, "rb");
848     if (!f || !(kernel_size = get_file_size(f)) ||
849         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
850         MIN(ARRAY_SIZE(header), kernel_size)) {
851         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
852                 kernel_filename, strerror(errno));
853         exit(1);
854     }
855 
856     /* kernel protocol version */
857 #if 0
858     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
859 #endif
860     if (ldl_p(header+0x202) == 0x53726448) {
861         protocol = lduw_p(header+0x206);
862     } else {
863         /* This looks like a multiboot kernel. If it is, let's stop
864            treating it like a Linux kernel. */
865         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
866                            kernel_cmdline, kernel_size, header)) {
867             return;
868         }
869         protocol = 0;
870     }
871 
872     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
873         /* Low kernel */
874         real_addr    = 0x90000;
875         cmdline_addr = 0x9a000 - cmdline_size;
876         prot_addr    = 0x10000;
877     } else if (protocol < 0x202) {
878         /* High but ancient kernel */
879         real_addr    = 0x90000;
880         cmdline_addr = 0x9a000 - cmdline_size;
881         prot_addr    = 0x100000;
882     } else {
883         /* High and recent kernel */
884         real_addr    = 0x10000;
885         cmdline_addr = 0x20000;
886         prot_addr    = 0x100000;
887     }
888 
889 #if 0
890     fprintf(stderr,
891             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
892             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
893             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
894             real_addr,
895             cmdline_addr,
896             prot_addr);
897 #endif
898 
899     /* highest address for loading the initrd */
900     if (protocol >= 0x203) {
901         initrd_max = ldl_p(header+0x22c);
902     } else {
903         initrd_max = 0x37ffffff;
904     }
905 
906     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
907         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
908     }
909 
910     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
911     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
912     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
913 
914     if (protocol >= 0x202) {
915         stl_p(header+0x228, cmdline_addr);
916     } else {
917         stw_p(header+0x20, 0xA33F);
918         stw_p(header+0x22, cmdline_addr-real_addr);
919     }
920 
921     /* handle vga= parameter */
922     vmode = strstr(kernel_cmdline, "vga=");
923     if (vmode) {
924         unsigned int video_mode;
925         /* skip "vga=" */
926         vmode += 4;
927         if (!strncmp(vmode, "normal", 6)) {
928             video_mode = 0xffff;
929         } else if (!strncmp(vmode, "ext", 3)) {
930             video_mode = 0xfffe;
931         } else if (!strncmp(vmode, "ask", 3)) {
932             video_mode = 0xfffd;
933         } else {
934             video_mode = strtol(vmode, NULL, 0);
935         }
936         stw_p(header+0x1fa, video_mode);
937     }
938 
939     /* loader type */
940     /* High nybble = B reserved for QEMU; low nybble is revision number.
941        If this code is substantially changed, you may want to consider
942        incrementing the revision. */
943     if (protocol >= 0x200) {
944         header[0x210] = 0xB0;
945     }
946     /* heap */
947     if (protocol >= 0x201) {
948         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
949         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
950     }
951 
952     /* load initrd */
953     if (initrd_filename) {
954         if (protocol < 0x200) {
955             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
956             exit(1);
957         }
958 
959         initrd_size = get_image_size(initrd_filename);
960         if (initrd_size < 0) {
961             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
962                     initrd_filename, strerror(errno));
963             exit(1);
964         }
965 
966         initrd_addr = (initrd_max-initrd_size) & ~4095;
967 
968         initrd_data = g_malloc(initrd_size);
969         load_image(initrd_filename, initrd_data);
970 
971         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
972         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
973         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
974 
975         stl_p(header+0x218, initrd_addr);
976         stl_p(header+0x21c, initrd_size);
977     }
978 
979     /* load kernel and setup */
980     setup_size = header[0x1f1];
981     if (setup_size == 0) {
982         setup_size = 4;
983     }
984     setup_size = (setup_size+1)*512;
985     if (setup_size > kernel_size) {
986         fprintf(stderr, "qemu: invalid kernel header\n");
987         exit(1);
988     }
989     kernel_size -= setup_size;
990 
991     setup  = g_malloc(setup_size);
992     kernel = g_malloc(kernel_size);
993     fseek(f, 0, SEEK_SET);
994     if (fread(setup, 1, setup_size, f) != setup_size) {
995         fprintf(stderr, "fread() failed\n");
996         exit(1);
997     }
