xref: /openbmc/qemu/hw/i386/pc.c (revision c8ca2a23)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/i386/pc.h"
28 #include "hw/char/serial.h"
29 #include "hw/i386/apic.h"
30 #include "hw/i386/topology.h"
31 #include "sysemu/cpus.h"
32 #include "hw/block/fdc.h"
33 #include "hw/ide.h"
34 #include "hw/pci/pci.h"
35 #include "hw/pci/pci_bus.h"
36 #include "hw/nvram/fw_cfg.h"
37 #include "hw/timer/hpet.h"
38 #include "hw/smbios/smbios.h"
39 #include "hw/loader.h"
40 #include "elf.h"
41 #include "multiboot.h"
42 #include "hw/timer/mc146818rtc.h"
43 #include "hw/timer/i8254.h"
44 #include "hw/audio/pcspk.h"
45 #include "hw/pci/msi.h"
46 #include "hw/sysbus.h"
47 #include "sysemu/sysemu.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/kvm.h"
50 #include "sysemu/qtest.h"
51 #include "kvm_i386.h"
52 #include "hw/xen/xen.h"
53 #include "ui/qemu-spice.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "sysemu/arch_init.h"
57 #include "qemu/bitmap.h"
58 #include "qemu/config-file.h"
59 #include "qemu/error-report.h"
60 #include "qemu/option.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/error.h"
68 #include "qapi/qapi-visit-common.h"
69 #include "qapi/visitor.h"
70 #include "qom/cpu.h"
71 #include "hw/nmi.h"
72 #include "hw/i386/intel_iommu.h"
73 #include "hw/net/ne2000-isa.h"
74 
75 /* debug PC/ISA interrupts */
76 //#define DEBUG_IRQ
77 
78 #ifdef DEBUG_IRQ
79 #define DPRINTF(fmt, ...)                                       \
80     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
81 #else
82 #define DPRINTF(fmt, ...)
83 #endif
84 
85 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
86 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
87 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
88 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
89 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
90 
91 #define E820_NR_ENTRIES		16
92 
93 struct e820_entry {
94     uint64_t address;
95     uint64_t length;
96     uint32_t type;
97 } QEMU_PACKED __attribute((__aligned__(4)));
98 
99 struct e820_table {
100     uint32_t count;
101     struct e820_entry entry[E820_NR_ENTRIES];
102 } QEMU_PACKED __attribute((__aligned__(4)));
103 
104 static struct e820_table e820_reserve;
105 static struct e820_entry *e820_table;
106 static unsigned e820_entries;
107 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
108 
109 void gsi_handler(void *opaque, int n, int level)
110 {
111     GSIState *s = opaque;
112 
113     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
114     if (n < ISA_NUM_IRQS) {
115         qemu_set_irq(s->i8259_irq[n], level);
116     }
117     qemu_set_irq(s->ioapic_irq[n], level);
118 }
119 
120 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
121                            unsigned size)
122 {
123 }
124 
125 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
126 {
127     return 0xffffffffffffffffULL;
128 }
129 
130 /* MSDOS compatibility mode FPU exception support */
131 static qemu_irq ferr_irq;
132 
133 void pc_register_ferr_irq(qemu_irq irq)
134 {
135     ferr_irq = irq;
136 }
137 
138 /* XXX: add IGNNE support */
139 void cpu_set_ferr(CPUX86State *s)
140 {
141     qemu_irq_raise(ferr_irq);
142 }
143 
144 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
145                            unsigned size)
146 {
147     qemu_irq_lower(ferr_irq);
148 }
149 
150 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
151 {
152     return 0xffffffffffffffffULL;
153 }
154 
155 /* TSC handling */
156 uint64_t cpu_get_tsc(CPUX86State *env)
157 {
158     return cpu_get_ticks();
159 }
160 
161 /* IRQ handling */
162 int cpu_get_pic_interrupt(CPUX86State *env)
163 {
164     X86CPU *cpu = x86_env_get_cpu(env);
165     int intno;
166 
167     if (!kvm_irqchip_in_kernel()) {
168         intno = apic_get_interrupt(cpu->apic_state);
169         if (intno >= 0) {
170             return intno;
171         }
172         /* read the irq from the PIC */
173         if (!apic_accept_pic_intr(cpu->apic_state)) {
174             return -1;
175         }
176     }
177 
178     intno = pic_read_irq(isa_pic);
179     return intno;
180 }
181 
182 static void pic_irq_request(void *opaque, int irq, int level)
183 {
184     CPUState *cs = first_cpu;
185     X86CPU *cpu = X86_CPU(cs);
186 
187     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
188     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
189         CPU_FOREACH(cs) {
190             cpu = X86_CPU(cs);
191             if (apic_accept_pic_intr(cpu->apic_state)) {
192                 apic_deliver_pic_intr(cpu->apic_state, level);
193             }
194         }
195     } else {
196         if (level) {
197             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
198         } else {
199             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
200         }
201     }
202 }
203 
204 /* PC cmos mappings */
205 
206 #define REG_EQUIPMENT_BYTE          0x14
207 
208 int cmos_get_fd_drive_type(FloppyDriveType fd0)
209 {
210     int val;
211 
212     switch (fd0) {
213     case FLOPPY_DRIVE_TYPE_144:
214         /* 1.44 Mb 3"5 drive */
215         val = 4;
216         break;
217     case FLOPPY_DRIVE_TYPE_288:
218         /* 2.88 Mb 3"5 drive */
219         val = 5;
220         break;
221     case FLOPPY_DRIVE_TYPE_120:
222         /* 1.2 Mb 5"5 drive */
223         val = 2;
224         break;
225     case FLOPPY_DRIVE_TYPE_NONE:
226     default:
227         val = 0;
228         break;
229     }
230     return val;
231 }
232 
233 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
234                          int16_t cylinders, int8_t heads, int8_t sectors)
235 {
236     rtc_set_memory(s, type_ofs, 47);
237     rtc_set_memory(s, info_ofs, cylinders);
238     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
239     rtc_set_memory(s, info_ofs + 2, heads);
240     rtc_set_memory(s, info_ofs + 3, 0xff);
241     rtc_set_memory(s, info_ofs + 4, 0xff);
242     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
243     rtc_set_memory(s, info_ofs + 6, cylinders);
244     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
245     rtc_set_memory(s, info_ofs + 8, sectors);
246 }
247 
248 /* convert boot_device letter to something recognizable by the bios */
249 static int boot_device2nibble(char boot_device)
250 {
251     switch(boot_device) {
252     case 'a':
253     case 'b':
254         return 0x01; /* floppy boot */
255     case 'c':
256         return 0x02; /* hard drive boot */
257     case 'd':
258         return 0x03; /* CD-ROM boot */
259     case 'n':
260         return 0x04; /* Network boot */
261     }
262     return 0;
263 }
264 
265 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
266 {
267 #define PC_MAX_BOOT_DEVICES 3
268     int nbds, bds[3] = { 0, };
269     int i;
270 
271     nbds = strlen(boot_device);
272     if (nbds > PC_MAX_BOOT_DEVICES) {
273         error_setg(errp, "Too many boot devices for PC");
274         return;
275     }
276     for (i = 0; i < nbds; i++) {
277         bds[i] = boot_device2nibble(boot_device[i]);
278         if (bds[i] == 0) {
279             error_setg(errp, "Invalid boot device for PC: '%c'",
280                        boot_device[i]);
281             return;
282         }
283     }
284     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
285     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
286 }
287 
288 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
289 {
290     set_boot_dev(opaque, boot_device, errp);
291 }
292 
293 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
294 {
295     int val, nb, i;
296     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
297                                    FLOPPY_DRIVE_TYPE_NONE };
298 
299     /* floppy type */
300     if (floppy) {
301         for (i = 0; i < 2; i++) {
302             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
303         }
304     }
305     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
306         cmos_get_fd_drive_type(fd_type[1]);
307     rtc_set_memory(rtc_state, 0x10, val);
308 
309     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
310     nb = 0;
311     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
312         nb++;
313     }
314     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
315         nb++;
316     }
317     switch (nb) {
318     case 0:
319         break;
320     case 1:
321         val |= 0x01; /* 1 drive, ready for boot */
322         break;
323     case 2:
324         val |= 0x41; /* 2 drives, ready for boot */
325         break;
326     }
327     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
328 }
329 
330 typedef struct pc_cmos_init_late_arg {
331     ISADevice *rtc_state;
332     BusState *idebus[2];
333 } pc_cmos_init_late_arg;
334 
335 typedef struct check_fdc_state {
336     ISADevice *floppy;
337     bool multiple;
338 } CheckFdcState;
339 
340 static int check_fdc(Object *obj, void *opaque)
341 {
342     CheckFdcState *state = opaque;
343     Object *fdc;
344     uint32_t iobase;
345     Error *local_err = NULL;
346 
347     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
348     if (!fdc) {
349         return 0;
350     }
351 
352     iobase = object_property_get_uint(obj, "iobase", &local_err);
353     if (local_err || iobase != 0x3f0) {
354         error_free(local_err);
355         return 0;
356     }
357 
358     if (state->floppy) {
359         state->multiple = true;
360     } else {
361         state->floppy = ISA_DEVICE(obj);
362     }
363     return 0;
364 }
365 
366 static const char * const fdc_container_path[] = {
367     "/unattached", "/peripheral", "/peripheral-anon"
368 };
369 
370 /*
371  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
372  * and ACPI objects.
