1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "hw/hw.h" 26 #include "hw/i386/pc.h" 27 #include "hw/char/serial.h" 28 #include "hw/i386/apic.h" 29 #include "hw/i386/topology.h" 30 #include "sysemu/cpus.h" 31 #include "hw/block/fdc.h" 32 #include "hw/ide.h" 33 #include "hw/pci/pci.h" 34 #include "hw/pci/pci_bus.h" 35 #include "hw/nvram/fw_cfg.h" 36 #include "hw/timer/hpet.h" 37 #include "hw/smbios/smbios.h" 38 #include "hw/loader.h" 39 #include "elf.h" 40 #include "multiboot.h" 41 #include "hw/timer/mc146818rtc.h" 42 #include "hw/timer/i8254.h" 43 #include "hw/audio/pcspk.h" 44 #include "hw/pci/msi.h" 45 #include "hw/sysbus.h" 46 #include "sysemu/sysemu.h" 47 #include "sysemu/numa.h" 48 #include "sysemu/kvm.h" 49 #include "sysemu/qtest.h" 50 #include "kvm_i386.h" 51 #include "hw/xen/xen.h" 52 #include "sysemu/block-backend.h" 53 #include "hw/block/block.h" 54 #include "ui/qemu-spice.h" 55 #include "exec/memory.h" 56 #include "exec/address-spaces.h" 57 #include "sysemu/arch_init.h" 58 #include "qemu/bitmap.h" 59 #include "qemu/config-file.h" 60 #include "qemu/error-report.h" 61 #include "hw/acpi/acpi.h" 62 #include "hw/acpi/cpu_hotplug.h" 63 #include "hw/boards.h" 64 #include "hw/pci/pci_host.h" 65 #include "acpi-build.h" 66 #include "hw/mem/pc-dimm.h" 67 #include "qapi/visitor.h" 68 #include "qapi-visit.h" 69 #include "qom/cpu.h" 70 #include "hw/nmi.h" 71 72 /* debug PC/ISA interrupts */ 73 //#define DEBUG_IRQ 74 75 #ifdef DEBUG_IRQ 76 #define DPRINTF(fmt, ...) \ 77 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 78 #else 79 #define DPRINTF(fmt, ...) 80 #endif 81 82 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 83 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 84 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 85 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 86 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 87 88 #define E820_NR_ENTRIES 16 89 90 struct e820_entry { 91 uint64_t address; 92 uint64_t length; 93 uint32_t type; 94 } QEMU_PACKED __attribute((__aligned__(4))); 95 96 struct e820_table { 97 uint32_t count; 98 struct e820_entry entry[E820_NR_ENTRIES]; 99 } QEMU_PACKED __attribute((__aligned__(4))); 100 101 static struct e820_table e820_reserve; 102 static struct e820_entry *e820_table; 103 static unsigned e820_entries; 104 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 105 106 void gsi_handler(void *opaque, int n, int level) 107 { 108 GSIState *s = opaque; 109 110 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 111 if (n < ISA_NUM_IRQS) { 112 qemu_set_irq(s->i8259_irq[n], level); 113 } 114 qemu_set_irq(s->ioapic_irq[n], level); 115 } 116 117 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 118 unsigned size) 119 { 120 } 121 122 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 123 { 124 return 0xffffffffffffffffULL; 125 } 126 127 /* MSDOS compatibility mode FPU exception support */ 128 static qemu_irq ferr_irq; 129 130 void pc_register_ferr_irq(qemu_irq irq) 131 { 132 ferr_irq = irq; 133 } 134 135 /* XXX: add IGNNE support */ 136 void cpu_set_ferr(CPUX86State *s) 137 { 138 qemu_irq_raise(ferr_irq); 139 } 140 141 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 142 unsigned size) 143 { 144 qemu_irq_lower(ferr_irq); 145 } 146 147 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 148 { 149 return 0xffffffffffffffffULL; 150 } 151 152 /* TSC handling */ 153 uint64_t cpu_get_tsc(CPUX86State *env) 154 { 155 return cpu_get_ticks(); 156 } 157 158 /* IRQ handling */ 159 int cpu_get_pic_interrupt(CPUX86State *env) 160 { 161 X86CPU *cpu = x86_env_get_cpu(env); 162 int intno; 163 164 intno = apic_get_interrupt(cpu->apic_state); 165 if (intno >= 0) { 166 return intno; 167 } 168 /* read the irq from the PIC */ 169 if (!apic_accept_pic_intr(cpu->apic_state)) { 170 return -1; 171 } 172 173 intno = pic_read_irq(isa_pic); 174 return intno; 175 } 176 177 static void pic_irq_request(void *opaque, int irq, int level) 178 { 179 CPUState *cs = first_cpu; 180 X86CPU *cpu = X86_CPU(cs); 181 182 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 183 if (cpu->apic_state) { 184 CPU_FOREACH(cs) { 185 cpu = X86_CPU(cs); 186 if (apic_accept_pic_intr(cpu->apic_state)) { 187 apic_deliver_pic_intr(cpu->apic_state, level); 188 } 189 } 190 } else { 191 if (level) { 192 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 193 } else { 194 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 195 } 196 } 197 } 198 199 /* PC cmos mappings */ 200 201 #define REG_EQUIPMENT_BYTE 0x14 202 203 int cmos_get_fd_drive_type(FloppyDriveType fd0) 204 { 205 int val; 206 207 switch (fd0) { 208 case FLOPPY_DRIVE_TYPE_144: 209 /* 1.44 Mb 3"5 drive */ 210 val = 4; 211 break; 212 case FLOPPY_DRIVE_TYPE_288: 213 /* 2.88 Mb 3"5 drive */ 214 val = 5; 215 break; 216 case FLOPPY_DRIVE_TYPE_120: 217 /* 1.2 Mb 5"5 drive */ 218 val = 2; 219 break; 220 case FLOPPY_DRIVE_TYPE_NONE: 221 default: 222 val = 0; 223 break; 224 } 225 return val; 226 } 227 228 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 229 int16_t cylinders, int8_t heads, int8_t sectors) 230 { 231 rtc_set_memory(s, type_ofs, 47); 232 rtc_set_memory(s, info_ofs, cylinders); 233 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 234 rtc_set_memory(s, info_ofs + 2, heads); 235 rtc_set_memory(s, info_ofs + 3, 0xff); 236 rtc_set_memory(s, info_ofs + 4, 0xff); 237 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 238 rtc_set_memory(s, info_ofs + 6, cylinders); 239 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 240 rtc_set_memory(s, info_ofs + 8, sectors); 241 } 242 243 /* convert boot_device letter to something recognizable by the bios */ 244 static int boot_device2nibble(char boot_device) 245 { 246 switch(boot_device) { 247 case 'a': 248 case 'b': 249 return 0x01; /* floppy boot */ 250 case 'c': 251 return 0x02; /* hard drive boot */ 252 case 'd': 253 return 0x03; /* CD-ROM boot */ 254 case 'n': 255 return 0x04; /* Network boot */ 256 } 257 return 0; 258 } 259 260 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 261 { 262 #define PC_MAX_BOOT_DEVICES 3 263 int nbds, bds[3] = { 0, }; 264 int i; 265 266 nbds = strlen(boot_device); 267 if (nbds > PC_MAX_BOOT_DEVICES) { 268 error_setg(errp, "Too many boot devices for PC"); 269 return; 270 } 271 for (i = 0; i < nbds; i++) { 272 bds[i] = boot_device2nibble(boot_device[i]); 273 if (bds[i] == 0) { 274 error_setg(errp, "Invalid boot device for PC: '%c'", 275 boot_device[i]); 276 return; 277 } 278 } 279 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 280 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 281 } 282 283 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 284 { 285 set_boot_dev(opaque, boot_device, errp); 286 } 287 288 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 289 { 290 int val, nb, i; 291 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 292 FLOPPY_DRIVE_TYPE_NONE }; 293 294 /* floppy type */ 295 if (floppy) { 296 for (i = 0; i < 2; i++) { 297 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 298 } 299 } 300 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 301 cmos_get_fd_drive_type(fd_type[1]); 302 rtc_set_memory(rtc_state, 0x10, val); 303 304 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 305 nb = 0; 306 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 307 nb++; 308 } 309 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 310 nb++; 311 } 312 switch (nb) { 313 case 0: 314 break; 315 case 1: 316 val |= 0x01; /* 1 drive, ready for boot */ 317 break; 318 case 2: 319 val |= 0x41; /* 2 drives, ready for boot */ 320 break; 321 } 322 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 323 } 324 325 typedef struct pc_cmos_init_late_arg { 326 ISADevice *rtc_state; 327 BusState *idebus[2]; 328 } pc_cmos_init_late_arg; 329 330 typedef struct check_fdc_state { 331 ISADevice *floppy; 332 bool multiple; 333 } CheckFdcState; 334 335 static int check_fdc(Object *obj, void *opaque) 336 { 337 CheckFdcState *state = opaque; 338 Object *fdc; 339 uint32_t iobase; 340 Error *local_err = NULL; 341 342 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 343 if (!fdc) { 344 return 0; 345 } 346 347 iobase = object_property_get_int(obj, "iobase", &local_err); 348 if (local_err || iobase != 0x3f0) { 349 error_free(local_err); 350 return 0; 351 } 352 353 if (state->floppy) { 354 state->multiple = true; 355 } else { 356 state->floppy = ISA_DEVICE(obj); 357 } 358 return 0; 359 } 360 361 static const char * const fdc_container_path[] = { 362 "/unattached", "/peripheral", "/peripheral-anon" 363 }; 364 365 /* 366 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 367 * and ACPI objects. 