998     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
999         fprintf(stderr, "fread() failed\n");
1000         exit(1);
1001     }
1002     fclose(f);
1003     memcpy(setup, header, MIN(sizeof(header), setup_size));
1004 
1005     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1006     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1007     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1008 
1009     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1010     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1011     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1012 
1013     option_rom[nb_option_roms].name = "linuxboot.bin";
1014     option_rom[nb_option_roms].bootindex = 0;
1015     nb_option_roms++;
1016 }
1017 
1018 #define NE2000_NB_MAX 6
1019 
1020 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1021                                               0x280, 0x380 };
1022 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1023 
1024 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1025 {
1026     static int nb_ne2k = 0;
1027 
1028     if (nb_ne2k == NE2000_NB_MAX)
1029         return;
1030     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1031                     ne2000_irq[nb_ne2k], nd);
1032     nb_ne2k++;
1033 }
1034 
1035 DeviceState *cpu_get_current_apic(void)
1036 {
1037     if (current_cpu) {
1038         X86CPU *cpu = X86_CPU(current_cpu);
1039         return cpu->apic_state;
1040     } else {
1041         return NULL;
1042     }
1043 }
1044 
1045 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1046 {
1047     X86CPU *cpu = opaque;
1048 
1049     if (level) {
1050         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1051     }
1052 }
1053 
1054 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
1055                           Error **errp)
1056 {
1057     X86CPU *cpu = NULL;
1058     Error *local_err = NULL;
1059 
1060     cpu = cpu_x86_create(cpu_model, &local_err);
1061     if (local_err != NULL) {
1062         goto out;
1063     }
1064 
1065     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1066     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1067 
1068 out:
1069     if (local_err) {
1070         error_propagate(errp, local_err);
1071         object_unref(OBJECT(cpu));
1072         cpu = NULL;
1073     }
1074     return cpu;
1075 }
1076 
1077 void pc_hot_add_cpu(const int64_t id, Error **errp)
1078 {
1079     X86CPU *cpu;
1080     MachineState *machine = MACHINE(qdev_get_machine());
1081     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1082     Error *local_err = NULL;
1083 
1084     if (id < 0) {
1085         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1086         return;
1087     }
1088 
1089     if (cpu_exists(apic_id)) {
1090         error_setg(errp, "Unable to add CPU: %" PRIi64
1091                    ", it already exists", id);
1092         return;
1093     }
1094 
1095     if (id >= max_cpus) {
1096         error_setg(errp, "Unable to add CPU: %" PRIi64
1097                    ", max allowed: %d", id, max_cpus - 1);
1098         return;
1099     }
1100 
1101     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1102         error_setg(errp, "Unable to add CPU: %" PRIi64
1103                    ", resulting APIC ID (%" PRIi64 ") is too large",
1104                    id, apic_id);
1105         return;
1106     }
1107 
1108     cpu = pc_new_cpu(machine->cpu_model, apic_id, &local_err);
1109     if (local_err) {
1110         error_propagate(errp, local_err);
1111         return;
1112     }
1113     object_unref(OBJECT(cpu));
1114 }
1115 
1116 void pc_cpus_init(PCMachineState *pcms)
1117 {
1118     int i;
1119     X86CPU *cpu = NULL;
1120     MachineState *machine = MACHINE(pcms);
1121     unsigned long apic_id_limit;
1122 
1123     /* init CPUs */
1124     if (machine->cpu_model == NULL) {
1125 #ifdef TARGET_X86_64
1126         machine->cpu_model = "qemu64";
1127 #else
1128         machine->cpu_model = "qemu32";
1129 #endif
1130     }
1131 
1132     apic_id_limit = pc_apic_id_limit(max_cpus);
1133     if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1134         error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1135                      apic_id_limit - 1);
1136         exit(1);
1137     }
1138 
1139     for (i = 0; i < smp_cpus; i++) {
1140         cpu = pc_new_cpu(machine->cpu_model, x86_cpu_apic_id_from_index(i),
1141                          &error_fatal);
1142         object_unref(OBJECT(cpu));
1143     }
1144 
1145     /* tell smbios about cpuid version and features */
1146     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1147 }
1148 
1149 /* pci-info ROM file. Little endian format */
1150 typedef struct PcRomPciInfo {
1151     uint64_t w32_min;
1152     uint64_t w32_max;
1153     uint64_t w64_min;
1154     uint64_t w64_max;
1155 } PcRomPciInfo;
1156 
1157 typedef struct PcGuestInfoState {
1158     PcGuestInfo info;
1159     Notifier machine_done;
1160 } PcGuestInfoState;
1161 
1162 static
1163 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1164 {
1165     PcGuestInfoState *guest_info_state = container_of(notifier,
1166                                                       PcGuestInfoState,
1167                                                       machine_done);