373  */
374 ISADevice *pc_find_fdc0(void)
375 {
376     int i;
377     Object *container;
378     CheckFdcState state = { 0 };
379 
380     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
381         container = container_get(qdev_get_machine(), fdc_container_path[i]);
382         object_child_foreach(container, check_fdc, &state);
383     }
384 
385     if (state.multiple) {
386         warn_report("multiple floppy disk controllers with "
387                     "iobase=0x3f0 have been found");
388         error_printf("the one being picked for CMOS setup might not reflect "
389                      "your intent");
390     }
391 
392     return state.floppy;
393 }
394 
395 static void pc_cmos_init_late(void *opaque)
396 {
397     pc_cmos_init_late_arg *arg = opaque;
398     ISADevice *s = arg->rtc_state;
399     int16_t cylinders;
400     int8_t heads, sectors;
401     int val;
402     int i, trans;
403 
404     val = 0;
405     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
406                                            &cylinders, &heads, &sectors) >= 0) {
407         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
408         val |= 0xf0;
409     }
410     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
411                                            &cylinders, &heads, &sectors) >= 0) {
412         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
413         val |= 0x0f;
414     }
415     rtc_set_memory(s, 0x12, val);
416 
417     val = 0;
418     for (i = 0; i < 4; i++) {
419         /* NOTE: ide_get_geometry() returns the physical
420            geometry.  It is always such that: 1 <= sects <= 63, 1
421            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
422            geometry can be different if a translation is done. */
423         if (arg->idebus[i / 2] &&
424             ide_get_geometry(arg->idebus[i / 2], i % 2,
425                              &cylinders, &heads, &sectors) >= 0) {
426             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
427             assert((trans & ~3) == 0);
428             val |= trans << (i * 2);
429         }
430     }
431     rtc_set_memory(s, 0x39, val);
432 
433     pc_cmos_init_floppy(s, pc_find_fdc0());
434 
435     qemu_unregister_reset(pc_cmos_init_late, opaque);
436 }
437 
438 void pc_cmos_init(PCMachineState *pcms,
439                   BusState *idebus0, BusState *idebus1,
440                   ISADevice *s)
441 {
442     int val;
443     static pc_cmos_init_late_arg arg;
444 
445     /* various important CMOS locations needed by PC/Bochs bios */
446 
447     /* memory size */
448     /* base memory (first MiB) */
449     val = MIN(pcms->below_4g_mem_size / 1024, 640);
450     rtc_set_memory(s, 0x15, val);
451     rtc_set_memory(s, 0x16, val >> 8);
452     /* extended memory (next 64MiB) */
453     if (pcms->below_4g_mem_size > 1024 * 1024) {
454         val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
455     } else {
456         val = 0;
457     }
458     if (val > 65535)
459         val = 65535;
460     rtc_set_memory(s, 0x17, val);
461     rtc_set_memory(s, 0x18, val >> 8);
462     rtc_set_memory(s, 0x30, val);
463     rtc_set_memory(s, 0x31, val >> 8);
464     /* memory between 16MiB and 4GiB */
465     if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
466         val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
467     } else {
468         val = 0;
469     }
470     if (val > 65535)
471         val = 65535;
472     rtc_set_memory(s, 0x34, val);
473     rtc_set_memory(s, 0x35, val >> 8);
474     /* memory above 4GiB */
475     val = pcms->above_4g_mem_size / 65536;
476     rtc_set_memory(s, 0x5b, val);
477     rtc_set_memory(s, 0x5c, val >> 8);
478     rtc_set_memory(s, 0x5d, val >> 16);
479 
480     object_property_add_link(OBJECT(pcms), "rtc_state",
481                              TYPE_ISA_DEVICE,
482                              (Object **)&pcms->rtc,
483                              object_property_allow_set_link,
484                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
485     object_property_set_link(OBJECT(pcms), OBJECT(s),
486                              "rtc_state", &error_abort);
487 
488     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
489 
490     val = 0;
491     val |= 0x02; /* FPU is there */
492     val |= 0x04; /* PS/2 mouse installed */
493     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
494 
495     /* hard drives and FDC */
496     arg.rtc_state = s;
497     arg.idebus[0] = idebus0;
498     arg.idebus[1] = idebus1;
499     qemu_register_reset(pc_cmos_init_late, &arg);
500 }
501 
502 #define TYPE_PORT92 "port92"
503 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
504 
505 /* port 92 stuff: could be split off */
506 typedef struct Port92State {
507     ISADevice parent_obj;
508 
509     MemoryRegion io;
510     uint8_t outport;
511     qemu_irq a20_out;
512 } Port92State;
513 
514 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
515                          unsigned size)
516 {
517     Port92State *s = opaque;
518     int oldval = s->outport;
519 
520     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
521     s->outport = val;
522     qemu_set_irq(s->a20_out, (val >> 1) & 1);
523     if ((val & 1) && !(oldval & 1)) {
524         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
525     }
526 }
527 
528 static uint64_t port92_read(void *opaque, hwaddr addr,
529                             unsigned size)
530 {
531     Port92State *s = opaque;
532     uint32_t ret;
533 
534     ret = s->outport;
535     DPRINTF("port92: read 0x%02x\n", ret);
536     return ret;
537 }
538 
539 static void port92_init(ISADevice *dev, qemu_irq a20_out)
540 {
541     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
542 }
543 
544 static const VMStateDescription vmstate_port92_isa = {
545     .name = "port92",
546     .version_id = 1,
547     .minimum_version_id = 1,
548     .fields = (VMStateField[]) {
549         VMSTATE_UINT8(outport, Port92State),
550         VMSTATE_END_OF_LIST()
551     }
552 };
553 
554 static void port92_reset(DeviceState *d)
555 {
556     Port92State *s = PORT92(d);
557 
558     s->outport &= ~1;
559 }
560 
561 static const MemoryRegionOps port92_ops = {
562     .read = port92_read,
563     .write = port92_write,
564     .impl = {
565         .min_access_size = 1,
566         .max_access_size = 1,
567     },
568     .endianness = DEVICE_LITTLE_ENDIAN,
569 };
570 
571 static void port92_initfn(Object *obj)
572 {
573     Port92State *s = PORT92(obj);
574 
575     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
576 
577     s->outport = 0;
578 
579     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
580 }
581 
582 static void port92_realizefn(DeviceState *dev, Error **errp)
583 {
584     ISADevice *isadev = ISA_DEVICE(dev);
585     Port92State *s = PORT92(dev);
586 
587     isa_register_ioport(isadev, &s->io, 0x92);
588 }
589 
590 static void port92_class_initfn(ObjectClass *klass, void *data)
591 {
592     DeviceClass *dc = DEVICE_CLASS(klass);
593 
594     dc->realize = port92_realizefn;
595     dc->reset = port92_reset;
596     dc->vmsd = &vmstate_port92_isa;
597     /*
598      * Reason: unlike ordinary ISA devices, this one needs additional
599      * wiring: its A20 output line needs to be wired up by
600      * port92_init().