368 */ 369 ISADevice *pc_find_fdc0(void) 370 { 371 int i; 372 Object *container; 373 CheckFdcState state = { 0 }; 374 375 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 376 container = container_get(qdev_get_machine(), fdc_container_path[i]); 377 object_child_foreach(container, check_fdc, &state); 378 } 379 380 if (state.multiple) { 381 error_report("warning: multiple floppy disk controllers with " 382 "iobase=0x3f0 have been found"); 383 error_printf("the one being picked for CMOS setup might not reflect " 384 "your intent"); 385 } 386 387 return state.floppy; 388 } 389 390 static void pc_cmos_init_late(void *opaque) 391 { 392 pc_cmos_init_late_arg *arg = opaque; 393 ISADevice *s = arg->rtc_state; 394 int16_t cylinders; 395 int8_t heads, sectors; 396 int val; 397 int i, trans; 398 399 val = 0; 400 if (ide_get_geometry(arg->idebus[0], 0, 401 &cylinders, &heads, §ors) >= 0) { 402 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 403 val |= 0xf0; 404 } 405 if (ide_get_geometry(arg->idebus[0], 1, 406 &cylinders, &heads, §ors) >= 0) { 407 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 408 val |= 0x0f; 409 } 410 rtc_set_memory(s, 0x12, val); 411 412 val = 0; 413 for (i = 0; i < 4; i++) { 414 /* NOTE: ide_get_geometry() returns the physical 415 geometry. It is always such that: 1 <= sects <= 63, 1 416 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 417 geometry can be different if a translation is done. */ 418 if (ide_get_geometry(arg->idebus[i / 2], i % 2, 419 &cylinders, &heads, §ors) >= 0) { 420 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 421 assert((trans & ~3) == 0); 422 val |= trans << (i * 2); 423 } 424 } 425 rtc_set_memory(s, 0x39, val); 426 427 pc_cmos_init_floppy(s, pc_find_fdc0()); 428 429 qemu_unregister_reset(pc_cmos_init_late, opaque); 430 } 431 432 void pc_cmos_init(PCMachineState *pcms, 433 BusState *idebus0, BusState *idebus1, 434 ISADevice *s) 435 { 436 int val; 437 static pc_cmos_init_late_arg arg; 438 439 /* various important CMOS locations needed by PC/Bochs bios */ 440 441 /* memory size */ 442 /* base memory (first MiB) */ 443 val = MIN(pcms->below_4g_mem_size / 1024, 640); 444 rtc_set_memory(s, 0x15, val); 445 rtc_set_memory(s, 0x16, val >> 8); 446 /* extended memory (next 64MiB) */ 447 if (pcms->below_4g_mem_size > 1024 * 1024) { 448 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024; 449 } else { 450 val = 0; 451 } 452 if (val > 65535) 453 val = 65535; 454 rtc_set_memory(s, 0x17, val); 455 rtc_set_memory(s, 0x18, val >> 8); 456 rtc_set_memory(s, 0x30, val); 457 rtc_set_memory(s, 0x31, val >> 8); 458 /* memory between 16MiB and 4GiB */ 459 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) { 460 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536; 461 } else { 462 val = 0; 463 } 464 if (val > 65535) 465 val = 65535; 466 rtc_set_memory(s, 0x34, val); 467 rtc_set_memory(s, 0x35, val >> 8); 468 /* memory above 4GiB */ 469 val = pcms->above_4g_mem_size / 65536; 470 rtc_set_memory(s, 0x5b, val); 471 rtc_set_memory(s, 0x5c, val >> 8); 472 rtc_set_memory(s, 0x5d, val >> 16); 473 474 /* set the number of CPU */ 475 rtc_set_memory(s, 0x5f, smp_cpus - 1); 476 477 object_property_add_link(OBJECT(pcms), "rtc_state", 478 TYPE_ISA_DEVICE, 479 (Object **)&pcms->rtc, 480 object_property_allow_set_link, 481 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort); 482 object_property_set_link(OBJECT(pcms), OBJECT(s), 483 "rtc_state", &error_abort); 484 485 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 486 487 val = 0; 488 val |= 0x02; /* FPU is there */ 489 val |= 0x04; /* PS/2 mouse installed */ 490 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 491 492 /* hard drives and FDC */ 493 arg.rtc_state = s; 494 arg.idebus[0] = idebus0; 495 arg.idebus[1] = idebus1; 496 qemu_register_reset(pc_cmos_init_late, &arg); 497 } 498 499 #define TYPE_PORT92 "port92" 500 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 501 502 /* port 92 stuff: could be split off */ 503 typedef struct Port92State { 504 ISADevice parent_obj; 505 506 MemoryRegion io; 507 uint8_t outport; 508 qemu_irq a20_out; 509 } Port92State; 510 511 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 512 unsigned size) 513 { 514 Port92State *s = opaque; 515 int oldval = s->outport; 516 517 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 518 s->outport = val; 519 qemu_set_irq(s->a20_out, (val >> 1) & 1); 520 if ((val & 1) && !(oldval & 1)) { 521 qemu_system_reset_request(); 522 } 523 } 524 525 static uint64_t port92_read(void *opaque, hwaddr addr, 526 unsigned size) 527 { 528 Port92State *s = opaque; 529 uint32_t ret; 530 531 ret = s->outport; 532 DPRINTF("port92: read 0x%02x\n", ret); 533 return ret; 534 } 535 536 static void port92_init(ISADevice *dev, qemu_irq *a20_out) 537 { 538 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, *a20_out); 539 } 540 541 static const VMStateDescription vmstate_port92_isa = { 542 .name = "port92", 543 .version_id = 1, 544 .minimum_version_id = 1, 545 .fields = (VMStateField[]) { 546 VMSTATE_UINT8(outport, Port92State), 547 VMSTATE_END_OF_LIST() 548 } 549 }; 550 551 static void port92_reset(DeviceState *d) 552 { 553 Port92State *s = PORT92(d); 554 555 s->outport &= ~1; 556 } 557 558 static const MemoryRegionOps port92_ops = { 559 .read = port92_read, 560 .write = port92_write, 561 .impl = { 562 .min_access_size = 1, 563 .max_access_size = 1, 564 }, 565 .endianness = DEVICE_LITTLE_ENDIAN, 566 }; 567 568 static void port92_initfn(Object *obj) 569 { 570 Port92State *s = PORT92(obj); 571 572 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 573 574 s->outport = 0; 575 576 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 577 } 578 579 static void port92_realizefn(DeviceState *dev, Error **errp) 580 { 581 ISADevice *isadev = ISA_DEVICE(dev); 582 Port92State *s = PORT92(dev); 583 584 isa_register_ioport(isadev, &s->io, 0x92); 585 } 586 587 static void port92_class_initfn(ObjectClass *klass, void *data) 588 { 589 DeviceClass *dc = DEVICE_CLASS(klass); 590 591 dc->realize = port92_realizefn; 592 dc->reset = port92_reset; 593 dc->vmsd = &vmstate_port92_isa; 594 /* 595 * Reason: unlike ordinary ISA devices, this one needs additional 596 * wiring: its A20 output line needs to be wired up by 597 * port92_init(). 