1168     PCIBus *bus = PC_MACHINE(qdev_get_machine())->bus;
1169 
1170     if (bus) {
1171         int extra_hosts = 0;
1172 
1173         QLIST_FOREACH(bus, &bus->child, sibling) {
1174             /* look for expander root buses */
1175             if (pci_bus_is_root(bus)) {
1176                 extra_hosts++;
1177             }
1178         }
1179         if (extra_hosts && guest_info_state->info.fw_cfg) {
1180             uint64_t *val = g_malloc(sizeof(*val));
1181             *val = cpu_to_le64(extra_hosts);
1182             fw_cfg_add_file(guest_info_state->info.fw_cfg,
1183                     "etc/extra-pci-roots", val, sizeof(*val));
1184         }
1185     }
1186 
1187     acpi_setup(&guest_info_state->info);
1188 }
1189 
1190 PcGuestInfo *pc_guest_info_init(PCMachineState *pcms)
1191 {
1192     PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1193     PcGuestInfo *guest_info = &guest_info_state->info;
1194     int i, j;
1195 
1196     guest_info->ram_size_below_4g = pcms->below_4g_mem_size;
1197     guest_info->ram_size = pcms->below_4g_mem_size + pcms->above_4g_mem_size;
1198     guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1199     guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1200     guest_info->numa_nodes = nb_numa_nodes;
1201     guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1202                                     sizeof *guest_info->node_mem);
1203     for (i = 0; i < nb_numa_nodes; i++) {
1204         guest_info->node_mem[i] = numa_info[i].node_mem;
1205     }
1206 
1207     guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1208                                      sizeof *guest_info->node_cpu);
1209 
1210     for (i = 0; i < max_cpus; i++) {
1211         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1212         assert(apic_id < guest_info->apic_id_limit);
1213         for (j = 0; j < nb_numa_nodes; j++) {
1214             if (test_bit(i, numa_info[j].node_cpu)) {
1215                 guest_info->node_cpu[apic_id] = j;
1216                 break;
1217             }
1218         }
1219     }
1220 
1221     guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1222     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1223     return guest_info;
1224 }
1225 
1226 /* setup pci memory address space mapping into system address space */
1227 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1228                             MemoryRegion *pci_address_space)
1229 {
1230     /* Set to lower priority than RAM */
1231     memory_region_add_subregion_overlap(system_memory, 0x0,
1232                                         pci_address_space, -1);
1233 }
1234 
1235 void pc_acpi_init(const char *default_dsdt)
1236 {
1237     char *filename;
1238 
1239     if (acpi_tables != NULL) {
1240         /* manually set via -acpitable, leave it alone */
1241         return;
1242     }
1243 
1244     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1245     if (filename == NULL) {
1246         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1247     } else {
1248         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1249                                           &error_abort);
1250         Error *err = NULL;
1251 
1252         qemu_opt_set(opts, "file", filename, &error_abort);
1253 
1254         acpi_table_add_builtin(opts, &err);
1255         if (err) {
1256             error_reportf_err(err, "WARNING: failed to load %s: ",
1257                               filename);
1258         }
1259         g_free(filename);
1260     }
1261 }
1262 
1263 FWCfgState *xen_load_linux(PCMachineState *pcms,
1264                            PcGuestInfo *guest_info)
1265 {
1266     int i;
1267     FWCfgState *fw_cfg;
1268 
1269     assert(MACHINE(pcms)->kernel_filename != NULL);
1270 
1271     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1272     rom_set_fw(fw_cfg);
1273 
1274     load_linux(pcms, fw_cfg);
1275     for (i = 0; i < nb_option_roms; i++) {
1276         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1277                !strcmp(option_rom[i].name, "multiboot.bin"));
1278         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1279     }
1280     guest_info->fw_cfg = fw_cfg;
1281     return fw_cfg;
1282 }
1283 
1284 FWCfgState *pc_memory_init(PCMachineState *pcms,
1285                            MemoryRegion *system_memory,
1286                            MemoryRegion *rom_memory,
1287                            MemoryRegion **ram_memory,
1288                            PcGuestInfo *guest_info)
1289 {
1290     int linux_boot, i;
1291     MemoryRegion *ram, *option_rom_mr;
1292     MemoryRegion *ram_below_4g, *ram_above_4g;
1293     FWCfgState *fw_cfg;
1294     MachineState *machine = MACHINE(pcms);
1295     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1296 
1297     assert(machine->ram_size == pcms->below_4g_mem_size +
1298                                 pcms->above_4g_mem_size);
1299 
1300     linux_boot = (machine->kernel_filename != NULL);
1301 
1302     /* Allocate RAM.  We allocate it as a single memory region and use
1303      * aliases to address portions of it, mostly for backwards compatibility
1304      * with older qemus that used qemu_ram_alloc().