601      */
602     dc->user_creatable = false;
603 }
604 
605 static const TypeInfo port92_info = {
606     .name          = TYPE_PORT92,
607     .parent        = TYPE_ISA_DEVICE,
608     .instance_size = sizeof(Port92State),
609     .instance_init = port92_initfn,
610     .class_init    = port92_class_initfn,
611 };
612 
613 static void port92_register_types(void)
614 {
615     type_register_static(&port92_info);
616 }
617 
618 type_init(port92_register_types)
619 
620 static void handle_a20_line_change(void *opaque, int irq, int level)
621 {
622     X86CPU *cpu = opaque;
623 
624     /* XXX: send to all CPUs ? */
625     /* XXX: add logic to handle multiple A20 line sources */
626     x86_cpu_set_a20(cpu, level);
627 }
628 
629 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
630 {
631     int index = le32_to_cpu(e820_reserve.count);
632     struct e820_entry *entry;
633 
634     if (type != E820_RAM) {
635         /* old FW_CFG_E820_TABLE entry -- reservations only */
636         if (index >= E820_NR_ENTRIES) {
637             return -EBUSY;
638         }
639         entry = &e820_reserve.entry[index++];
640 
641         entry->address = cpu_to_le64(address);
642         entry->length = cpu_to_le64(length);
643         entry->type = cpu_to_le32(type);
644 
645         e820_reserve.count = cpu_to_le32(index);
646     }
647 
648     /* new "etc/e820" file -- include ram too */
649     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
650     e820_table[e820_entries].address = cpu_to_le64(address);
651     e820_table[e820_entries].length = cpu_to_le64(length);
652     e820_table[e820_entries].type = cpu_to_le32(type);
653     e820_entries++;
654 
655     return e820_entries;
656 }
657 
658 int e820_get_num_entries(void)
659 {
660     return e820_entries;
661 }
662 
663 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
664 {
665     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
666         *address = le64_to_cpu(e820_table[idx].address);
667         *length = le64_to_cpu(e820_table[idx].length);
668         return true;
669     }
670     return false;
671 }
672 
673 /* Enables contiguous-apic-ID mode, for compatibility */
674 static bool compat_apic_id_mode;
675 
676 void enable_compat_apic_id_mode(void)
677 {
678     compat_apic_id_mode = true;
679 }
680 
681 /* Calculates initial APIC ID for a specific CPU index
682  *
683  * Currently we need to be able to calculate the APIC ID from the CPU index
684  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
685  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
686  * all CPUs up to max_cpus.
687  */
688 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
689 {
690     uint32_t correct_id;
691     static bool warned;
692 
693     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
694     if (compat_apic_id_mode) {
695         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
696             error_report("APIC IDs set in compatibility mode, "
697                          "CPU topology won't match the configuration");
698             warned = true;
699         }
700         return cpu_index;
701     } else {
702         return correct_id;
703     }
704 }
705 
706 static void pc_build_smbios(PCMachineState *pcms)
707 {
708     uint8_t *smbios_tables, *smbios_anchor;
709     size_t smbios_tables_len, smbios_anchor_len;
710     struct smbios_phys_mem_area *mem_array;
711     unsigned i, array_count;
712     MachineState *ms = MACHINE(pcms);
713     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
714 
715     /* tell smbios about cpuid version and features */
716     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
717 
718     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
719     if (smbios_tables) {
720         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
721                          smbios_tables, smbios_tables_len);
722     }
723 
724     /* build the array of physical mem area from e820 table */
725     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
726     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
727         uint64_t addr, len;
728 
729         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
730             mem_array[array_count].address = addr;
731             mem_array[array_count].length = len;
732             array_count++;
733         }
734     }
735     smbios_get_tables(mem_array, array_count,
736                       &smbios_tables, &smbios_tables_len,
737                       &smbios_anchor, &smbios_anchor_len);
738     g_free(mem_array);
739 
740     if (smbios_anchor) {
741         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
742                         smbios_tables, smbios_tables_len);
743         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
744                         smbios_anchor, smbios_anchor_len);
745     }
746 }
747 
748 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
749 {
750     FWCfgState *fw_cfg;
751     uint64_t *numa_fw_cfg;
752     int i;
753     const CPUArchIdList *cpus;
754     MachineClass *mc = MACHINE_GET_CLASS(pcms);
755 
756     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
757     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
758 
759     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
760      *
761      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
762      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
763      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
764      * for CPU hotplug also uses APIC ID and not "CPU index".
765      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
766      * but the "limit to the APIC ID values SeaBIOS may see".
767      *
768      * So for compatibility reasons with old BIOSes we are stuck with
769      * "etc/max-cpus" actually being apic_id_limit
770      */
771     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
772     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
773     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
774                      acpi_tables, acpi_tables_len);
775     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
776 
777     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
778                      &e820_reserve, sizeof(e820_reserve));
779     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
780                     sizeof(struct e820_entry) * e820_entries);
781 
782     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
783     /* allocate memory for the NUMA channel: one (64bit) word for the number
784      * of nodes, one word for each VCPU->node and one word for each node to
785      * hold the amount of memory.
786      */
787     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
788     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
789     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
790     for (i = 0; i < cpus->len; i++) {
791         unsigned int apic_id = cpus->cpus[i].arch_id;
792         assert(apic_id < pcms->apic_id_limit);
793         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
794     }
795     for (i = 0; i < nb_numa_nodes; i++) {
796         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
797             cpu_to_le64(numa_info[i].node_mem);
798     }
799     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
800                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
801                      sizeof(*numa_fw_cfg));
802 
803     return fw_cfg;
804 }
805 
806 static long get_file_size(FILE *f)
807 {
808     long where, size;
809 
810     /* XXX: on Unix systems, using fstat() probably makes more sense */
811 
812     where = ftell(f);
813     fseek(f, 0, SEEK_END);
814     size = ftell(f);
815     fseek(f, where, SEEK_SET);
816 
817     return size;
818 }
819 
820 /* setup_data types */
821 #define SETUP_NONE     0
822 #define SETUP_E820_EXT 1
823 #define SETUP_DTB      2
824 #define SETUP_PCI      3
825 #define SETUP_EFI      4
826 
827 struct setup_data {
828     uint64_t next;
829     uint32_t type;
830     uint32_t len;
831     uint8_t data[0];
832 } __attribute__((packed));
833 
834 static void load_linux(PCMachineState *pcms,
835                        FWCfgState *fw_cfg)
836 {
837     uint16_t protocol;
838     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
839     int dtb_size, setup_data_offset;
840     uint32_t initrd_max;
841     uint8_t header[8192], *setup, *kernel, *initrd_data;
842     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
843     FILE *f;
844     char *vmode;
845     MachineState *machine = MACHINE(pcms);
846     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
847     struct setup_data *setup_data;
848     const char *kernel_filename = machine->kernel_filename;
849     const char *initrd_filename = machine->initrd_filename;
850     const char *dtb_filename = machine->dtb;
851     const char *kernel_cmdline = machine->kernel_cmdline;
852 
853     /* Align to 16 bytes as a paranoia measure */
854     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
855 
856     /* load the kernel header */
857     f = fopen(kernel_filename, "rb");
858     if (!f || !(kernel_size = get_file_size(f)) ||
859         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
860         MIN(ARRAY_SIZE(header), kernel_size)) {
861         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
862                 kernel_filename, strerror(errno));
863         exit(1);
864     }
865 
866     /* kernel protocol version */
867 #if 0
868     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
869 #endif
870     if (ldl_p(header+0x202) == 0x53726448) {
871         protocol = lduw_p(header+0x206);
872     } else {
873         /* This looks like a multiboot kernel. If it is, let's stop
874            treating it like a Linux kernel. */
875         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
876                            kernel_cmdline, kernel_size, header)) {
877             return;
878         }
879         protocol = 0;
880     }
881 
882     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
883         /* Low kernel */
884         real_addr    = 0x90000;
885         cmdline_addr = 0x9a000 - cmdline_size;
886         prot_addr    = 0x10000;
887     } else if (protocol < 0x202) {
888         /* High but ancient kernel */
889         real_addr    = 0x90000;
890         cmdline_addr = 0x9a000 - cmdline_size;
891         prot_addr    = 0x100000;
892     } else {
893         /* High and recent kernel */
894         real_addr    = 0x10000;
895         cmdline_addr = 0x20000;
896         prot_addr    = 0x100000;
897     }
898 
899 #if 0
900     fprintf(stderr,
901             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
902             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
903             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
904             real_addr,
905             cmdline_addr,
906             prot_addr);
907 #endif
908 
909     /* highest address for loading the initrd */
910     if (protocol >= 0x203) {
911         initrd_max = ldl_p(header+0x22c);
912     } else {
913         initrd_max = 0x37ffffff;
914     }
915 
916     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
917         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
918     }
919 
920     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
921     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
922     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
923 
924     if (protocol >= 0x202) {
925         stl_p(header+0x228, cmdline_addr);
926     } else {
927         stw_p(header+0x20, 0xA33F);
928         stw_p(header+0x22, cmdline_addr-real_addr);
929     }
930 
931     /* handle vga= parameter */
932     vmode = strstr(kernel_cmdline, "vga=");
933     if (vmode) {
934         unsigned int video_mode;
935         /* skip "vga=" */
936         vmode += 4;
937         if (!strncmp(vmode, "normal", 6)) {
938             video_mode = 0xffff;
939         } else if (!strncmp(vmode, "ext", 3)) {
940             video_mode = 0xfffe;
941         } else if (!strncmp(vmode, "ask", 3)) {
942             video_mode = 0xfffd;
943         } else {
944             video_mode = strtol(vmode, NULL, 0);
945         }
946         stw_p(header+0x1fa, video_mode);
947     }
948 
949     /* loader type */
950     /* High nybble = B reserved for QEMU; low nybble is revision number.