598 */ 599 dc->cannot_instantiate_with_device_add_yet = true; 600 } 601 602 static const TypeInfo port92_info = { 603 .name = TYPE_PORT92, 604 .parent = TYPE_ISA_DEVICE, 605 .instance_size = sizeof(Port92State), 606 .instance_init = port92_initfn, 607 .class_init = port92_class_initfn, 608 }; 609 610 static void port92_register_types(void) 611 { 612 type_register_static(&port92_info); 613 } 614 615 type_init(port92_register_types) 616 617 static void handle_a20_line_change(void *opaque, int irq, int level) 618 { 619 X86CPU *cpu = opaque; 620 621 /* XXX: send to all CPUs ? */ 622 /* XXX: add logic to handle multiple A20 line sources */ 623 x86_cpu_set_a20(cpu, level); 624 } 625 626 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 627 { 628 int index = le32_to_cpu(e820_reserve.count); 629 struct e820_entry *entry; 630 631 if (type != E820_RAM) { 632 /* old FW_CFG_E820_TABLE entry -- reservations only */ 633 if (index >= E820_NR_ENTRIES) { 634 return -EBUSY; 635 } 636 entry = &e820_reserve.entry[index++]; 637 638 entry->address = cpu_to_le64(address); 639 entry->length = cpu_to_le64(length); 640 entry->type = cpu_to_le32(type); 641 642 e820_reserve.count = cpu_to_le32(index); 643 } 644 645 /* new "etc/e820" file -- include ram too */ 646 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 647 e820_table[e820_entries].address = cpu_to_le64(address); 648 e820_table[e820_entries].length = cpu_to_le64(length); 649 e820_table[e820_entries].type = cpu_to_le32(type); 650 e820_entries++; 651 652 return e820_entries; 653 } 654 655 int e820_get_num_entries(void) 656 { 657 return e820_entries; 658 } 659 660 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 661 { 662 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 663 *address = le64_to_cpu(e820_table[idx].address); 664 *length = le64_to_cpu(e820_table[idx].length); 665 return true; 666 } 667 return false; 668 } 669 670 /* Enables contiguous-apic-ID mode, for compatibility */ 671 static bool compat_apic_id_mode; 672 673 void enable_compat_apic_id_mode(void) 674 { 675 compat_apic_id_mode = true; 676 } 677 678 /* Calculates initial APIC ID for a specific CPU index 679 * 680 * Currently we need to be able to calculate the APIC ID from the CPU index 681 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 682 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 683 * all CPUs up to max_cpus. 684 */ 685 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 686 { 687 uint32_t correct_id; 688 static bool warned; 689 690 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 691 if (compat_apic_id_mode) { 692 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 693 error_report("APIC IDs set in compatibility mode, " 694 "CPU topology won't match the configuration"); 695 warned = true; 696 } 697 return cpu_index; 698 } else { 699 return correct_id; 700 } 701 } 702 703 static void pc_build_smbios(FWCfgState *fw_cfg) 704 { 705 uint8_t *smbios_tables, *smbios_anchor; 706 size_t smbios_tables_len, smbios_anchor_len; 707 struct smbios_phys_mem_area *mem_array; 708 unsigned i, array_count; 709 710 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 711 if (smbios_tables) { 712 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, 713 smbios_tables, smbios_tables_len); 714 } 715 716 /* build the array of physical mem area from e820 table */ 717 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 718 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 719 uint64_t addr, len; 720 721 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 722 mem_array[array_count].address = addr; 723 mem_array[array_count].length = len; 724 array_count++; 725 } 726 } 727 smbios_get_tables(mem_array, array_count, 728 &smbios_tables, &smbios_tables_len, 729 &smbios_anchor, &smbios_anchor_len); 730 g_free(mem_array); 731 732 if (smbios_anchor) { 733 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 734 smbios_tables, smbios_tables_len); 735 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 736 smbios_anchor, smbios_anchor_len); 737 } 738 } 739 740 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 741 { 742 FWCfgState *fw_cfg; 743 uint64_t *numa_fw_cfg; 744 int i, j; 745 746 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 747 748 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 749 * 750 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug 751 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC 752 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the 753 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS 754 * may see". 755 * 756 * So, this means we must not use max_cpus, here, but the maximum possible 757 * APIC ID value, plus one. 758 * 759 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is 760 * the APIC ID, not the "CPU index" 761 */ 762 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 763 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 764 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 765 acpi_tables, acpi_tables_len); 766 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 767 768 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 769 &e820_reserve, sizeof(e820_reserve)); 770 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 771 sizeof(struct e820_entry) * e820_entries); 772 773 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 774 /* allocate memory for the NUMA channel: one (64bit) word for the number 775 * of nodes, one word for each VCPU->node and one word for each node to 776 * hold the amount of memory. 777 */ 778 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 779 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 780 for (i = 0; i < max_cpus; i++) { 781 unsigned int apic_id = x86_cpu_apic_id_from_index(i); 782 assert(apic_id < pcms->apic_id_limit); 783 for (j = 0; j < nb_numa_nodes; j++) { 784 if (test_bit(i, numa_info[j].node_cpu)) { 785 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j); 786 break; 787 } 788 } 789 } 790 for (i = 0; i < nb_numa_nodes; i++) { 791 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 792 cpu_to_le64(numa_info[i].node_mem); 793 } 794 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 795 (1 + pcms->apic_id_limit + nb_numa_nodes) * 796 sizeof(*numa_fw_cfg)); 797 798 return fw_cfg; 799 } 800 801 static long get_file_size(FILE *f) 802 { 803 long where, size; 804 805 /* XXX: on Unix systems, using fstat() probably makes more sense */ 806 807 where = ftell(f); 808 fseek(f, 0, SEEK_END); 809 size = ftell(f); 810 fseek(f, where, SEEK_SET); 811 812 return size; 813 } 814 815 /* setup_data types */ 816 #define SETUP_NONE 0 817 #define SETUP_E820_EXT 1 818 #define SETUP_DTB 2 819 #define SETUP_PCI 3 820 #define SETUP_EFI 4 821 822 struct setup_data { 823 uint64_t next; 824 uint32_t type; 825 uint32_t len; 826 uint8_t data[0]; 827 } __attribute__((packed)); 828 829 static void load_linux(PCMachineState *pcms, 830 FWCfgState *fw_cfg) 831 { 832 uint16_t protocol; 833 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 834 int dtb_size, setup_data_offset; 835 uint32_t initrd_max; 836 uint8_t header[8192], *setup, *kernel, *initrd_data; 837 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 838 FILE *f; 839 char *vmode; 840 MachineState *machine = MACHINE(pcms); 841 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 842 struct setup_data *setup_data; 843 const char *kernel_filename = machine->kernel_filename; 844 const char *initrd_filename = machine->initrd_filename; 845 const char *dtb_filename = machine->dtb; 846 const char *kernel_cmdline = machine->kernel_cmdline; 847 848 /* Align to 16 bytes as a paranoia measure */ 849 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 850 851 /* load the kernel header */ 852 f = fopen(kernel_filename, "rb"); 853 if (!f || !