1305      */
1306     ram = g_malloc(sizeof(*ram));
1307     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1308                                          machine->ram_size);
1309     *ram_memory = ram;
1310     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1311     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1312                              0, pcms->below_4g_mem_size);
1313     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1314     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1315     if (pcms->above_4g_mem_size > 0) {
1316         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1317         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1318                                  pcms->below_4g_mem_size,
1319                                  pcms->above_4g_mem_size);
1320         memory_region_add_subregion(system_memory, 0x100000000ULL,
1321                                     ram_above_4g);
1322         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1323     }
1324 
1325     if (!guest_info->has_reserved_memory &&
1326         (machine->ram_slots ||
1327          (machine->maxram_size > machine->ram_size))) {
1328         MachineClass *mc = MACHINE_GET_CLASS(machine);
1329 
1330         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1331                      mc->name);
1332         exit(EXIT_FAILURE);
1333     }
1334 
1335     /* initialize hotplug memory address space */
1336     if (guest_info->has_reserved_memory &&
1337         (machine->ram_size < machine->maxram_size)) {
1338         ram_addr_t hotplug_mem_size =
1339             machine->maxram_size - machine->ram_size;
1340 
1341         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1342             error_report("unsupported amount of memory slots: %"PRIu64,
1343                          machine->ram_slots);
1344             exit(EXIT_FAILURE);
1345         }
1346 
1347         if (QEMU_ALIGN_UP(machine->maxram_size,
1348                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1349             error_report("maximum memory size must by aligned to multiple of "
1350                          "%d bytes", TARGET_PAGE_SIZE);
1351             exit(EXIT_FAILURE);
1352         }
1353 
1354         pcms->hotplug_memory.base =
1355             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1356 
1357         if (pcmc->enforce_aligned_dimm) {
1358             /* size hotplug region assuming 1G page max alignment per slot */
1359             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1360         }
1361 
1362         if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1363             hotplug_mem_size) {
1364             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1365                          machine->maxram_size);
1366             exit(EXIT_FAILURE);
1367         }
1368 
1369         memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1370                            "hotplug-memory", hotplug_mem_size);
1371         memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1372                                     &pcms->hotplug_memory.mr);
1373     }
1374 
1375     /* Initialize PC system firmware */
1376     pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1377 
1378     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1379     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1380                            &error_fatal);
1381     vmstate_register_ram_global(option_rom_mr);
1382     memory_region_add_subregion_overlap(rom_memory,
1383                                         PC_ROM_MIN_VGA,
1384                                         option_rom_mr,
1385                                         1);
1386 
1387     fw_cfg = bochs_bios_init(&address_space_memory);
1388 
1389     rom_set_fw(fw_cfg);
1390 
1391     if (guest_info->has_reserved_memory && pcms->hotplug_memory.base) {
1392         uint64_t *val = g_malloc(sizeof(*val));
1393         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1394         uint64_t res_mem_end = pcms->hotplug_memory.base;
1395 
1396         if (!pcmc->broken_reserved_end) {
1397             res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1398         }
1399         *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1400         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1401     }
1402 
1403     if (linux_boot) {
1404         load_linux(pcms, fw_cfg);
1405     }
1406 
1407     for (i = 0; i < nb_option_roms; i++) {
1408         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1409     }
1410     guest_info->fw_cfg = fw_cfg;
1411     return fw_cfg;
1412 }
1413 
1414 qemu_irq pc_allocate_cpu_irq(void)
1415 {
1416     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1417 }
1418 
1419 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1420 {
1421     DeviceState *dev = NULL;
1422 
1423     if (pci_bus) {
1424         PCIDevice *pcidev = pci_vga_init(pci_bus);
1425         dev = pcidev ? &pcidev->qdev : NULL;
1426     } else if (isa_bus) {
1427         ISADevice *isadev = isa_vga_init(isa_bus);
1428         dev = isadev ? DEVICE(isadev) : NULL;
1429     }
1430     return dev;
1431 }
1432 
1433 static const MemoryRegionOps ioport80_io_ops = {
1434     .write = ioport80_write,
1435     .read = ioport80_read,
1436     .endianness = DEVICE_NATIVE_ENDIAN,
1437     .impl = {
1438         .min_access_size = 1,
1439         .max_access_size = 1,
1440     },
1441 };