951        If this code is substantially changed, you may want to consider
952        incrementing the revision. */
953     if (protocol >= 0x200) {
954         header[0x210] = 0xB0;
955     }
956     /* heap */
957     if (protocol >= 0x201) {
958         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
959         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
960     }
961 
962     /* load initrd */
963     if (initrd_filename) {
964         if (protocol < 0x200) {
965             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
966             exit(1);
967         }
968 
969         initrd_size = get_image_size(initrd_filename);
970         if (initrd_size < 0) {
971             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
972                     initrd_filename, strerror(errno));
973             exit(1);
974         }
975 
976         initrd_addr = (initrd_max-initrd_size) & ~4095;
977 
978         initrd_data = g_malloc(initrd_size);
979         load_image(initrd_filename, initrd_data);
980 
981         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
982         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
983         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
984 
985         stl_p(header+0x218, initrd_addr);
986         stl_p(header+0x21c, initrd_size);
987     }
988 
989     /* load kernel and setup */
990     setup_size = header[0x1f1];
991     if (setup_size == 0) {
992         setup_size = 4;
993     }
994     setup_size = (setup_size+1)*512;
995     if (setup_size > kernel_size) {
996         fprintf(stderr, "qemu: invalid kernel header\n");
997         exit(1);
998     }
999     kernel_size -= setup_size;
1000 
1001     setup  = g_malloc(setup_size);
1002     kernel = g_malloc(kernel_size);
1003     fseek(f, 0, SEEK_SET);
1004     if (fread(setup, 1, setup_size, f) != setup_size) {
1005         fprintf(stderr, "fread() failed\n");
1006         exit(1);
1007     }
1008     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1009         fprintf(stderr, "fread() failed\n");
1010         exit(1);
1011     }
1012     fclose(f);
1013 
1014     /* append dtb to kernel */
1015     if (dtb_filename) {
1016         if (protocol < 0x209) {
1017             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1018             exit(1);
1019         }
1020 
1021         dtb_size = get_image_size(dtb_filename);
1022         if (dtb_size <= 0) {
1023             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1024                     dtb_filename, strerror(errno));
1025             exit(1);
1026         }
1027 
1028         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1029         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1030         kernel = g_realloc(kernel, kernel_size);
1031 
1032         stq_p(header+0x250, prot_addr + setup_data_offset);
1033 
1034         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1035         setup_data->next = 0;
1036         setup_data->type = cpu_to_le32(SETUP_DTB);
1037         setup_data->len = cpu_to_le32(dtb_size);
1038 
1039         load_image_size(dtb_filename, setup_data->data, dtb_size);
1040     }
1041 
1042     memcpy(setup, header, MIN(sizeof(header), setup_size));
1043 
1044     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1045     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1046     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1047 
1048     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1049     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1050     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1051 
1052     option_rom[nb_option_roms].bootindex = 0;
1053     option_rom[nb_option_roms].name = "linuxboot.bin";
1054     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1055         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1056     }
1057     nb_option_roms++;
1058 }
1059 
1060 #define NE2000_NB_MAX 6
1061 
1062 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1063                                               0x280, 0x380 };
1064 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1065 
1066 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1067 {
1068     static int nb_ne2k = 0;
1069 
1070     if (nb_ne2k == NE2000_NB_MAX)
1071         return;
1072     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1073                     ne2000_irq[nb_ne2k], nd);
1074     nb_ne2k++;
1075 }
1076 
1077 DeviceState *cpu_get_current_apic(void)
1078 {
1079     if (current_cpu) {
1080         X86CPU *cpu = X86_CPU(current_cpu);
1081         return cpu->apic_state;
1082     } else {
1083         return NULL;
1084     }
1085 }
1086 
1087 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1088 {
1089     X86CPU *cpu = opaque;
1090 
1091     if (level) {
1092         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1093     }
1094 }
1095 
1096 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1097 {
1098     Object *cpu = NULL;
1099     Error *local_err = NULL;
1100 
1101     cpu = object_new(typename);
1102 
1103     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1104     object_property_set_bool(cpu, true, "realized", &local_err);
1105 
1106     object_unref(cpu);
1107     error_propagate(errp, local_err);
1108 }
1109 
1110 void pc_hot_add_cpu(const int64_t id, Error **errp)
1111 {
1112     MachineState *ms = MACHINE(qdev_get_machine());
1113     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1114     Error *local_err = NULL;
1115 
1116     if (id < 0) {
1117         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1118         return;
1119     }
1120 
1121     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1122         error_setg(errp, "Unable to add CPU: %" PRIi64
1123                    ", resulting APIC ID (%" PRIi64 ") is too large",
1124                    id, apic_id);
1125         return;
1126     }
1127 
1128     pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1129     if (local_err) {
1130         error_propagate(errp, local_err);
1131         return;
1132     }
1133 }
1134 
1135 void pc_cpus_init(PCMachineState *pcms)
1136 {
1137     int i;
1138     const CPUArchIdList *possible_cpus;
1139     MachineState *ms = MACHINE(pcms);
1140     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1141 
1142     /* Calculates the limit to CPU APIC ID values
1143      *
1144      * Limit for the APIC ID value, so that all
1145      * CPU APIC IDs are < pcms->apic_id_limit.
1146      *
1147      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1148      */
1149     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1150     possible_cpus = mc->possible_cpu_arch_ids(ms);
1151     for (i = 0; i < smp_cpus; i++) {
1152         pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1153                    &error_fatal);
1154     }
1155 }
1156 
1157 static void pc_build_feature_control_file(PCMachineState *pcms)
1158 {
1159     MachineState *ms = MACHINE(pcms);
1160     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1161     CPUX86State *env = &cpu->env;
1162     uint32_t unused, ecx, edx;
1163     uint64_t feature_control_bits = 0;
1164     uint64_t *val;
1165 
1166     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1167     if (ecx & CPUID_EXT_VMX) {
1168         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1169     }
1170 
1171     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1172         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1173         (env->mcg_cap & MCG_LMCE_P)) {
1174         feature_control_bits |= FEATURE_CONTROL_LMCE;
1175     }
1176 
1177     if (!feature_control_bits) {
1178         return;
1179     }
1180 
1181     val = g_malloc(sizeof(*val));
1182     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1183     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1184 }
1185 
1186 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1187 {
1188     if (cpus_count > 0xff) {
1189         /* If the number of CPUs can't be represented in 8 bits, the
1190          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1191          * to make old BIOSes fail more predictably.