(kernel_size = get_file_size(f)) || 854 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 855 MIN(ARRAY_SIZE(header), kernel_size)) { 856 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 857 kernel_filename, strerror(errno)); 858 exit(1); 859 } 860 861 /* kernel protocol version */ 862 #if 0 863 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 864 #endif 865 if (ldl_p(header+0x202) == 0x53726448) { 866 protocol = lduw_p(header+0x206); 867 } else { 868 /* This looks like a multiboot kernel. If it is, let's stop 869 treating it like a Linux kernel. */ 870 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 871 kernel_cmdline, kernel_size, header)) { 872 return; 873 } 874 protocol = 0; 875 } 876 877 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 878 /* Low kernel */ 879 real_addr = 0x90000; 880 cmdline_addr = 0x9a000 - cmdline_size; 881 prot_addr = 0x10000; 882 } else if (protocol < 0x202) { 883 /* High but ancient kernel */ 884 real_addr = 0x90000; 885 cmdline_addr = 0x9a000 - cmdline_size; 886 prot_addr = 0x100000; 887 } else { 888 /* High and recent kernel */ 889 real_addr = 0x10000; 890 cmdline_addr = 0x20000; 891 prot_addr = 0x100000; 892 } 893 894 #if 0 895 fprintf(stderr, 896 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 897 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 898 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 899 real_addr, 900 cmdline_addr, 901 prot_addr); 902 #endif 903 904 /* highest address for loading the initrd */ 905 if (protocol >= 0x203) { 906 initrd_max = ldl_p(header+0x22c); 907 } else { 908 initrd_max = 0x37ffffff; 909 } 910 911 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 912 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 913 } 914 915 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 916 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 917 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 918 919 if (protocol >= 0x202) { 920 stl_p(header+0x228, cmdline_addr); 921 } else { 922 stw_p(header+0x20, 0xA33F); 923 stw_p(header+0x22, cmdline_addr-real_addr); 924 } 925 926 /* handle vga= parameter */ 927 vmode = strstr(kernel_cmdline, "vga="); 928 if (vmode) { 929 unsigned int video_mode; 930 /* skip "vga=" */ 931 vmode += 4; 932 if (!strncmp(vmode, "normal", 6)) { 933 video_mode = 0xffff; 934 } else if (!strncmp(vmode, "ext", 3)) { 935 video_mode = 0xfffe; 936 } else if (!strncmp(vmode, "ask", 3)) { 937 video_mode = 0xfffd; 938 } else { 939 video_mode = strtol(vmode, NULL, 0); 940 } 941 stw_p(header+0x1fa, video_mode); 942 } 943 944 /* loader type */ 945 /* High nybble = B reserved for QEMU; low nybble is revision number. 946 If this code is substantially changed, you may want to consider 947 incrementing the revision. */ 948 if (protocol >= 0x200) { 949 header[0x210] = 0xB0; 950 } 951 /* heap */ 952 if (protocol >= 0x201) { 953 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 954 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 955 } 956 957 /* load initrd */ 958 if (initrd_filename) { 959 if (protocol < 0x200) { 960 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 961 exit(1); 962 } 963 964 initrd_size = get_image_size(initrd_filename); 965 if (initrd_size < 0) { 966 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 967 initrd_filename, strerror(errno)); 968 exit(1); 969 } 970 971 initrd_addr = (initrd_max-initrd_size) & ~4095; 972 973 initrd_data = g_malloc(initrd_size); 974 load_image(initrd_filename, initrd_data); 975 976 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 977 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 978 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 979 980 stl_p(header+0x218, initrd_addr); 981 stl_p(header+0x21c, initrd_size); 982 } 983 984 /* load kernel and setup */ 985 setup_size = header[0x1f1]; 986 if (setup_size == 0) { 987 setup_size = 4; 988 } 989 setup_size = (setup_size+1)*512; 990 if (setup_size > kernel_size) { 991 fprintf(stderr, "qemu: invalid kernel header\n"); 992 exit(1); 993 } 994 kernel_size -= setup_size; 995 996 setup = g_malloc(setup_size); 997 kernel = g_malloc(kernel_size); 998 fseek(f, 0, SEEK_SET); 999 if (fread(setup, 1, setup_size, f) != setup_size) { 1000 fprintf(stderr, "fread() failed\n"); 1001 exit(1); 1002 } 1003 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1004 fprintf(stderr, "fread() failed\n"); 1005 exit(1); 1006 } 1007 fclose(f); 1008 1009 /* append dtb to kernel */ 1010 if (dtb_filename) { 1011 if (protocol < 0x209) { 1012 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1013 exit(1); 1014 } 1015 1016 dtb_size = get_image_size(dtb_filename); 1017 if (dtb_size <= 0) { 1018 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1019 dtb_filename, strerror(errno)); 1020 exit(1); 1021 } 1022 1023 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1024 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1025 kernel = g_realloc(kernel, kernel_size); 1026 1027 stq_p(header+0x250, prot_addr + setup_data_offset); 1028 1029 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1030 setup_data->next = 0; 1031 setup_data->type = cpu_to_le32(SETUP_DTB); 1032 setup_data->len = cpu_to_le32(dtb_size); 1033 1034 load_image_size(dtb_filename, setup_data->data, dtb_size); 1035 } 1036 1037 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1038 1039 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1040 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1041 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1042 1043 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1044 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1045 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1046 1047 if (fw_cfg_dma_enabled(fw_cfg)) { 1048 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1049 option_rom[nb_option_roms].bootindex = 0; 1050 } else { 1051 option_rom[nb_option_roms].name = "linuxboot.bin"; 1052 option_rom[nb_option_roms].bootindex = 0; 1053 } 1054 nb_option_roms++; 1055 } 1056 1057 #define NE2000_NB_MAX 6 1058 1059 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1060 0x280, 0x380 }; 1061 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1062 1063 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1064 { 1065 static int nb_ne2k = 0; 1066 1067 if (nb_ne2k == NE2000_NB_MAX) 1068 return; 1069 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1070 ne2000_irq[nb_ne2k], nd); 1071 nb_ne2k++; 1072 } 1073 1074 DeviceState *cpu_get_current_apic(void) 1075 { 1076 if (current_cpu) { 1077 X86CPU *cpu = X86_CPU(current_cpu); 1078 return cpu->apic_state; 1079 } else { 1080 return NULL; 1081 } 1082 } 1083 1084 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1085 { 1086 X86CPU *cpu = opaque; 1087 1088 if (level) { 1089 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1090 } 1091 } 1092 1093 static X86CPU *pc_new_cpu(const char *typename, int64_t apic_id, 1094 Error **errp) 1095 { 1096 X86CPU *cpu = NULL; 1097 Error *local_err = NULL; 1098 1099 cpu = X86_CPU(object_new(typename)); 1100 1101 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err); 1102 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err); 1103 1104 if (local_err) { 1105 error_propagate(errp, local_err); 1106 object_unref(OBJECT(cpu)); 1107 cpu = NULL; 1108 } 1109 return cpu; 1110 } 1111 1112 void pc_hot_add_cpu(const int64_t id, Error **errp) 1113 { 1114 X86CPU *cpu; 1115 ObjectClass *oc; 1116 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1117 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1118 Error *local_err = NULL; 1119 1120 if (id < 0) { 1121 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1122 return; 1123 } 1124 1125 if (cpu_exists(apic_id)) { 1126 error_setg(errp, "Unable to add CPU: %" PRIi64 1127 ", it already exists", id); 1128 return; 1129 } 1130 1131 if (id >= max_cpus) { 1132 error_setg(errp, "Unable to add CPU: %" PRIi64 1133 ", max allowed: %d", id, max_cpus - 1); 1134 return; 1135 } 1136 1137 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1138 