1442 
1443 static const MemoryRegionOps ioportF0_io_ops = {
1444     .write = ioportF0_write,
1445     .read = ioportF0_read,
1446     .endianness = DEVICE_NATIVE_ENDIAN,
1447     .impl = {
1448         .min_access_size = 1,
1449         .max_access_size = 1,
1450     },
1451 };
1452 
1453 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1454                           ISADevice **rtc_state,
1455                           bool create_fdctrl,
1456                           bool no_vmport,
1457                           uint32_t hpet_irqs)
1458 {
1459     int i;
1460     DriveInfo *fd[MAX_FD];
1461     DeviceState *hpet = NULL;
1462     int pit_isa_irq = 0;
1463     qemu_irq pit_alt_irq = NULL;
1464     qemu_irq rtc_irq = NULL;
1465     qemu_irq *a20_line;
1466     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1467     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1468     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1469 
1470     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1471     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1472 
1473     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1474     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1475 
1476     /*
1477      * Check if an HPET shall be created.
1478      *
1479      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1480      * when the HPET wants to take over. Thus we have to disable the latter.
1481      */
1482     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1483         /* In order to set property, here not using sysbus_try_create_simple */
1484         hpet = qdev_try_create(NULL, TYPE_HPET);
1485         if (hpet) {
1486             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1487              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1488              * IRQ8 and IRQ2.
1489              */
1490             uint8_t compat = object_property_get_int(OBJECT(hpet),
1491                     HPET_INTCAP, NULL);
1492             if (!compat) {
1493                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1494             }
1495             qdev_init_nofail(hpet);
1496             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1497 
1498             for (i = 0; i < GSI_NUM_PINS; i++) {
1499                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1500             }
1501             pit_isa_irq = -1;
1502             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1503             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1504         }
1505     }
1506     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1507 
1508     qemu_register_boot_set(pc_boot_set, *rtc_state);
1509 
1510     if (!xen_enabled()) {
1511         if (kvm_pit_in_kernel()) {
1512             pit = kvm_pit_init(isa_bus, 0x40);
1513         } else {
1514             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1515         }
1516         if (hpet) {
1517             /* connect PIT to output control line of the HPET */
1518             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1519         }
1520         pcspk_init(isa_bus, pit);
1521     }
1522 
1523     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1524     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1525 
1526     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1527     i8042 = isa_create_simple(isa_bus, "i8042");
1528     i8042_setup_a20_line(i8042, &a20_line[0]);
1529     if (!no_vmport) {
1530         vmport_init(isa_bus);
1531         vmmouse = isa_try_create(isa_bus, "vmmouse");
1532     } else {
1533         vmmouse = NULL;
1534     }
1535     if (vmmouse) {
1536         DeviceState *dev = DEVICE(vmmouse);
1537         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1538         qdev_init_nofail(dev);
1539     }
1540     port92 = isa_create_simple(isa_bus, "port92");
1541     port92_init(port92, &a20_line[1]);
1542 
1543     DMA_init(0);
1544 
1545     for(i = 0; i < MAX_FD; i++) {
1546         fd[i] = drive_get(IF_FLOPPY, 0, i);
1547         create_fdctrl |= !!fd[i];
1548     }
1549     if (create_fdctrl) {
1550         fdctrl_init_isa(isa_bus, fd);
1551     }
1552 }
1553 
1554 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1555 {
1556     int i;
1557 
1558     for (i = 0; i < nb_nics; i++) {
1559         NICInfo *nd = &nd_table[i];
1560 
1561         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1562             pc_init_ne2k_isa(isa_bus, nd);
1563         } else {
1564             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1565         }
1566     }
1567 }
1568 
1569 void pc_pci_device_init(PCIBus *pci_bus)
1570 {
1571     int max_bus;
1572     int bus;
1573 
1574     max_bus = drive_get_max_bus(IF_SCSI);
1575     for (bus = 0; bus <= max_bus; bus++) {
1576         pci_create_simple(pci_bus, -1, "lsi53c895a");
1577     }
1578 }
1579 
1580 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1581 {
1582     DeviceState *dev;
1583     SysBusDevice *d;
1584     unsigned int i;
1585 
1586     if (kvm_ioapic_in_kernel()) {
1587         dev = qdev_create(NULL, "kvm-ioapic");
1588     } else {
1589         dev = qdev_create(NULL, "ioapic");
1590     }
1591     if (parent_name) {
1592         object_property_add_child(object_resolve_path(parent_name, NULL),
1593                                   "ioapic", OBJECT(dev), NULL);
1594     }
1595     qdev_init_nofail(dev);
1596     d = SYS_BUS_DEVICE(dev);