1192          */
1193         rtc_set_memory(rtc, 0x5f, 0);
1194     } else {
1195         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1196     }
1197 }
1198 
1199 static
1200 void pc_machine_done(Notifier *notifier, void *data)
1201 {
1202     PCMachineState *pcms = container_of(notifier,
1203                                         PCMachineState, machine_done);
1204     PCIBus *bus = pcms->bus;
1205 
1206     /* set the number of CPUs */
1207     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1208 
1209     if (bus) {
1210         int extra_hosts = 0;
1211 
1212         QLIST_FOREACH(bus, &bus->child, sibling) {
1213             /* look for expander root buses */
1214             if (pci_bus_is_root(bus)) {
1215                 extra_hosts++;
1216             }
1217         }
1218         if (extra_hosts && pcms->fw_cfg) {
1219             uint64_t *val = g_malloc(sizeof(*val));
1220             *val = cpu_to_le64(extra_hosts);
1221             fw_cfg_add_file(pcms->fw_cfg,
1222                     "etc/extra-pci-roots", val, sizeof(*val));
1223         }
1224     }
1225 
1226     acpi_setup();
1227     if (pcms->fw_cfg) {
1228         pc_build_smbios(pcms);
1229         pc_build_feature_control_file(pcms);
1230         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1231         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1232     }
1233 
1234     if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1235         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1236 
1237         if (!iommu || !iommu->x86_iommu.intr_supported ||
1238             iommu->intr_eim != ON_OFF_AUTO_ON) {
1239             error_report("current -smp configuration requires "
1240                          "Extended Interrupt Mode enabled. "
1241                          "You can add an IOMMU using: "
1242                          "-device intel-iommu,intremap=on,eim=on");
1243             exit(EXIT_FAILURE);
1244         }
1245     }
1246 }
1247 
1248 void pc_guest_info_init(PCMachineState *pcms)
1249 {
1250     int i;
1251 
1252     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1253     pcms->numa_nodes = nb_numa_nodes;
1254     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1255                                     sizeof *pcms->node_mem);
1256     for (i = 0; i < nb_numa_nodes; i++) {
1257         pcms->node_mem[i] = numa_info[i].node_mem;
1258     }
1259 
1260     pcms->machine_done.notify = pc_machine_done;
1261     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1262 }
1263 
1264 /* setup pci memory address space mapping into system address space */
1265 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1266                             MemoryRegion *pci_address_space)
1267 {
1268     /* Set to lower priority than RAM */
1269     memory_region_add_subregion_overlap(system_memory, 0x0,
1270                                         pci_address_space, -1);
1271 }
1272 
1273 void pc_acpi_init(const char *default_dsdt)
1274 {
1275     char *filename;
1276 
1277     if (acpi_tables != NULL) {
1278         /* manually set via -acpitable, leave it alone */
1279         return;
1280     }
1281 
1282     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1283     if (filename == NULL) {
1284         warn_report("failed to find %s", default_dsdt);
1285     } else {
1286         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1287                                           &error_abort);
1288         Error *err = NULL;
1289 
1290         qemu_opt_set(opts, "file", filename, &error_abort);
1291 
1292         acpi_table_add_builtin(opts, &err);
1293         if (err) {
1294             warn_reportf_err(err, "failed to load %s: ", filename);
1295         }
1296         g_free(filename);
1297     }
1298 }
1299 
1300 void xen_load_linux(PCMachineState *pcms)
1301 {
1302     int i;
1303     FWCfgState *fw_cfg;
1304 
1305     assert(MACHINE(pcms)->kernel_filename != NULL);
1306 
1307     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1308     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1309     rom_set_fw(fw_cfg);
1310 
1311     load_linux(pcms, fw_cfg);
1312     for (i = 0; i < nb_option_roms; i++) {
1313         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1314                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1315                !strcmp(option_rom[i].name, "multiboot.bin"));
1316         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1317     }
1318     pcms->fw_cfg = fw_cfg;
1319 }
1320 
1321 void pc_memory_init(PCMachineState *pcms,
1322                     MemoryRegion *system_memory,
1323                     MemoryRegion *rom_memory,
1324                     MemoryRegion **ram_memory)
1325 {
1326     int linux_boot, i;
1327     MemoryRegion *ram, *option_rom_mr;
1328     MemoryRegion *ram_below_4g, *ram_above_4g;
1329     FWCfgState *fw_cfg;
1330     MachineState *machine = MACHINE(pcms);
1331     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1332 
1333     assert(machine->ram_size == pcms->below_4g_mem_size +
1334                                 pcms->above_4g_mem_size);
1335 
1336     linux_boot = (machine->kernel_filename != NULL);
1337 
1338     /* Allocate RAM.  We allocate it as a single memory region and use
1339      * aliases to address portions of it, mostly for backwards compatibility
1340      * with older qemus that used qemu_ram_alloc().
1341      */
1342     ram = g_malloc(sizeof(*ram));
1343     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1344                                          machine->ram_size);
1345     *ram_memory = ram;
1346     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1347     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1348                              0, pcms->below_4g_mem_size);
1349     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1350     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1351     if (pcms->above_4g_mem_size > 0) {
1352         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1353         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1354                                  pcms->below_4g_mem_size,
1355                                  pcms->above_4g_mem_size);
1356         memory_region_add_subregion(system_memory, 0x100000000ULL,
1357                                     ram_above_4g);
1358         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1359     }
1360 
1361     if (!pcmc->has_reserved_memory &&
1362         (machine->ram_slots ||
1363          (machine->maxram_size > machine->ram_size))) {
1364         MachineClass *mc = MACHINE_GET_CLASS(machine);
1365 
1366         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1367                      mc->name);
1368         exit(EXIT_FAILURE);
1369     }
1370 
1371     /* initialize hotplug memory address space */
1372     if (pcmc->has_reserved_memory &&
1373         (machine->ram_size < machine->maxram_size)) {
1374         ram_addr_t hotplug_mem_size =
1375             machine->maxram_size - machine->ram_size;
1376 
1377         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1378             error_report("unsupported amount of memory slots: %"PRIu64,
1379                          machine->ram_slots);
1380             exit(EXIT_FAILURE);
1381         }
1382 
1383         if (QEMU_ALIGN_UP(machine->maxram_size,
1384                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1385             error_report("maximum memory size must by aligned to multiple of "
1386                          "%d bytes", TARGET_PAGE_SIZE);
1387             exit(EXIT_FAILURE);
1388         }
1389 
1390         pcms->hotplug_memory.base =
1391             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1392 
1393         if (pcmc->enforce_aligned_dimm) {
1394             /* size hotplug region assuming 1G page max alignment per slot */
1395             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1396         }
1397 
1398         if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1399             hotplug_mem_size) {
1400             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1401                          machine->maxram_size);
1402             exit(EXIT_FAILURE);
1403         }
1404 
1405         memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1406                            "hotplug-memory", hotplug_mem_size);
1407         memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1408                                     &pcms->hotplug_memory.mr);
1409     }
1410 
1411     /* Initialize PC system firmware */
1412     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1413 
1414     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1415     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1416                            &error_fatal);
1417     if (pcmc->pci_enabled) {
1418         memory_region_set_readonly(option_rom_mr, true);
1419     }
1420     memory_region_add_subregion_overlap(rom_memory,
1421                                         PC_ROM_MIN_VGA,
1422                                         option_rom_mr,
1423                                         1);
1424 
1425     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1426 
1427     rom_set_fw(fw_cfg);
1428 
1429     if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1430         uint64_t *val = g_malloc(sizeof(*val));
1431         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1432         uint64_t res_mem_end = pcms->hotplug_memory.base;
1433 
1434         if (!pcmc->broken_reserved_end) {
1435             res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1436         }
1437         *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1438         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1439     }
1440 
1441     if (linux_boot) {
1442         load_linux(pcms, fw_cfg);
1443     }
1444 
1445     for (i = 0; i < nb_option_roms; i++) {
1446         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1447     }
1448     pcms->fw_cfg = fw_cfg;
1449 
1450     /* Init default IOAPIC address space */
1451     pcms->ioapic_as = &address_space_memory;
1452 }
1453 
1454 /*
1455  * The 64bit pci hole starts after "above 4G RAM" and
1456  * potentially the space reserved for memory hotplug.
1457  */
1458 uint64_t pc_pci_hole64_start(void)
1459 {
1460     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1461     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1462     uint64_t hole64_start = 0;
1463 
1464     if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1465         hole64_start = pcms->hotplug_memory.base;
1466         if (!pcmc->broken_reserved_end) {
1467             hole64_start += memory_region_size(&pcms->hotplug_memory.mr);
1468         }
1469     } else {
1470         hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1471     }
1472 
1473     return ROUND_UP(hole64_start, 1ULL << 30);
1474 }
1475 
1476 qemu_irq pc_allocate_cpu_irq(void)
1477 {
1478     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1479 }
1480 
1481 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1482 {
1483     DeviceState *dev = NULL;
1484 
1485     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1486     if (pci_bus) {
1487         PCIDevice *pcidev = pci_vga_init(pci_bus);
1488         dev = pcidev ? &pcidev->qdev : NULL;
1489     } else if (isa_bus) {
1490         ISADevice *isadev = isa_vga_init(isa_bus);
1491         dev = isadev ? DEVICE(isadev) : NULL;
1492     }
1493     rom_reset_order_override();
1494     return dev;
1495 }
1496 
1497 static const MemoryRegionOps ioport80_io_ops = {
1498     .write = ioport80_write,
1499     .read = ioport80_read,
1500     .endianness = DEVICE_NATIVE_ENDIAN,
1501     .impl = {
1502         .min_access_size = 1,
1503         .max_access_size = 1,
1504     },
1505 };
1506 
1507 static const MemoryRegionOps ioportF0_io_ops = {
1508     .write = ioportF0_write,
1509     .read = ioportF0_read,
1510     .endianness = DEVICE_NATIVE_ENDIAN,
1511     .impl = {
1512         .min_access_size = 1,
1513         .max_access_size = 1,
1514     },
1515 };
1516 
1517 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1518                           ISADevice **rtc_state,
1519                           bool create_fdctrl,
1520                           bool no_vmport,
1521                           bool has_pit,
1522                           uint32_t hpet_irqs)
1523 {
1524     int i;
1525     DriveInfo *fd[MAX_FD];
1526     DeviceState *hpet = NULL;
1527     int pit_isa_irq = 0;
1528     qemu_irq pit_alt_irq = NULL;
1529     qemu_irq rtc_irq = NULL;
1530     qemu_irq *a20_line;
1531     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1532     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1533     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1534 
1535     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1536     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1537 
1538     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1539     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1540 
1541     /*
1542      * Check if an HPET shall be created.
