1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/hw.h" 27 #include "hw/i386/pc.h" 28 #include "hw/char/serial.h" 29 #include "hw/i386/apic.h" 30 #include "hw/i386/topology.h" 31 #include "sysemu/cpus.h" 32 #include "hw/block/fdc.h" 33 #include "hw/ide.h" 34 #include "hw/pci/pci.h" 35 #include "hw/pci/pci_bus.h" 36 #include "hw/nvram/fw_cfg.h" 37 #include "hw/timer/hpet.h" 38 #include "hw/smbios/smbios.h" 39 #include "hw/loader.h" 40 #include "elf.h" 41 #include "multiboot.h" 42 #include "hw/timer/mc146818rtc.h" 43 #include "hw/timer/i8254.h" 44 #include "hw/audio/pcspk.h" 45 #include "hw/pci/msi.h" 46 #include "hw/sysbus.h" 47 #include "sysemu/sysemu.h" 48 #include "sysemu/numa.h" 49 #include "sysemu/kvm.h" 50 #include "sysemu/qtest.h" 51 #include "kvm_i386.h" 52 #include "hw/xen/xen.h" 53 #include "ui/qemu-spice.h" 54 #include "exec/memory.h" 55 #include "exec/address-spaces.h" 56 #include "sysemu/arch_init.h" 57 #include "qemu/bitmap.h" 58 #include "qemu/config-file.h" 59 #include "qemu/error-report.h" 60 #include "qemu/option.h" 61 #include "hw/acpi/acpi.h" 62 #include "hw/acpi/cpu_hotplug.h" 63 #include "hw/boards.h" 64 #include "hw/pci/pci_host.h" 65 #include "acpi-build.h" 66 #include "hw/mem/pc-dimm.h" 67 #include "qapi/error.h" 68 #include "qapi/qapi-visit-common.h" 69 #include "qapi/visitor.h" 70 #include "qom/cpu.h" 71 #include "hw/nmi.h" 72 #include "hw/i386/intel_iommu.h" 73 #include "hw/net/ne2000-isa.h" 74 75 /* debug PC/ISA interrupts */ 76 //#define DEBUG_IRQ 77 78 #ifdef DEBUG_IRQ 79 #define DPRINTF(fmt, ...) \ 80 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 81 #else 82 #define DPRINTF(fmt, ...) 83 #endif 84 85 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 86 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 87 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 88 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 89 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 90 91 #define E820_NR_ENTRIES 16 92 93 struct e820_entry { 94 uint64_t address; 95 uint64_t length; 96 uint32_t type; 97 } QEMU_PACKED __attribute((__aligned__(4))); 98 99 struct e820_table { 100 uint32_t count; 101 struct e820_entry entry[E820_NR_ENTRIES]; 102 } QEMU_PACKED __attribute((__aligned__(4))); 103 104 static struct e820_table e820_reserve; 105 static struct e820_entry *e820_table; 106 static unsigned e820_entries; 107 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 108 109 void gsi_handler(void *opaque, int n, int level) 110 { 111 GSIState *s = opaque; 112 113 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 114 if (n < ISA_NUM_IRQS) { 115 qemu_set_irq(s->i8259_irq[n], level); 116 } 117 qemu_set_irq(s->ioapic_irq[n], level); 118 } 119 120 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 121 unsigned size) 122 { 123 } 124 125 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 126 { 127 return 0xffffffffffffffffULL; 128 } 129 130 /* MSDOS compatibility mode FPU exception support */ 131 static qemu_irq ferr_irq; 132 133 void pc_register_ferr_irq(qemu_irq irq) 134 { 135 ferr_irq = irq; 136 } 137 138 /* XXX: add IGNNE support */ 139 void cpu_set_ferr(CPUX86State *s) 140 { 141 qemu_irq_raise(ferr_irq); 142 } 143 144 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 145 unsigned size) 146 { 147 qemu_irq_lower(ferr_irq); 148 } 149 150 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 151 { 152 return 0xffffffffffffffffULL; 153 } 154 155 /* TSC handling */ 156 uint64_t cpu_get_tsc(CPUX86State *env) 157 { 158 return cpu_get_ticks(); 159 } 160 161 /* IRQ handling */ 162 int cpu_get_pic_interrupt(CPUX86State *env) 163 { 164 X86CPU *cpu = x86_env_get_cpu(env); 165 int intno; 166 167 if (!kvm_irqchip_in_kernel()) { 168 intno = apic_get_interrupt(cpu->apic_state); 169 if (intno >= 0) { 170 return intno; 171 } 172 /* read the irq from the PIC */ 173 if (!apic_accept_pic_intr(cpu->apic_state)) { 174 return -1; 175 } 176 } 177 178 intno = pic_read_irq(isa_pic); 179 return intno; 180 } 181 182 static