1597     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1598 
1599     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1600         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1601     }
1602 }
1603 
1604 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1605                          DeviceState *dev, Error **errp)
1606 {
1607     HotplugHandlerClass *hhc;
1608     Error *local_err = NULL;
1609     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1610     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1611     PCDIMMDevice *dimm = PC_DIMM(dev);
1612     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1613     MemoryRegion *mr = ddc->get_memory_region(dimm);
1614     uint64_t align = TARGET_PAGE_SIZE;
1615 
1616     if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1617         align = memory_region_get_alignment(mr);
1618     }
1619 
1620     if (!pcms->acpi_dev) {
1621         error_setg(&local_err,
1622                    "memory hotplug is not enabled: missing acpi device");
1623         goto out;
1624     }
1625 
1626     pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1627     if (local_err) {
1628         goto out;
1629     }
1630 
1631     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1632     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1633 out:
1634     error_propagate(errp, local_err);
1635 }
1636 
1637 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1638                                    DeviceState *dev, Error **errp)
1639 {
1640     HotplugHandlerClass *hhc;
1641     Error *local_err = NULL;
1642     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1643 
1644     if (!pcms->acpi_dev) {
1645         error_setg(&local_err,
1646                    "memory hotplug is not enabled: missing acpi device");
1647         goto out;
1648     }
1649 
1650     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1651     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1652 
1653 out:
1654     error_propagate(errp, local_err);
1655 }
1656 
1657 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1658                            DeviceState *dev, Error **errp)
1659 {
1660     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1661     PCDIMMDevice *dimm = PC_DIMM(dev);
1662     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1663     MemoryRegion *mr = ddc->get_memory_region(dimm);
1664     HotplugHandlerClass *hhc;
1665     Error *local_err = NULL;
1666 
1667     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1668     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1669 
1670     if (local_err) {
1671         goto out;
1672     }
1673 
1674     pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1675     object_unparent(OBJECT(dev));
1676 
1677  out:
1678     error_propagate(errp, local_err);
1679 }
1680 
1681 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1682                         DeviceState *dev, Error **errp)
1683 {
1684     HotplugHandlerClass *hhc;
1685     Error *local_err = NULL;
1686     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1687 
1688     if (!dev->hotplugged) {
1689         goto out;
1690     }
1691 
1692     if (!pcms->acpi_dev) {
1693         error_setg(&local_err,
1694                    "cpu hotplug is not enabled: missing acpi device");
1695         goto out;
1696     }
1697 
1698     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1699     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1700     if (local_err) {
1701         goto out;
1702     }
1703 
1704     /* increment the number of CPUs */
1705     rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1706 out:
1707     error_propagate(errp, local_err);
1708 }
1709 
1710 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1711                                       DeviceState *dev, Error **errp)
1712 {
1713     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1714         pc_dimm_plug(hotplug_dev, dev, errp);
1715     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1716         pc_cpu_plug(hotplug_dev, dev, errp);
1717     }
1718 }
1719 
1720 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1721                                                 DeviceState *dev, Error **errp)
1722 {
1723     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1724         pc_dimm_unplug_request(hotplug_dev, dev, errp);
1725     } else {
1726         error_setg(errp, "acpi: device unplug request for not supported device"
1727                    " type: %s", object_get_typename(OBJECT(dev)));
1728     }
1729 }
1730 
1731 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1732                                         DeviceState *dev, Error **errp)
1733 {
1734     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1735         pc_dimm_unplug(hotplug_dev, dev, errp);
1736     } else {
1737         error_setg(errp, "acpi: device unplug for not supported device"
1738                    " type: %s", object_get_typename(OBJECT(dev)));
1739     }
1740 }
1741 
1742 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1743                                              DeviceState *dev)
1744 {
1745     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1746 
1747     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1748         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1749         return HOTPLUG_HANDLER(machine);
1750     }
1751 
1752     return pcmc->get_hotplug_handler ?