1543      *
1544      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1545      * when the HPET wants to take over. Thus we have to disable the latter.
1546      */
1547     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1548         /* In order to set property, here not using sysbus_try_create_simple */
1549         hpet = qdev_try_create(NULL, TYPE_HPET);
1550         if (hpet) {
1551             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1552              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1553              * IRQ8 and IRQ2.
1554              */
1555             uint8_t compat = object_property_get_uint(OBJECT(hpet),
1556                     HPET_INTCAP, NULL);
1557             if (!compat) {
1558                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1559             }
1560             qdev_init_nofail(hpet);
1561             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1562 
1563             for (i = 0; i < GSI_NUM_PINS; i++) {
1564                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1565             }
1566             pit_isa_irq = -1;
1567             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1568             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1569         }
1570     }
1571     *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1572 
1573     qemu_register_boot_set(pc_boot_set, *rtc_state);
1574 
1575     if (!xen_enabled() && has_pit) {
1576         if (kvm_pit_in_kernel()) {
1577             pit = kvm_pit_init(isa_bus, 0x40);
1578         } else {
1579             pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1580         }
1581         if (hpet) {
1582             /* connect PIT to output control line of the HPET */
1583             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1584         }
1585         pcspk_init(isa_bus, pit);
1586     }
1587 
1588     serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS);
1589     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1590 
1591     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1592     i8042 = isa_create_simple(isa_bus, "i8042");
1593     i8042_setup_a20_line(i8042, a20_line[0]);
1594     if (!no_vmport) {
1595         vmport_init(isa_bus);
1596         vmmouse = isa_try_create(isa_bus, "vmmouse");
1597     } else {
1598         vmmouse = NULL;
1599     }
1600     if (vmmouse) {
1601         DeviceState *dev = DEVICE(vmmouse);
1602         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1603         qdev_init_nofail(dev);
1604     }
1605     port92 = isa_create_simple(isa_bus, "port92");
1606     port92_init(port92, a20_line[1]);
1607     g_free(a20_line);
1608 
1609     DMA_init(isa_bus, 0);
1610 
1611     for(i = 0; i < MAX_FD; i++) {
1612         fd[i] = drive_get(IF_FLOPPY, 0, i);
1613         create_fdctrl |= !!fd[i];
1614     }
1615     if (create_fdctrl) {
1616         fdctrl_init_isa(isa_bus, fd);
1617     }
1618 }
1619 
1620 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1621 {
1622     int i;
1623 
1624     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1625     for (i = 0; i < nb_nics; i++) {
1626         NICInfo *nd = &nd_table[i];
1627         const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1628 
1629         if (g_str_equal(model, "ne2k_isa")) {
1630             pc_init_ne2k_isa(isa_bus, nd);
1631         } else {
1632             pci_nic_init_nofail(nd, pci_bus, model, NULL);
1633         }
1634     }
1635     rom_reset_order_override();
1636 }
1637 
1638 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1639 {
1640     DeviceState *dev;
1641     SysBusDevice *d;
1642     unsigned int i;
1643 
1644     if (kvm_ioapic_in_kernel()) {
1645         dev = qdev_create(NULL, "kvm-ioapic");
1646     } else {
1647         dev = qdev_create(NULL, "ioapic");
1648     }
1649     if (parent_name) {
1650         object_property_add_child(object_resolve_path(parent_name, NULL),
1651                                   "ioapic", OBJECT(dev), NULL);
1652     }
1653     qdev_init_nofail(dev);
1654     d = SYS_BUS_DEVICE(dev);
1655     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1656 
1657     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1658         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1659     }
1660 }
1661 
1662 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1663                          DeviceState *dev, Error **errp)
1664 {
1665     HotplugHandlerClass *hhc;
1666     Error *local_err = NULL;
1667     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1668     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1669     PCDIMMDevice *dimm = PC_DIMM(dev);
1670     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1671     MemoryRegion *mr;
1672     uint64_t align = TARGET_PAGE_SIZE;
1673     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1674 
1675     mr = ddc->get_memory_region(dimm, &local_err);
1676     if (local_err) {
1677         goto out;
1678     }
1679 
1680     if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1681         align = memory_region_get_alignment(mr);
1682     }
1683 
1684     /*
1685      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1686      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1687      * addition to cover this case.
1688      */
1689     if (!pcms->acpi_dev || !acpi_enabled) {
1690         error_setg(&local_err,
1691                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1692         goto out;
1693     }
1694 
1695     if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1696         error_setg(&local_err,
1697                    "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1698         goto out;
1699     }
1700 
1701     pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1702     if (local_err) {
1703         goto out;
1704     }
1705 
1706     if (is_nvdimm) {
1707         nvdimm_plug(&pcms->acpi_nvdimm_state);
1708     }
1709 
1710     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1711     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1712 out:
1713     error_propagate(errp, local_err);
1714 }
1715 
1716 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1717                                    DeviceState *dev, Error **errp)
1718 {
1719     HotplugHandlerClass *hhc;
1720     Error *local_err = NULL;
1721     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1722 
1723     /*
1724      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1725      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1726      * addition to cover this case.
1727      */
1728     if (!pcms->acpi_dev || !acpi_enabled) {
1729         error_setg(&local_err,
1730                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1731         goto out;
1732     }
1733 
1734     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1735         error_setg(&local_err,
1736                    "nvdimm device hot unplug is not supported yet.");
1737         goto out;
1738     }
1739 
1740     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1741     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1742 
1743 out:
1744     error_propagate(errp, local_err);
1745 }
1746 
1747 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1748                            DeviceState *dev, Error **errp)
1749 {
1750     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1751     PCDIMMDevice *dimm = PC_DIMM(dev);
1752     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1753     MemoryRegion *mr;
1754     HotplugHandlerClass *hhc;
1755     Error *local_err = NULL;
1756 
1757     mr = ddc->get_memory_region(dimm, &local_err);
1758     if (local_err) {
1759         goto out;
1760     }
1761 
1762     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1763     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1764 
1765     if (local_err) {
1766         goto out;
1767     }
1768 
1769     pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1770     object_unparent(OBJECT(dev));
1771 
1772  out:
1773     error_propagate(errp, local_err);
1774 }
1775 
1776 static int pc_apic_cmp(const void *a, const void *b)
1777 {
1778    CPUArchId *apic_a = (CPUArchId *)a;
1779    CPUArchId *apic_b = (CPUArchId *)b;
1780 
1781    return apic_a->arch_id - apic_b->arch_id;
1782 }
1783 
1784 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1785  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1786  * entry corresponding to CPU's apic_id returns NULL.