void pic_irq_request(void *opaque, int irq, int level) 183 { 184 CPUState *cs = first_cpu; 185 X86CPU *cpu = X86_CPU(cs); 186 187 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 188 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 189 CPU_FOREACH(cs) { 190 cpu = X86_CPU(cs); 191 if (apic_accept_pic_intr(cpu->apic_state)) { 192 apic_deliver_pic_intr(cpu->apic_state, level); 193 } 194 } 195 } else { 196 if (level) { 197 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 198 } else { 199 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 200 } 201 } 202 } 203 204 /* PC cmos mappings */ 205 206 #define REG_EQUIPMENT_BYTE 0x14 207 208 int cmos_get_fd_drive_type(FloppyDriveType fd0) 209 { 210 int val; 211 212 switch (fd0) { 213 case FLOPPY_DRIVE_TYPE_144: 214 /* 1.44 Mb 3"5 drive */ 215 val = 4; 216 break; 217 case FLOPPY_DRIVE_TYPE_288: 218 /* 2.88 Mb 3"5 drive */ 219 val = 5; 220 break; 221 case FLOPPY_DRIVE_TYPE_120: 222 /* 1.2 Mb 5"5 drive */ 223 val = 2; 224 break; 225 case FLOPPY_DRIVE_TYPE_NONE: 226 default: 227 val = 0; 228 break; 229 } 230 return val; 231 } 232 233 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 234 int16_t cylinders, int8_t heads, int8_t sectors) 235 { 236 rtc_set_memory(s, type_ofs, 47); 237 rtc_set_memory(s, info_ofs, cylinders); 238 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 239 rtc_set_memory(s, info_ofs + 2, heads); 240 rtc_set_memory(s, info_ofs + 3, 0xff); 241 rtc_set_memory(s, info_ofs + 4, 0xff); 242 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 243 rtc_set_memory(s, info_ofs + 6, cylinders); 244 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 245 rtc_set_memory(s, info_ofs + 8, sectors); 246 } 247 248 /* convert boot_device letter to something recognizable by the bios */ 249 static int boot_device2nibble(char boot_device) 250 { 251 switch(boot_device) { 252 case 'a': 253 case 'b': 254 return 0x01; /* floppy boot */ 255 case 'c': 256 return 0x02; /* hard drive boot */ 257 case 'd': 258 return 0x03; /* CD-ROM boot */ 259 case 'n': 260 return 0x04; /* Network boot */ 261 } 262 return 0; 263 } 264 265 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 266 { 267 #define PC_MAX_BOOT_DEVICES 3 268 int nbds, bds[3] = { 0, }; 269 int i; 270 271 nbds = strlen(boot_device); 272 if (nbds > PC_MAX_BOOT_DEVICES) { 273 error_setg(errp, "Too many boot devices for PC"); 274 return; 275 } 276 for (i = 0; i < nbds; i++) { 277 bds[i] = boot_device2nibble(boot_device[i]); 278 if (bds[i] == 0) { 279 error_setg(errp, "Invalid boot device for PC: '%c'", 280 boot_device[i]); 281 return; 282 } 283 } 284 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 285 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 286 } 287 288 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 289 { 290 set_boot_dev(opaque, boot_device, errp); 291 } 292 293 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 294 { 295 int val, nb, i; 296 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 297 FLOPPY_DRIVE_TYPE_NONE }; 298 299 /* floppy type */ 300 if (floppy) { 301 for (i = 0; i < 2; i++) { 302 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 303 } 304 } 305 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 306 cmos_get_fd_drive_type(fd_type[1]); 307 rtc_set_memory(rtc_state, 0x10, val); 308 309 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 310 nb = 0; 311 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 312 nb++; 313 } 314 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 315 nb++; 316 } 317 switch (nb) { 318 case 0: 319 break; 320 case 1: 321 val |= 0x01; /* 1 drive, ready for boot */ 322 break; 323 case 2: 324 val |= 0x41; /* 2 drives, ready for boot */ 325 break; 326 } 327 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 328 } 329 330 typedef struct pc_cmos_init_late_arg { 331 ISADevice *rtc_state; 332 BusState *idebus[2]; 333 } pc_cmos_init_late_arg; 334 335 typedef struct check_fdc_state { 336 ISADevice *floppy; 337 bool multiple; 338 } CheckFdcState; 339 