1753         pcmc->get_hotplug_handler(machine, dev) : NULL;
1754 }
1755 
1756 static void
1757 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1758                                           const char *name, Error **errp)
1759 {
1760     PCMachineState *pcms = PC_MACHINE(obj);
1761     int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1762 
1763     visit_type_int(v, &value, name, errp);
1764 }
1765 
1766 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1767                                          void *opaque, const char *name,
1768                                          Error **errp)
1769 {
1770     PCMachineState *pcms = PC_MACHINE(obj);
1771     uint64_t value = pcms->max_ram_below_4g;
1772 
1773     visit_type_size(v, &value, name, errp);
1774 }
1775 
1776 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1777                                          void *opaque, const char *name,
1778                                          Error **errp)
1779 {
1780     PCMachineState *pcms = PC_MACHINE(obj);
1781     Error *error = NULL;
1782     uint64_t value;
1783 
1784     visit_type_size(v, &value, name, &error);
1785     if (error) {
1786         error_propagate(errp, error);
1787         return;
1788     }
1789     if (value > (1ULL << 32)) {
1790         error_setg(&error,
1791                    "Machine option 'max-ram-below-4g=%"PRIu64
1792                    "' expects size less than or equal to 4G", value);
1793         error_propagate(errp, error);
1794         return;
1795     }
1796 
1797     if (value < (1ULL << 20)) {
1798         error_report("Warning: small max_ram_below_4g(%"PRIu64
1799                      ") less than 1M.  BIOS may not work..",
1800                      value);
1801     }
1802 
1803     pcms->max_ram_below_4g = value;
1804 }
1805 
1806 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1807                                   const char *name, Error **errp)
1808 {
1809     PCMachineState *pcms = PC_MACHINE(obj);
1810     OnOffAuto vmport = pcms->vmport;
1811 
1812     visit_type_OnOffAuto(v, &vmport, name, errp);
1813 }
1814 
1815 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1816                                   const char *name, Error **errp)
1817 {
1818     PCMachineState *pcms = PC_MACHINE(obj);
1819 
1820     visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1821 }
1822 
1823 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1824 {
1825     bool smm_available = false;
1826 
1827     if (pcms->smm == ON_OFF_AUTO_OFF) {
1828         return false;
1829     }
1830 
1831     if (tcg_enabled() || qtest_enabled()) {
1832         smm_available = true;
1833     } else if (kvm_enabled()) {
1834         smm_available = kvm_has_smm();
1835     }
1836 
1837     if (smm_available) {
1838         return true;
1839     }
1840 
1841     if (pcms->smm == ON_OFF_AUTO_ON) {
1842         error_report("System Management Mode not supported by this hypervisor.");
1843         exit(1);
1844     }
1845     return false;
1846 }
1847 
1848 static void pc_machine_get_smm(Object *obj, Visitor *v, void *opaque,
1849                               const char *name, Error **errp)
1850 {
1851     PCMachineState *pcms = PC_MACHINE(obj);
1852     OnOffAuto smm = pcms->smm;
1853 
1854     visit_type_OnOffAuto(v, &smm, name, errp);
1855 }
1856 
1857 static void pc_machine_set_smm(Object *obj, Visitor *v, void *opaque,
1858                                   const char *name, Error **errp)
1859 {
1860     PCMachineState *pcms = PC_MACHINE(obj);
1861 
1862     visit_type_OnOffAuto(v, &pcms->smm, name, errp);
1863 }
1864 
1865 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
1866 {
1867     PCMachineState *pcms = PC_MACHINE(obj);
1868 
1869     return pcms->nvdimm;
1870 }
1871 
1872 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
1873 {
1874     PCMachineState *pcms = PC_MACHINE(obj);
1875 
1876     pcms->nvdimm = value;
1877 }
1878 
1879 static void pc_machine_initfn(Object *obj)
1880 {
1881     PCMachineState *pcms = PC_MACHINE(obj);
1882 
1883     object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1884                         pc_machine_get_hotplug_memory_region_size,
1885                         NULL, NULL, NULL, &error_abort);
1886 