error_setg(errp, "Unable to add CPU: %" PRIi64 1139 ", resulting APIC ID (%" PRIi64 ") is too large", 1140 id, apic_id); 1141 return; 1142 } 1143 1144 assert(pcms->possible_cpus->cpus[0].cpu); /* BSP is always present */ 1145 oc = OBJECT_CLASS(CPU_GET_CLASS(pcms->possible_cpus->cpus[0].cpu)); 1146 cpu = pc_new_cpu(object_class_get_name(oc), apic_id, &local_err); 1147 if (local_err) { 1148 error_propagate(errp, local_err); 1149 return; 1150 } 1151 object_unref(OBJECT(cpu)); 1152 } 1153 1154 void pc_cpus_init(PCMachineState *pcms) 1155 { 1156 int i; 1157 CPUClass *cc; 1158 ObjectClass *oc; 1159 const char *typename; 1160 gchar **model_pieces; 1161 X86CPU *cpu = NULL; 1162 MachineState *machine = MACHINE(pcms); 1163 1164 /* init CPUs */ 1165 if (machine->cpu_model == NULL) { 1166 #ifdef TARGET_X86_64 1167 machine->cpu_model = "qemu64"; 1168 #else 1169 machine->cpu_model = "qemu32"; 1170 #endif 1171 } 1172 1173 model_pieces = g_strsplit(machine->cpu_model, ",", 2); 1174 if (!model_pieces[0]) { 1175 error_report("Invalid/empty CPU model name"); 1176 exit(1); 1177 } 1178 1179 oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]); 1180 if (oc == NULL) { 1181 error_report("Unable to find CPU definition: %s", model_pieces[0]); 1182 exit(1); 1183 } 1184 typename = object_class_get_name(oc); 1185 cc = CPU_CLASS(oc); 1186 cc->parse_features(typename, model_pieces[1], &error_fatal); 1187 g_strfreev(model_pieces); 1188 1189 /* Calculates the limit to CPU APIC ID values 1190 * 1191 * Limit for the APIC ID value, so that all 1192 * CPU APIC IDs are < pcms->apic_id_limit. 1193 * 1194 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1195 */ 1196 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1197 if (pcms->apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) { 1198 error_report("max_cpus is too large. APIC ID of last CPU is %u", 1199 pcms->apic_id_limit - 1); 1200 exit(1); 1201 } 1202 1203 pcms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 1204 sizeof(CPUArchId) * max_cpus); 1205 for (i = 0; i < max_cpus; i++) { 1206 pcms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 1207 pcms->possible_cpus->len++; 1208 if (i < smp_cpus) { 1209 cpu = pc_new_cpu(typename, x86_cpu_apic_id_from_index(i), 1210 &error_fatal); 1211 pcms->possible_cpus->cpus[i].cpu = CPU(cpu); 1212 object_unref(OBJECT(cpu)); 1213 } 1214 } 1215 1216 /* tell smbios about cpuid version and features */ 1217 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 1218 } 1219 1220 static void pc_build_feature_control_file(PCMachineState *pcms) 1221 { 1222 X86CPU *cpu = X86_CPU(pcms->possible_cpus->cpus[0].cpu); 1223 CPUX86State *env = &cpu->env; 1224 uint32_t unused, ecx, edx; 1225 uint64_t feature_control_bits = 0; 1226 uint64_t *val; 1227 1228 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1229 if (ecx & CPUID_EXT_VMX) { 1230 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1231 } 1232 1233 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1234 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1235 (env->mcg_cap & MCG_LMCE_P)) { 1236 feature_control_bits |= FEATURE_CONTROL_LMCE; 1237 } 1238 1239 if (!feature_control_bits) { 1240 return; 1241 } 1242 1243 val = g_malloc(sizeof(*val)); 1244 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1245 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1246 } 1247 1248 static 1249 void pc_machine_done(Notifier *notifier, void *data) 1250 { 1251 PCMachineState *pcms = container_of(notifier, 1252 PCMachineState, machine_done); 1253 PCIBus *bus = pcms->bus; 1254 1255 if (bus) { 1256 int extra_hosts = 0; 1257 1258 QLIST_FOREACH(bus, &bus->child, sibling) { 1259 /* look for expander root buses */ 1260 if (pci_bus_is_root(bus)) { 1261 extra_hosts++; 1262 } 1263 } 1264 if (extra_hosts && pcms->fw_cfg) { 1265 uint64_t *val = g_malloc(sizeof(*val)); 1266 *val = cpu_to_le64(extra_hosts); 1267 fw_cfg_add_file(pcms->fw_cfg, 1268 "etc/extra-pci-roots", val, sizeof(*val)); 1269 } 1270 } 1271 1272 acpi_setup(); 1273 if (pcms->fw_cfg) { 1274 pc_build_smbios(pcms->fw_cfg); 1275 pc_build_feature_control_file(pcms); 1276 } 1277 } 1278 1279 void pc_guest_info_init(PCMachineState *pcms) 1280 { 1281 int i; 1282 1283 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1284 pcms->numa_nodes = nb_numa_nodes; 1285 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1286 sizeof *pcms->node_mem); 1287 for (i = 0; i < nb_numa_nodes; i++) { 1288 pcms->node_mem[i] = numa_info[i].node_mem; 1289 } 1290 1291 pcms->machine_done.notify = pc_machine_done; 1292 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1293 } 1294 1295 /* setup pci memory address space mapping into system address space */ 1296 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1297 MemoryRegion *pci_address_space) 1298 { 1299 /* Set to lower priority than RAM */ 1300 memory_region_add_subregion_overlap(system_memory, 0x0, 1301 pci_address_space, -1); 1302 } 1303 1304 void pc_acpi_init(const char *default_dsdt) 1305 { 1306 char *filename; 1307 1308 if (acpi_tables != NULL) { 1309 /* manually set via -acpitable, leave it alone */ 1310 return; 1311 } 1312 1313 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1314 if (filename == NULL) { 1315 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt); 1316 } else { 1317 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1318 &error_abort); 1319 Error *err = NULL; 1320 1321 qemu_opt_set(opts, "file", filename, &error_abort); 1322 1323 acpi_table_add_builtin(opts, &err); 1324 if (err) { 1325 error_reportf_err(err, "WARNING: failed to load %s: ", 1326 filename); 1327 } 1328 g_free(filename); 1329 } 1330 } 1331 1332 void xen_load_linux(PCMachineState *pcms) 1333 { 1334 int i; 1335 FWCfgState *fw_cfg; 1336 1337 assert(MACHINE(pcms)->kernel_filename != NULL); 1338 1339 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1340 rom_set_fw(fw_cfg); 1341 1342 load_linux(pcms, fw_cfg); 1343 for (i = 0; i < nb_option_roms; i++) { 1344 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1345 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1346 !strcmp(option_rom[i].name, "multiboot.bin")); 1347 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1348 } 1349 pcms->fw_cfg = fw_cfg; 1350 } 1351 1352 void pc_memory_init(PCMachineState *pcms, 1353 MemoryRegion *system_memory, 1354 MemoryRegion *rom_memory, 1355 MemoryRegion **ram_memory) 1356 { 1357 int linux_boot, i; 1358 MemoryRegion *ram, *option_rom_mr; 1359 MemoryRegion *ram_below_4g, *ram_above_4g; 1360 FWCfgState *fw_cfg; 1361 MachineState *machine = MACHINE(pcms); 1362 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1363 1364 assert(machine->ram_size == pcms->below_4g_mem_size + 1365 pcms->above_4g_mem_size); 1366 1367 linux_boot = (machine->kernel_filename != NULL); 1368 1369 /* Allocate RAM. We allocate it as a single memory region and use 1370 * aliases to address portions of it, mostly for backwards compatibility 1371 * with older qemus that used qemu_ram_alloc(). 