340 static int check_fdc(Object *obj, void *opaque) 341 { 342 CheckFdcState *state = opaque; 343 Object *fdc; 344 uint32_t iobase; 345 Error *local_err = NULL; 346 347 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 348 if (!fdc) { 349 return 0; 350 } 351 352 iobase = object_property_get_uint(obj, "iobase", &local_err); 353 if (local_err || iobase != 0x3f0) { 354 error_free(local_err); 355 return 0; 356 } 357 358 if (state->floppy) { 359 state->multiple = true; 360 } else { 361 state->floppy = ISA_DEVICE(obj); 362 } 363 return 0; 364 } 365 366 static const char * const fdc_container_path[] = { 367 "/unattached", "/peripheral", "/peripheral-anon" 368 }; 369 370 /* 371 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 372 * and ACPI objects. 373 */ 374 ISADevice *pc_find_fdc0(void) 375 { 376 int i; 377 Object *container; 378 CheckFdcState state = { 0 }; 379 380 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 381 container = container_get(qdev_get_machine(), fdc_container_path[i]); 382 object_child_foreach(container, check_fdc, &state); 383 } 384 385 if (state.multiple) { 386 warn_report("multiple floppy disk controllers with " 387 "iobase=0x3f0 have been found"); 388 error_printf("the one being picked for CMOS setup might not reflect " 389 "your intent"); 390 } 391 392 return state.floppy; 393 } 394 395 static void pc_cmos_init_late(void *opaque) 396 { 397 pc_cmos_init_late_arg *arg = opaque; 398 ISADevice *s = arg->rtc_state; 399 int16_t cylinders; 400 int8_t heads, sectors; 401 int val; 402 int i, trans; 403 404 val = 0; 405 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 406 &cylinders, &heads, §ors) >= 0) { 407 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 408 val |= 0xf0; 409 } 410 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 411 &cylinders, &heads, §ors) >= 0) { 412 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 413 val |= 0x0f; 414 } 415 rtc_set_memory(s, 0x12, val); 416 417 val = 0; 418 for (i = 0; i < 4; i++) { 419 /* NOTE: ide_get_geometry() returns the physical 420 geometry. It is always such that: 1 <= sects <= 63, 1 421 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 422 geometry can be different if a translation is done. */ 423 if (arg->idebus[i / 2] && 424 ide_get_geometry(arg->idebus[i / 2], i % 2, 425 &cylinders, &heads, §ors) >= 0) { 426 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 427 assert((trans & ~3) == 0); 428 val |= trans << (i * 2); 429 } 430 } 431 rtc_set_memory(s, 0x39, val); 432 433 pc_cmos_init_floppy(s, pc_find_fdc0()); 434 435 qemu_unregister_reset(pc_cmos_init_late, opaque); 436 } 437 438 void pc_cmos_init(PCMachineState *pcms, 439 BusState *idebus0, BusState *idebus1, 440 ISADevice *s) 441 { 442 int val; 443 static pc_cmos_init_late_arg arg; 444 445 /* various important CMOS locations needed by PC/Bochs bios */ 446 447 /* memory size */ 448 /* base memory (first MiB) */ 449 val = MIN(pcms->below_4g_mem_size / 1024, 640); 450 rtc_set_memory(s, 0x15, val); 451 rtc_set_memory(s, 0x16, val >> 8); 452 /* extended memory (next 64MiB) */ 453 if (pcms->below_4g_mem_size > 1024 * 1024) { 454 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024; 455 } else { 456 val = 0; 457 } 458 if (val > 65535) 459 val = 65535; 460 rtc_set_memory(s, 0x17, val); 461 rtc_set_memory(s, 0x18, val >> 8); 462 rtc_set_memory(s, 0x30, val); 463 rtc_set_memory(s, 0x31, val >> 8); 464 /* memory between 16MiB and 4GiB */ 465 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) { 466 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536; 467 } else { 468 val = 0; 469 } 470 if (val > 65535) 471 val = 65535; 472 rtc_set_memory(s, 0x34, val); 473 rtc_set_memory(s, 0x35, val >> 8); 474 /* memory above 4GiB */ 475 val = pcms->above_4g_mem_size / 65536; 476 rtc_set_memory(s, 0x5b, val); 477 rtc_set_memory(s, 0x5c, val >> 8); 478 rtc_set_memory(s, 0x5d, val >> 16); 479 480 object_property_add_link(OBJECT(pcms), "rtc_state", 481 TYPE_ISA_DEVICE, 482 (Object **)&pcms->rtc, 483 