1887     pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1888     object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1889                         pc_machine_get_max_ram_below_4g,
1890                         pc_machine_set_max_ram_below_4g,
1891                         NULL, NULL, &error_abort);
1892     object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1893                                     "Maximum ram below the 4G boundary (32bit boundary)",
1894                                     &error_abort);
1895 
1896     pcms->smm = ON_OFF_AUTO_AUTO;
1897     object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1898                         pc_machine_get_smm,
1899                         pc_machine_set_smm,
1900                         NULL, NULL, &error_abort);
1901     object_property_set_description(obj, PC_MACHINE_SMM,
1902                                     "Enable SMM (pc & q35)",
1903                                     &error_abort);
1904 
1905     pcms->vmport = ON_OFF_AUTO_AUTO;
1906     object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1907                         pc_machine_get_vmport,
1908                         pc_machine_set_vmport,
1909                         NULL, NULL, &error_abort);
1910     object_property_set_description(obj, PC_MACHINE_VMPORT,
1911                                     "Enable vmport (pc & q35)",
1912                                     &error_abort);
1913 
1914     /* nvdimm is disabled on default. */
1915     pcms->nvdimm = false;
1916     object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm,
1917                              pc_machine_set_nvdimm, &error_abort);
1918 }
1919 
1920 static void pc_machine_reset(void)
1921 {
1922     CPUState *cs;
1923     X86CPU *cpu;
1924 
1925     qemu_devices_reset();
1926 
1927     /* Reset APIC after devices have been reset to cancel
1928      * any changes that qemu_devices_reset() might have done.
1929      */
1930     CPU_FOREACH(cs) {
1931         cpu = X86_CPU(cs);
1932 
1933         if (cpu->apic_state) {
1934             device_reset(cpu->apic_state);
1935         }
1936     }
1937 }
1938 
1939 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1940 {
1941     X86CPUTopoInfo topo;
1942     x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1943                           &topo);
1944     return topo.pkg_id;
1945 }
1946 
1947 static void pc_machine_class_init(ObjectClass *oc, void *data)
1948 {
1949     MachineClass *mc = MACHINE_CLASS(oc);
1950     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1951     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1952 
1953     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1954     pcmc->pci_enabled = true;
1955     pcmc->has_acpi_build = true;
1956     pcmc->rsdp_in_ram = true;
1957     pcmc->smbios_defaults = true;
1958     pcmc->smbios_uuid_encoded = true;
1959     pcmc->gigabyte_align = true;
1960     pcmc->has_reserved_memory = true;
1961     pcmc->kvmclock_enabled = true;
1962     pcmc->enforce_aligned_dimm = true;
1963     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
1964      * to be used at the moment, 32K should be enough for a while.  */
1965     pcmc->acpi_data_size = 0x20000 + 0x8000;
1966     pcmc->save_tsc_khz = true;
1967     mc->get_hotplug_handler = pc_get_hotpug_handler;
1968     mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1969     mc->default_boot_order = "cad";
1970     mc->hot_add_cpu = pc_hot_add_cpu;
1971     mc->max_cpus = 255;
1972     mc->reset = pc_machine_reset;
1973     hc->plug = pc_machine_device_plug_cb;
1974     hc->unplug_request = pc_machine_device_unplug_request_cb;
1975     hc->unplug = pc_machine_device_unplug_cb;
1976 }
1977 
1978 static const TypeInfo pc_machine_info = {
1979     .name = TYPE_PC_MACHINE,
1980     .parent = TYPE_MACHINE,
1981     .abstract = true,
1982     .instance_size = sizeof(PCMachineState),
1983     .instance_init = pc_machine_initfn,
1984     .class_size = sizeof(PCMachineClass),
1985     .class_init = pc_machine_class_init,
1986     .interfaces = (InterfaceInfo[]) {
1987          { TYPE_HOTPLUG_HANDLER },
1988          { }
1989     },
1990 };
1991 
1992 static void pc_machine_register_types(void)
1993 {
1994     type_register_static(&pc_machine_info);
1995 }
1996 
1997 type_init(pc_machine_register_types)
1998