1372 */ 1373 ram = g_malloc(sizeof(*ram)); 1374 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1375 machine->ram_size); 1376 *ram_memory = ram; 1377 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1378 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1379 0, pcms->below_4g_mem_size); 1380 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1381 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1382 if (pcms->above_4g_mem_size > 0) { 1383 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1384 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1385 pcms->below_4g_mem_size, 1386 pcms->above_4g_mem_size); 1387 memory_region_add_subregion(system_memory, 0x100000000ULL, 1388 ram_above_4g); 1389 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1390 } 1391 1392 if (!pcmc->has_reserved_memory && 1393 (machine->ram_slots || 1394 (machine->maxram_size > machine->ram_size))) { 1395 MachineClass *mc = MACHINE_GET_CLASS(machine); 1396 1397 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1398 mc->name); 1399 exit(EXIT_FAILURE); 1400 } 1401 1402 /* initialize hotplug memory address space */ 1403 if (pcmc->has_reserved_memory && 1404 (machine->ram_size < machine->maxram_size)) { 1405 ram_addr_t hotplug_mem_size = 1406 machine->maxram_size - machine->ram_size; 1407 1408 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1409 error_report("unsupported amount of memory slots: %"PRIu64, 1410 machine->ram_slots); 1411 exit(EXIT_FAILURE); 1412 } 1413 1414 if (QEMU_ALIGN_UP(machine->maxram_size, 1415 TARGET_PAGE_SIZE) != machine->maxram_size) { 1416 error_report("maximum memory size must by aligned to multiple of " 1417 "%d bytes", TARGET_PAGE_SIZE); 1418 exit(EXIT_FAILURE); 1419 } 1420 1421 pcms->hotplug_memory.base = 1422 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30); 1423 1424 if (pcmc->enforce_aligned_dimm) { 1425 /* size hotplug region assuming 1G page max alignment per slot */ 1426 hotplug_mem_size += (1ULL << 30) * machine->ram_slots; 1427 } 1428 1429 if ((pcms->hotplug_memory.base + hotplug_mem_size) < 1430 hotplug_mem_size) { 1431 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1432 machine->maxram_size); 1433 exit(EXIT_FAILURE); 1434 } 1435 1436 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms), 1437 "hotplug-memory", hotplug_mem_size); 1438 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base, 1439 &pcms->hotplug_memory.mr); 1440 } 1441 1442 /* Initialize PC system firmware */ 1443 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1444 1445 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1446 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1447 &error_fatal); 1448 vmstate_register_ram_global(option_rom_mr); 1449 memory_region_add_subregion_overlap(rom_memory, 1450 PC_ROM_MIN_VGA, 1451 option_rom_mr, 1452 1); 1453 1454 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1455 1456 rom_set_fw(fw_cfg); 1457 1458 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) { 1459 uint64_t *val = g_malloc(sizeof(*val)); 1460 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1461 uint64_t res_mem_end = pcms->hotplug_memory.base; 1462 1463 if (!pcmc->broken_reserved_end) { 1464 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr); 1465 } 1466 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30)); 1467 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1468 } 1469 1470 if (linux_boot) { 1471 load_linux(pcms, fw_cfg); 1472 } 1473 1474 for (i = 0; i < nb_option_roms; i++) { 1475 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1476 } 1477 pcms->fw_cfg = fw_cfg; 1478 1479 /* Init default IOAPIC address space */ 1480 pcms->ioapic_as = &address_space_memory; 1481 } 1482 1483 qemu_irq pc_allocate_cpu_irq(void) 1484 { 1485 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1486 } 1487 1488 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1489 { 1490 DeviceState *dev = NULL; 1491 1492 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1493 if (pci_bus) { 1494 PCIDevice *pcidev = pci_vga_init(pci_bus); 1495 dev = pcidev ? &pcidev->qdev : NULL; 1496 } else if (isa_bus) { 1497 ISADevice *isadev = isa_vga_init(isa_bus); 1498 dev = isadev ? DEVICE(isadev) : NULL; 1499 } 1500 rom_reset_order_override(); 1501 return dev; 1502 } 1503 1504 static const MemoryRegionOps ioport80_io_ops = { 1505 .write = ioport80_write, 1506 .read = ioport80_read, 1507 .endianness = DEVICE_NATIVE_ENDIAN, 1508 .impl = { 1509 .min_access_size = 1, 1510 .max_access_size = 1, 1511 }, 1512 }; 1513 1514 static const MemoryRegionOps ioportF0_io_ops = { 1515 .write = ioportF0_write, 1516 .read = ioportF0_read, 1517 .endianness = DEVICE_NATIVE_ENDIAN, 1518 .impl = { 1519 .min_access_size = 1, 1520 .max_access_size = 1, 1521 }, 1522 }; 1523 1524 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1525 ISADevice **rtc_state, 1526 bool create_fdctrl, 1527 bool no_vmport, 1528 uint32_t hpet_irqs) 1529 { 1530 int i; 1531 DriveInfo *fd[MAX_FD]; 1532 DeviceState *hpet = NULL; 1533 int pit_isa_irq = 0; 1534 qemu_irq pit_alt_irq = NULL; 1535 qemu_irq rtc_irq = NULL; 1536 qemu_irq *a20_line; 1537 ISADevice *i8042, *port92, *vmmouse, *pit = NULL; 1538 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1539 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1540 1541 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1542 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1543 1544 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1545 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1546 1547 /* 1548 * Check if an HPET shall be created. 1549 * 1550 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1551 * when the HPET wants to take over. Thus we have to disable the latter. 1552 */ 1553 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1554 /* In order to set property, here not using sysbus_try_create_simple */ 1555 hpet = qdev_try_create(NULL, TYPE_HPET); 1556 if (hpet) { 1557 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1558 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1559 * IRQ8 and IRQ2. 1560 */ 1561 uint8_t compat = object_property_get_int(OBJECT(hpet), 1562 HPET_INTCAP, NULL); 1563 if (!compat) { 1564 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1565 } 1566 qdev_init_nofail(hpet); 1567 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1568 1569 for (i = 0; i < GSI_NUM_PINS; i++) { 1570 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1571 } 1572 pit_isa_irq = -1; 1573 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1574 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1575 } 1576 } 1577 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq); 1578 1579 qemu_register_boot_set(pc_boot_set, *rtc_state); 1580 1581 if (!xen_enabled()) { 1582 if (kvm_pit_in_kernel()) { 1583 pit = kvm_pit_init(isa_bus, 0x40); 1584 } else { 1585 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1586 } 1587 if (hpet) { 1588 /* connect PIT to output control line of the HPET */ 1589 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1590 } 1591 pcspk_init(isa_bus, pit); 1592 } 1593 1594 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS); 1595 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1596 1597 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1598 i8042 = isa_create_simple(isa_bus, "i8042"); 1599 i8042_setup_a20_line(i8042, &a20_line[0]); 1600 if (!no_vmport) { 1601 vmport_init(isa_bus); 1602 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1603 } else { 1604 vmmouse = NULL; 1605 } 1606 if (vmmouse) { 1607 DeviceState *dev = DEVICE(vmmouse); 1608 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1609 qdev_init_nofail(dev); 1610 } 1611 port92 = isa_create_simple(isa_bus, "port92"); 1612 port92_init(port92, &a20_line[1]); 1613 1614 DMA_init(isa_bus, 0); 1615 1616 for(i = 0; i < MAX_FD; i++) { 1617 fd[i] = drive_get(IF_FLOPPY, 0, i); 1618 create_fdctrl |= !!fd[i]; 1619 } 1620 if (create_fdctrl) { 1621 fdctrl_init_isa(isa_bus, fd); 1622 } 1623 } 1624 1625 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) 1626 { 1627 int i; 1628 1629 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1630 for (i = 0; i < nb_nics; i++) { 1631 NICInfo *nd = &nd_table[i]; 1632 1633 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { 1634 pc_init_ne2k_isa(isa_bus, nd); 1635 } else { 1636 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL); 