object_property_allow_set_link, 484 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort); 485 object_property_set_link(OBJECT(pcms), OBJECT(s), 486 "rtc_state", &error_abort); 487 488 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 489 490 val = 0; 491 val |= 0x02; /* FPU is there */ 492 val |= 0x04; /* PS/2 mouse installed */ 493 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 494 495 /* hard drives and FDC */ 496 arg.rtc_state = s; 497 arg.idebus[0] = idebus0; 498 arg.idebus[1] = idebus1; 499 qemu_register_reset(pc_cmos_init_late, &arg); 500 } 501 502 #define TYPE_PORT92 "port92" 503 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 504 505 /* port 92 stuff: could be split off */ 506 typedef struct Port92State { 507 ISADevice parent_obj; 508 509 MemoryRegion io; 510 uint8_t outport; 511 qemu_irq a20_out; 512 } Port92State; 513 514 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 515 unsigned size) 516 { 517 Port92State *s = opaque; 518 int oldval = s->outport; 519 520 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 521 s->outport = val; 522 qemu_set_irq(s->a20_out, (val >> 1) & 1); 523 if ((val & 1) && !(oldval & 1)) { 524 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 525 } 526 } 527 528 static uint64_t port92_read(void *opaque, hwaddr addr, 529 unsigned size) 530 { 531 Port92State *s = opaque; 532 uint32_t ret; 533 534 ret = s->outport; 535 DPRINTF("port92: read 0x%02x\n", ret); 536 return ret; 537 } 538 539 static void port92_init(ISADevice *dev, qemu_irq a20_out) 540 { 541 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 542 } 543 544 static const VMStateDescription vmstate_port92_isa = { 545 .name = "port92", 546 .version_id = 1, 547 .minimum_version_id = 1, 548 .fields = (VMStateField[]) { 549 VMSTATE_UINT8(outport, Port92State), 550 VMSTATE_END_OF_LIST() 551 } 552 }; 553 554 static void port92_reset(DeviceState *d) 555 { 556 Port92State *s = PORT92(d); 557 558 s->outport &= ~1; 559 } 560 561 static const MemoryRegionOps port92_ops = { 562 .read = port92_read, 563 .write = port92_write, 564 .impl = { 565 .min_access_size = 1, 566 .max_access_size = 1, 567 }, 568 .endianness = DEVICE_LITTLE_ENDIAN, 569 }; 570 571 static void port92_initfn(Object *obj) 572 { 573 Port92State *s = PORT92(obj); 574 575 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 576 577 s->outport = 0; 578 579 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 580 } 581 582 static void port92_realizefn(DeviceState *dev, Error **errp) 583 { 584 ISADevice *isadev = ISA_DEVICE(dev); 585 Port92State *s = PORT92(dev); 586 587 isa_register_ioport(isadev, &s->io, 0x92); 588 } 589 590 static void port92_class_initfn(ObjectClass *klass, void *data) 591 { 592 DeviceClass *dc = DEVICE_CLASS(klass); 593 594 dc->realize = port92_realizefn; 595 dc->reset = port92_reset; 596 dc->vmsd = &vmstate_port92_isa; 597 /* 598 * Reason: unlike ordinary ISA devices, this one needs additional 599 * wiring: its A20 output line needs to be wired up by 600 * port92_init(). 601 */ 602 dc->user_creatable = false; 603 } 604 605 static const TypeInfo port92_info = { 606 .name = TYPE_PORT92, 607 .parent = TYPE_ISA_DEVICE, 608 .instance_size = sizeof(Port92State), 609 .instance_init = port92_initfn, 610 .class_init = port92_class_initfn, 611 }; 612 613 static void port92_register_types(void) 614 { 615 type_register_static(&port92_info); 616 } 617 618 type_init(port92_register_types) 619 620 static void handle_a20_line_change(void *opaque, int irq, int level) 621 { 622 X86CPU *cpu = opaque; 623 624 /* XXX: send to all CPUs ? */ 625 /* XXX: add logic to handle multiple A20 line sources */ 626 x86_cpu_set_a20(cpu, level); 627 } 628 629 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 630 { 631 int index = le32_to_cpu(e820_reserve.count); 632 struct e820_entry *entry; 633 634 if (type != E820_RAM) { 635 /* old FW_CFG_E820_TABLE entry -- reservations only */ 636 if (index >= E820_NR_ENTRIES) { 637 return -EBUSY; 638 } 639 entry = &e820_reserve.entry[index++]; 