1787  */
1788 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1789 {
1790     CPUArchId apic_id, *found_cpu;
1791 
1792     apic_id.arch_id = id;
1793     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1794         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1795         pc_apic_cmp);
1796     if (found_cpu && idx) {
1797         *idx = found_cpu - ms->possible_cpus->cpus;
1798     }
1799     return found_cpu;
1800 }
1801 
1802 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1803                         DeviceState *dev, Error **errp)
1804 {
1805     CPUArchId *found_cpu;
1806     HotplugHandlerClass *hhc;
1807     Error *local_err = NULL;
1808     X86CPU *cpu = X86_CPU(dev);
1809     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1810 
1811     if (pcms->acpi_dev) {
1812         hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1813         hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1814         if (local_err) {
1815             goto out;
1816         }
1817     }
1818 
1819     /* increment the number of CPUs */
1820     pcms->boot_cpus++;
1821     if (pcms->rtc) {
1822         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1823     }
1824     if (pcms->fw_cfg) {
1825         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1826     }
1827 
1828     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1829     found_cpu->cpu = OBJECT(dev);
1830 out:
1831     error_propagate(errp, local_err);
1832 }
1833 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1834                                      DeviceState *dev, Error **errp)
1835 {
1836     int idx = -1;
1837     HotplugHandlerClass *hhc;
1838     Error *local_err = NULL;
1839     X86CPU *cpu = X86_CPU(dev);
1840     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1841 
1842     if (!pcms->acpi_dev) {
1843         error_setg(&local_err, "CPU hot unplug not supported without ACPI");
1844         goto out;
1845     }
1846 
1847     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1848     assert(idx != -1);
1849     if (idx == 0) {
1850         error_setg(&local_err, "Boot CPU is unpluggable");
1851         goto out;
1852     }
1853 
1854     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1855     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1856 
1857     if (local_err) {
1858         goto out;
1859     }
1860 
1861  out:
1862     error_propagate(errp, local_err);
1863 
1864 }
1865 
1866 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1867                              DeviceState *dev, Error **errp)
1868 {
1869     CPUArchId *found_cpu;
1870     HotplugHandlerClass *hhc;
1871     Error *local_err = NULL;
1872     X86CPU *cpu = X86_CPU(dev);
1873     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1874 
1875     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1876     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1877 
1878     if (local_err) {
1879         goto out;
1880     }
1881 
1882     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1883     found_cpu->cpu = NULL;
1884     object_unparent(OBJECT(dev));
1885 
1886     /* decrement the number of CPUs */
1887     pcms->boot_cpus--;
1888     /* Update the number of CPUs in CMOS */
1889     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1890     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1891  out:
1892     error_propagate(errp, local_err);
1893 }
1894 
1895 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1896                             DeviceState *dev, Error **errp)
1897 {
1898     int idx;
1899     CPUState *cs;
1900     CPUArchId *cpu_slot;
1901     X86CPUTopoInfo topo;
1902     X86CPU *cpu = X86_CPU(dev);
1903     MachineState *ms = MACHINE(hotplug_dev);
1904     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1905 
1906     if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
1907         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
1908                    ms->cpu_type);
1909         return;
1910     }
1911 
1912     /* if APIC ID is not set, set it based on socket/core/thread properties */
1913     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1914         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1915 
1916         if (cpu->socket_id < 0) {
1917             error_setg(errp, "CPU socket-id is not set");
1918             return;
1919         } else if (cpu->socket_id > max_socket) {
1920             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1921                        cpu->socket_id, max_socket);
1922             return;
1923         }
1924         if (cpu->core_id < 0) {
1925             error_setg(errp, "CPU core-id is not set");
1926             return;
1927         } else if (cpu->core_id > (smp_cores - 1)) {
1928             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1929                        cpu->core_id, smp_cores - 1);
1930             return;
1931         }
1932         if (cpu->thread_id < 0) {
1933             error_setg(errp, "CPU thread-id is not set");
1934             return;
1935         } else if (cpu->thread_id > (smp_threads - 1)) {
1936             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1937                        cpu->thread_id, smp_threads - 1);
1938             return;
1939         }
1940 
1941         topo.pkg_id = cpu->socket_id;
1942         topo.core_id = cpu->core_id;
1943         topo.smt_id = cpu->thread_id;
1944         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1945     }
1946 
1947     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1948     if (!cpu_slot) {
1949         MachineState *ms = MACHINE(pcms);
1950 
1951         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1952         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1953                   " APIC ID %" PRIu32 ", valid index range 0:%d",
1954                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1955                    ms->possible_cpus->len - 1);
1956         return;
1957     }
1958 
1959     if (cpu_slot->cpu) {
1960         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1961                    idx, cpu->apic_id);
1962         return;
1963     }
1964 
1965     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1966      * so that machine_query_hotpluggable_cpus would show correct values
1967      */
1968     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1969      * once -smp refactoring is complete and there will be CPU private
1970      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1971     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1972     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1973         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1974             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1975         return;
1976     }
1977     cpu->socket_id = topo.pkg_id;
1978 
1979     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1980         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1981             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1982         return;
1983     }
1984     cpu->core_id = topo.core_id;
1985 
1986     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1987         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1988             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1989         return;
1990     }
1991     cpu->thread_id = topo.smt_id;
1992 
1993     cs = CPU(cpu);
1994     cs->cpu_index = idx;
1995 
1996     numa_cpu_pre_plug(cpu_slot, dev, errp);
1997 }
1998 
1999 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2000                                           DeviceState *dev, Error **errp)
2001 {
2002     if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2003         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2004     }
2005 }
2006 
2007 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2008                                       DeviceState *dev, Error **errp)
2009 {
2010     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2011         pc_dimm_plug(hotplug_dev, dev, errp);
2012     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2013         pc_cpu_plug(hotplug_dev, dev, errp);
2014     }
2015 }
2016 
2017 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2018                                                 DeviceState *dev, Error **errp)
2019 {
2020     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2021         pc_dimm_unplug_request(hotplug_dev, dev, errp);
2022     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2023         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2024     } else {
2025         error_setg(errp, "acpi: device unplug request for not supported device"
2026                    " type: %s", object_get_typename(OBJECT(dev)));
2027     }
2028 }
2029 
2030 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2031                                         DeviceState *dev, Error **errp)
2032 {
2033     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2034         pc_dimm_unplug(hotplug_dev, dev, errp);
2035     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2036         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2037     } else {
2038         error_setg(errp, "acpi: device unplug for not supported device"
2039                    " type: %s", object_get_typename(OBJECT(dev)));
2040     }
2041 }
2042 
2043 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2044                                              DeviceState *dev)
2045 {
2046     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
2047 
2048     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2049         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2050         return HOTPLUG_HANDLER(machine);
2051     }
2052 
2053     return pcmc->get_hotplug_handler ?
2054         pcmc->get_hotplug_handler(machine, dev) : NULL;
2055 }
2056 
2057 static void
2058 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2059                                           const char *name, void *opaque,
2060                                           Error **errp)
2061 {
2062     PCMachineState *pcms = PC_MACHINE(obj);
2063     int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2064 
2065     visit_type_int(v, name, &value, errp);
2066 }
2067 
2068 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2069                                             const char *name, void *opaque,
2070                                             Error **errp)
2071 {
2072     PCMachineState *pcms = PC_MACHINE(obj);
2073     uint64_t value = pcms->max_ram_below_4g;
2074 
2075     visit_type_size(v, name, &value, errp);
2076 }
2077 
2078 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2079                                             const char *name, void *opaque,
2080                                             Error **errp)
2081 {
2082     PCMachineState *pcms = PC_MACHINE(obj);
2083     Error *error = NULL;
2084     uint64_t value;
2085 
2086     visit_type_size(v, name, &value, &error);
2087     if (error) {
2088         error_propagate(errp, error);
2089         return;
2090     }
2091     if (value > (1ULL << 32)) {
2092         error_setg(&error,