1637 } 1638 } 1639 rom_reset_order_override(); 1640 } 1641 1642 void pc_pci_device_init(PCIBus *pci_bus) 1643 { 1644 int max_bus; 1645 int bus; 1646 1647 max_bus = drive_get_max_bus(IF_SCSI); 1648 for (bus = 0; bus <= max_bus; bus++) { 1649 pci_create_simple(pci_bus, -1, "lsi53c895a"); 1650 } 1651 } 1652 1653 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1654 { 1655 DeviceState *dev; 1656 SysBusDevice *d; 1657 unsigned int i; 1658 1659 if (kvm_ioapic_in_kernel()) { 1660 dev = qdev_create(NULL, "kvm-ioapic"); 1661 } else { 1662 dev = qdev_create(NULL, "ioapic"); 1663 } 1664 if (parent_name) { 1665 object_property_add_child(object_resolve_path(parent_name, NULL), 1666 "ioapic", OBJECT(dev), NULL); 1667 } 1668 qdev_init_nofail(dev); 1669 d = SYS_BUS_DEVICE(dev); 1670 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1671 1672 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1673 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1674 } 1675 } 1676 1677 static void pc_dimm_plug(HotplugHandler *hotplug_dev, 1678 DeviceState *dev, Error **errp) 1679 { 1680 HotplugHandlerClass *hhc; 1681 Error *local_err = NULL; 1682 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1683 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1684 PCDIMMDevice *dimm = PC_DIMM(dev); 1685 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1686 MemoryRegion *mr = ddc->get_memory_region(dimm); 1687 uint64_t align = TARGET_PAGE_SIZE; 1688 1689 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) { 1690 align = memory_region_get_alignment(mr); 1691 } 1692 1693 if (!pcms->acpi_dev) { 1694 error_setg(&local_err, 1695 "memory hotplug is not enabled: missing acpi device"); 1696 goto out; 1697 } 1698 1699 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err); 1700 if (local_err) { 1701 goto out; 1702 } 1703 1704 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1705 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1706 out: 1707 error_propagate(errp, local_err); 1708 } 1709 1710 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev, 1711 DeviceState *dev, Error **errp) 1712 { 1713 HotplugHandlerClass *hhc; 1714 Error *local_err = NULL; 1715 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1716 1717 if (!pcms->acpi_dev) { 1718 error_setg(&local_err, 1719 "memory hotplug is not enabled: missing acpi device"); 1720 goto out; 1721 } 1722 1723 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1724 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1725 1726 out: 1727 error_propagate(errp, local_err); 1728 } 1729 1730 static void pc_dimm_unplug(HotplugHandler *hotplug_dev, 1731 DeviceState *dev, Error **errp) 1732 { 1733 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1734 PCDIMMDevice *dimm = PC_DIMM(dev); 1735 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1736 MemoryRegion *mr = ddc->get_memory_region(dimm); 1737 HotplugHandlerClass *hhc; 1738 Error *local_err = NULL; 1739 1740 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1741 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1742 1743 if (local_err) { 1744 goto out; 1745 } 1746 1747 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr); 1748 object_unparent(OBJECT(dev)); 1749 1750 out: 1751 error_propagate(errp, local_err); 1752 } 1753 1754 static int pc_apic_cmp(const void *a, const void *b) 1755 { 1756 CPUArchId *apic_a = (CPUArchId *)a; 1757 CPUArchId *apic_b = (CPUArchId *)b; 1758 1759 return apic_a->arch_id - apic_b->arch_id; 1760 } 1761 1762 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1763 DeviceState *dev, Error **errp) 1764 { 1765 CPUClass *cc = CPU_GET_CLASS(dev); 1766 CPUArchId apic_id, *found_cpu; 1767 HotplugHandlerClass *hhc; 1768 Error *local_err = NULL; 1769 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1770 1771 if (!dev->hotplugged) { 1772 goto out; 1773 } 1774 1775 if (!pcms->acpi_dev) { 1776 error_setg(&local_err, 1777 "cpu hotplug is not enabled: missing acpi device"); 1778 goto out; 1779 } 1780 1781 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1782 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1783 if (local_err) { 1784 goto out; 1785 } 1786 1787 /* increment the number of CPUs */ 1788 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1); 1789 1790 apic_id.arch_id = cc->get_arch_id(CPU(dev)); 1791 found_cpu = bsearch(&apic_id, pcms->possible_cpus->cpus, 1792 pcms->possible_cpus->len, sizeof(*pcms->possible_cpus->cpus), 1793 pc_apic_cmp); 1794 assert(found_cpu); 1795 found_cpu->cpu = CPU(dev); 1796 out: 1797 error_propagate(errp, local_err); 1798 } 1799 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1800 DeviceState *dev, Error **errp) 1801 { 1802 HotplugHandlerClass *hhc; 1803 Error *local_err = NULL; 1804 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1805 1806 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1807 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1808 1809 if (local_err) { 1810 goto out; 1811 } 1812 1813 out: 1814 error_propagate(errp, local_err); 1815 1816 } 1817 1818 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1819 DeviceState *dev, Error **errp) 1820 { 1821 HotplugHandlerClass *hhc; 1822 Error *local_err = NULL; 1823 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1824 1825 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1826 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1827 1828 if (local_err) { 1829 goto out; 1830 } 1831 1832 /* 1833 * TODO: enable unplug once generic CPU remove bits land 1834 * for now guest will be able to eject CPU ACPI wise but 1835 * it will come back again on machine reset. 1836 */ 1837 /* object_unparent(OBJECT(dev)); */ 1838 1839 out: 1840 error_propagate(errp, local_err); 1841 } 1842 1843 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 1844 DeviceState *dev, Error **errp) 1845 { 1846 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 1847 pc_dimm_plug(hotplug_dev, dev, errp); 1848 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 1849 pc_cpu_plug(hotplug_dev, dev, errp); 1850 } 1851 } 1852 1853 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 1854 DeviceState *dev, Error **errp) 1855 { 1856 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 1857 pc_dimm_unplug_request(hotplug_dev, dev, errp); 1858 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 1859 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 1860 } else { 1861 error_setg(errp, "acpi: device unplug request for not supported device" 1862 " type: %s", object_get_typename(OBJECT(dev))); 1863 } 1864 } 1865 1866 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 1867 DeviceState *dev, Error **errp) 1868 { 1869 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 1870 pc_dimm_unplug(hotplug_dev, dev, errp); 1871 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 1872 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 1873 } else { 1874 error_setg(errp, "acpi: device unplug for not supported device" 1875 " type: %s", object_get_typename(OBJECT(dev))); 1876 } 1877 } 1878 1879 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 1880 DeviceState *dev) 1881 { 1882 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine); 1883 1884 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 1885 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 1886 return HOTPLUG_HANDLER(machine); 1887 } 1888 1889 return pcmc->get_hotplug_handler ? 1890 pcmc->get_hotplug_handler(machine, dev) : NULL; 1891 } 1892 1893 static void 1894 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, 1895 const char *name, void *opaque, 1896 Error **errp) 1897 { 1898 PCMachineState *pcms = PC_MACHINE(obj); 1899 int64_t value = memory_region_size(&pcms->hotplug_memory.mr); 1900 1901 visit_type_int(v, name, &value, errp); 1902 } 1903 1904 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 1905 const char *name, void *opaque, 1906 Error **errp) 1907 { 1908 PCMachineState *pcms = PC_MACHINE(obj); 1909 uint64_t value = pcms->max_ram_below_4g; 1910 1911 visit_type_size(v, name, &value, errp); 1912 } 1913 1914 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 1915 const char *name, void *opaque, 1916 Error **errp) 1917 { 1918 PCMachineState *pcms = PC_MACHINE(obj); 1919 Error *error = NULL; 1920 uint64_t value; 1921 1922 visit_type_size(v, name, &value, &error); 1923 if (error) { 1924 error_propagate(errp, error); 1925 return; 1926 } 1927 if (value > (1ULL << 32)) { 1928 error_setg(&error, 1929 "Machine option 'max-ram-below-4g=%"PRIu64 1930 "' expects size less than or equal to 4G", value); 1931 error_propagate(errp, error); 1932 return; 1933 } 1934 1935 if (value < (1ULL << 20)) { 1936 error_report("Warning: small max_ram_below_4g(%"PRIu64 1937 ") less than 1M. BIOS may not work..", 1938 value); 1939 } 1940 1941 pcms->max_ram_below_4g = value; 1942 } 1943 1944 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 1945 void *opaque, Error **errp) 1946 { 1947 PCMachineState *pcms = PC_MACHINE(obj); 1948 OnOffAuto vmport = pcms->vmport; 1949 1950 visit_type_OnOffAuto(v, name, &vmport, errp); 1951 } 1952 1953 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 1954 void *opaque, Error **errp) 1955 { 1956 PCMachineState *pcms = PC_MACHINE(obj); 1957 1958 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 1959 } 1960 1961 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 1962 { 1963 bool smm_available = false; 1964 1965 if (pcms->smm == ON_OFF_AUTO_OFF) { 1966 return false; 1967 } 1968 1969 if (tcg_enabled() || qtest_enabled()) { 1970 smm_available = true; 1971 } else if (kvm_enabled()) { 1972 smm_available = kvm_has_smm(); 1973 } 1974 1975 if (smm_available) { 1976 return true; 1977 } 1978 1979 if (pcms->smm == ON_OFF_AUTO_ON) { 1980 error_report("System Management Mode not supported by this hypervisor."); 1981 exit(1); 1982 } 1983 return false; 1984 } 1985 1986 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 1987 void *opaque, Error **errp) 1988 { 1989 PCMachineState *pcms = PC_MACHINE(obj); 1990 OnOffAuto smm = pcms->smm; 1991 1992 visit_type_OnOffAuto(v, name, &smm, errp); 1993 } 1994 1995 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 1996 void *opaque, Error **errp) 1997 { 1998 PCMachineState *pcms = PC_MACHINE(obj); 1999 2000 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2001 } 2002 2003 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2004 { 2005 PCMachineState *pcms = PC_MACHINE(obj); 2006 2007 return pcms->acpi_nvdimm_state.is_enabled; 2008 } 2009 2010 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2011 { 2012 PCMachineState *pcms = PC_MACHINE(obj); 2013 2014 pcms->acpi_nvdimm_state.is_enabled = value; 2015 } 2016 2017 static void pc_machine_initfn(Object *obj) 2018 { 2019 PCMachineState *pcms = PC_MACHINE(obj); 2020 2021 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int", 2022 pc_machine_get_hotplug_memory_region_size, 2023 NULL, NULL, NULL, &error_abort); 2024 2025 pcms->max_ram_below_4g = 0; /* use default */ 2026 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2027 pc_machine_get_max_ram_below_4g, 2028 pc_machine_set_max_ram_below_4g, 2029 NULL, NULL, &error_abort); 2030 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G, 2031 "Maximum ram below the 4G boundary (32bit boundary)", 2032 &error_abort); 2033 2034 pcms->smm = ON_OFF_AUTO_AUTO; 2035 object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto", 2036 pc_machine_get_smm, 2037 pc_machine_set_smm, 2038 NULL, NULL, &error_abort); 2039 object_property_set_description(obj, PC_MACHINE_SMM, 2040 "Enable SMM (pc & q35)", 2041 &error_abort); 2042 2043 pcms->vmport = ON_OFF_AUTO_AUTO; 2044 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto", 2045 pc_machine_get_vmport, 2046 pc_machine_set_vmport, 2047 NULL, NULL, &error_abort); 2048 object_property_set_description(obj, PC_MACHINE_VMPORT, 2049 "Enable vmport (pc & q35)", 2050 &error_abort); 2051 2052 /* nvdimm is disabled on default. */ 2053 pcms->acpi_nvdimm_state.is_enabled = false; 2054 object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm, 2055 pc_machine_set_nvdimm, &error_abort); 2056 } 2057 2058 static void pc_machine_reset(void) 2059 { 2060 CPUState *cs; 2061 X86CPU *cpu; 2062 2063 qemu_devices_reset(); 2064 2065 /* Reset APIC after devices have been reset to cancel 2066 * any changes that qemu_devices_reset() might have done. 2067 */ 2068 CPU_FOREACH(cs) { 2069 cpu = X86_CPU(cs); 2070 2071 if (cpu->apic_state) { 2072 device_reset(cpu->apic_state); 2073 } 2074 } 2075 } 2076 2077 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index) 2078 { 2079 X86CPUTopoInfo topo; 2080 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index, 2081 &topo); 2082 return topo.pkg_id; 2083 } 2084 2085 static CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *machine) 2086 { 2087 PCMachineState *pcms = PC_MACHINE(machine); 2088 int len = sizeof(CPUArchIdList) + 2089 sizeof(CPUArchId) * (pcms->possible_cpus->len); 2090 CPUArchIdList *list = g_malloc(len); 2091 2092 memcpy(list, pcms->possible_cpus, len); 2093 return list; 2094 } 2095 2096 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2097 { 2098 /* cpu index isn't used */ 2099 CPUState *cs; 2100 2101 CPU_FOREACH(cs) { 2102 X86CPU *cpu = X86_CPU(cs); 2103 2104 if (!cpu->apic_state) { 2105 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2106 } else { 2107 apic_deliver_nmi(cpu->apic_state); 2108 } 2109 } 2110 } 2111 2112 static void pc_machine_class_init(ObjectClass *oc, void *data) 2113 { 2114 MachineClass *mc = MACHINE_CLASS(oc); 2115 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2116 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2117 NMIClass *nc = NMI_CLASS(oc); 2118 2119 pcmc->get_hotplug_handler = mc->get_hotplug_handler; 2120 pcmc->pci_enabled = true; 2121 pcmc->has_acpi_build = true; 2122 pcmc->rsdp_in_ram = true; 2123 pcmc->smbios_defaults = true; 2124 pcmc->smbios_uuid_encoded = true; 2125 pcmc->gigabyte_align = true; 2126 pcmc->has_reserved_memory = true; 2127 pcmc->kvmclock_enabled = true; 2128 pcmc->enforce_aligned_dimm = true; 2129 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2130 * to be used at the moment, 32K should be enough for a while. */ 2131 pcmc->acpi_data_size = 0x20000 + 0x8000; 2132 pcmc->save_tsc_khz = true; 2133 mc->get_hotplug_handler = pc_get_hotpug_handler; 2134 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id; 2135 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2136 mc->default_boot_order = "cad"; 2137 mc->hot_add_cpu = pc_hot_add_cpu; 2138 mc->max_cpus = 255; 2139 mc->reset = pc_machine_reset; 2140 hc->plug = pc_machine_device_plug_cb; 2141 hc->unplug_request = pc_machine_device_unplug_request_cb; 2142 hc->unplug = pc_machine_device_unplug_cb; 2143 nc->nmi_monitor_handler = x86_nmi; 2144 } 2145 2146 static const TypeInfo pc_machine_info = { 2147 .name = TYPE_PC_MACHINE, 2148 .parent = TYPE_MACHINE, 2149 .abstract = true, 2150 .instance_size = sizeof(PCMachineState), 2151 .instance_init = pc_machine_initfn, 2152 .class_size = sizeof(PCMachineClass), 2153 .class_init = pc_machine_class_init, 2154 .interfaces = (InterfaceInfo[]) { 2155 { TYPE_HOTPLUG_HANDLER }, 2156 { TYPE_NMI }, 2157 { } 2158 }, 2159 }; 2160 2161 static void pc_machine_register_types(void) 2162 { 2163 type_register_static(&pc_machine_info); 2164 } 2165 2166 type_init(pc_machine_register_types) 2167