2093                    "Machine option 'max-ram-below-4g=%"PRIu64
2094                    "' expects size less than or equal to 4G", value);
2095         error_propagate(errp, error);
2096         return;
2097     }
2098 
2099     if (value < (1ULL << 20)) {
2100         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2101                     "BIOS may not work with less than 1MiB", value);
2102     }
2103 
2104     pcms->max_ram_below_4g = value;
2105 }
2106 
2107 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2108                                   void *opaque, Error **errp)
2109 {
2110     PCMachineState *pcms = PC_MACHINE(obj);
2111     OnOffAuto vmport = pcms->vmport;
2112 
2113     visit_type_OnOffAuto(v, name, &vmport, errp);
2114 }
2115 
2116 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2117                                   void *opaque, Error **errp)
2118 {
2119     PCMachineState *pcms = PC_MACHINE(obj);
2120 
2121     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2122 }
2123 
2124 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2125 {
2126     bool smm_available = false;
2127 
2128     if (pcms->smm == ON_OFF_AUTO_OFF) {
2129         return false;
2130     }
2131 
2132     if (tcg_enabled() || qtest_enabled()) {
2133         smm_available = true;
2134     } else if (kvm_enabled()) {
2135         smm_available = kvm_has_smm();
2136     }
2137 
2138     if (smm_available) {
2139         return true;
2140     }
2141 
2142     if (pcms->smm == ON_OFF_AUTO_ON) {
2143         error_report("System Management Mode not supported by this hypervisor.");
2144         exit(1);
2145     }
2146     return false;
2147 }
2148 
2149 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2150                                void *opaque, Error **errp)
2151 {
2152     PCMachineState *pcms = PC_MACHINE(obj);
2153     OnOffAuto smm = pcms->smm;
2154 
2155     visit_type_OnOffAuto(v, name, &smm, errp);
2156 }
2157 
2158 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2159                                void *opaque, Error **errp)
2160 {
2161     PCMachineState *pcms = PC_MACHINE(obj);
2162 
2163     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2164 }
2165 
2166 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2167 {
2168     PCMachineState *pcms = PC_MACHINE(obj);
2169 
2170     return pcms->acpi_nvdimm_state.is_enabled;
2171 }
2172 
2173 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2174 {
2175     PCMachineState *pcms = PC_MACHINE(obj);
2176 
2177     pcms->acpi_nvdimm_state.is_enabled = value;
2178 }
2179 
2180 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2181 {
2182     PCMachineState *pcms = PC_MACHINE(obj);
2183 
2184     return pcms->smbus;
2185 }
2186 
2187 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2188 {
2189     PCMachineState *pcms = PC_MACHINE(obj);
2190 
2191     pcms->smbus = value;
2192 }
2193 
2194 static bool pc_machine_get_sata(Object *obj, Error **errp)
2195 {
2196     PCMachineState *pcms = PC_MACHINE(obj);
2197 
2198     return pcms->sata;
2199 }
2200 
2201 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2202 {
2203     PCMachineState *pcms = PC_MACHINE(obj);
2204 
2205     pcms->sata = value;
2206 }
2207 
2208 static bool pc_machine_get_pit(Object *obj, Error **errp)
2209 {
2210     PCMachineState *pcms = PC_MACHINE(obj);
2211 
2212     return pcms->pit;
2213 }
2214 
2215 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2216 {
2217     PCMachineState *pcms = PC_MACHINE(obj);
2218 
2219     pcms->pit = value;
2220 }
2221 
2222 static void pc_machine_initfn(Object *obj)
2223 {
2224     PCMachineState *pcms = PC_MACHINE(obj);
2225 
2226     pcms->max_ram_below_4g = 0; /* use default */
2227     pcms->smm = ON_OFF_AUTO_AUTO;
2228     pcms->vmport = ON_OFF_AUTO_AUTO;
2229     /* nvdimm is disabled on default. */
2230     pcms->acpi_nvdimm_state.is_enabled = false;
2231     /* acpi build is enabled by default if machine supports it */
2232     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2233     pcms->smbus = true;
2234     pcms->sata = true;
2235     pcms->pit = true;
2236 }
2237 
2238 static void pc_machine_reset(void)
2239 {
2240     CPUState *cs;
2241     X86CPU *cpu;
2242 
2243     qemu_devices_reset();
2244 
2245     /* Reset APIC after devices have been reset to cancel
2246      * any changes that qemu_devices_reset() might have done.
2247      */
2248     CPU_FOREACH(cs) {
2249         cpu = X86_CPU(cs);
2250 
2251         if (cpu->apic_state) {
2252             device_reset(cpu->apic_state);
2253         }
2254     }
2255 }
2256 
2257 static CpuInstanceProperties
2258 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2259 {
2260     MachineClass *mc = MACHINE_GET_CLASS(ms);
2261     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2262 
2263     assert(cpu_index < possible_cpus->len);
2264     return possible_cpus->cpus[cpu_index].props;
2265 }
2266 
2267 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2268 {
2269    X86CPUTopoInfo topo;
2270 
2271    assert(idx < ms->possible_cpus->len);
2272    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2273                             smp_cores, smp_threads, &topo);
2274    return topo.pkg_id % nb_numa_nodes;
2275 }
2276 
2277 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2278 {
2279     int i;
2280 
2281     if (ms->possible_cpus) {
2282         /*
2283          * make sure that max_cpus hasn't changed since the first use, i.e.
2284          * -smp hasn't been parsed after it
2285         */
2286         assert(ms->possible_cpus->len == max_cpus);
2287         return ms->possible_cpus;
2288     }
2289 
2290     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2291                                   sizeof(CPUArchId) * max_cpus);
2292     ms->possible_cpus->len = max_cpus;
2293     for (i = 0; i < ms->possible_cpus->len; i++) {
2294         X86CPUTopoInfo topo;
2295 
2296         ms->possible_cpus->cpus[i].type = ms->cpu_type;
2297         ms->possible_cpus->cpus[i].vcpus_count = 1;
2298         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2299         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2300                                  smp_cores, smp_threads, &topo);
2301         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2302         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2303         ms->possible_cpus->cpus[i].props.has_core_id = true;
2304         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2305         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2306         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2307     }
2308     return ms->possible_cpus;
2309 }
2310 
2311 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2312 {
2313     /* cpu index isn't used */
2314     CPUState *cs;
2315 
2316     CPU_FOREACH(cs) {
2317         X86CPU *cpu = X86_CPU(cs);
2318 
2319         if (!cpu->apic_state) {
2320             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2321         } else {
2322             apic_deliver_nmi(cpu->apic_state);
2323         }
2324     }
2325 }
2326 
2327 static void pc_machine_class_init(ObjectClass *oc, void *data)
2328 {
2329     MachineClass *mc = MACHINE_CLASS(oc);
2330     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2331     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2332     NMIClass *nc = NMI_CLASS(oc);
2333 
2334     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2335     pcmc->pci_enabled = true;
2336     pcmc->has_acpi_build = true;
2337     pcmc->rsdp_in_ram = true;
2338     pcmc->smbios_defaults = true;
2339     pcmc->smbios_uuid_encoded = true;
2340     pcmc->gigabyte_align = true;
2341     pcmc->has_reserved_memory = true;
2342     pcmc->kvmclock_enabled = true;
2343     pcmc->enforce_aligned_dimm = true;
2344     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2345      * to be used at the moment, 32K should be enough for a while.  */
2346     pcmc->acpi_data_size = 0x20000 + 0x8000;
2347     pcmc->save_tsc_khz = true;
2348     pcmc->linuxboot_dma_enabled = true;
2349     mc->get_hotplug_handler = pc_get_hotpug_handler;
2350     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2351     mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2352     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2353     mc->auto_enable_numa_with_memhp = true;
2354     mc->has_hotpluggable_cpus = true;
2355     mc->default_boot_order = "cad";
2356     mc->hot_add_cpu = pc_hot_add_cpu;
2357     mc->block_default_type = IF_IDE;
2358     mc->max_cpus = 255;
2359     mc->reset = pc_machine_reset;
2360     hc->pre_plug = pc_machine_device_pre_plug_cb;
2361     hc->plug = pc_machine_device_plug_cb;
2362     hc->unplug_request = pc_machine_device_unplug_request_cb;
2363     hc->unplug = pc_machine_device_unplug_cb;
2364     nc->nmi_monitor_handler = x86_nmi;
2365     mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2366 
2367     object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2368         pc_machine_get_hotplug_memory_region_size, NULL,
2369         NULL, NULL, &error_abort);
2370 
2371     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2372         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2373         NULL, NULL, &error_abort);
2374 
2375     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2376         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2377 
2378     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2379         pc_machine_get_smm, pc_machine_set_smm,
2380         NULL, NULL, &error_abort);
2381     object_class_property_set_description(oc, PC_MACHINE_SMM,
2382         "Enable SMM (pc & q35)", &error_abort);
2383 
2384     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2385         pc_machine_get_vmport, pc_machine_set_vmport,
2386         NULL, NULL, &error_abort);
2387     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2388         "Enable vmport (pc & q35)", &error_abort);
2389 
2390     object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2391         pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2392 
2393     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2394         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2395 
2396     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2397         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2398 
2399     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2400         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2401 }
2402 
2403 static const TypeInfo pc_machine_info = {
2404     .name = TYPE_PC_MACHINE,
2405     .parent = TYPE_MACHINE,
2406     .abstract = true,
2407     .instance_size = sizeof(PCMachineState),
2408     .instance_init = pc_machine_initfn,
2409     .class_size = sizeof(PCMachineClass),
2410     .class_init = pc_machine_class_init,
2411     .interfaces = (InterfaceInfo[]) {
2412          { TYPE_HOTPLUG_HANDLER },
2413          { TYPE_NMI },
2414          { }
2415     },
2416 };
2417 
2418 static void pc_machine_register_types(void)
2419 {
2420     type_register_static(&pc_machine_info);
2421 }
2422 
2423 type_init(pc_machine_register_types)
2424