640 641 entry->address = cpu_to_le64(address); 642 entry->length = cpu_to_le64(length); 643 entry->type = cpu_to_le32(type); 644 645 e820_reserve.count = cpu_to_le32(index); 646 } 647 648 /* new "etc/e820" file -- include ram too */ 649 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 650 e820_table[e820_entries].address = cpu_to_le64(address); 651 e820_table[e820_entries].length = cpu_to_le64(length); 652 e820_table[e820_entries].type = cpu_to_le32(type); 653 e820_entries++; 654 655 return e820_entries; 656 } 657 658 int e820_get_num_entries(void) 659 { 660 return e820_entries; 661 } 662 663 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 664 { 665 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 666 *address = le64_to_cpu(e820_table[idx].address); 667 *length = le64_to_cpu(e820_table[idx].length); 668 return true; 669 } 670 return false; 671 } 672 673 /* Enables contiguous-apic-ID mode, for compatibility */ 674 static bool compat_apic_id_mode; 675 676 void enable_compat_apic_id_mode(void) 677 { 678 compat_apic_id_mode = true; 679 } 680 681 /* Calculates initial APIC ID for a specific CPU index 682 * 683 * Currently we need to be able to calculate the APIC ID from the CPU index 684 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 685 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 686 * all CPUs up to max_cpus. 687 */ 688 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 689 { 690 uint32_t correct_id; 691 static bool warned; 692 693 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 694 if (compat_apic_id_mode) { 695 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 696 error_report("APIC IDs set in compatibility mode, " 697 "CPU topology won't match the configuration"); 698 warned = true; 699 } 700 return cpu_index; 701 } else { 702 return correct_id; 703 } 704 } 705 706 static void pc_build_smbios(PCMachineState *pcms) 707 { 708 uint8_t *smbios_tables, *smbios_anchor; 709 size_t smbios_tables_len, smbios_anchor_len; 710 struct smbios_phys_mem_area *mem_array; 711 unsigned i, array_count; 712 MachineState *ms = MACHINE(pcms); 713 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 714 715 /* tell smbios about cpuid version and features */ 716 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 717 718 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 719 if (smbios_tables) { 720 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 721 smbios_tables, smbios_tables_len); 722 } 723 724 /* build the array of physical mem area from e820 table */ 725 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 726 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 727 uint64_t addr, len; 728 729 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 730 mem_array[array_count].address = addr; 731 mem_array[array_count].length = len; 732 array_count++; 733 } 734 } 735 smbios_get_tables(mem_array, array_count, 736 &smbios_tables, &smbios_tables_len, 737 &smbios_anchor, &smbios_anchor_len); 738 g_free(mem_array); 739 740 if (smbios_anchor) { 741 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 742 smbios_tables, smbios_tables_len); 743 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 744 smbios_anchor, smbios_anchor_len); 745 } 746 } 747 748 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 749 { 750 FWCfgState *fw_cfg; 751 uint64_t *numa_fw_cfg; 752 int i; 753 const CPUArchIdList *cpus; 754 MachineClass *mc = MACHINE_GET_CLASS(pcms); 755 756 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 757 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 758 759 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 760 * 761 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 762 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 763 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 764 * for CPU hotplug also uses APIC ID and not "CPU index". 765 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 766 * but the "limit to the APIC ID values SeaBIOS may see". 767 * 768 * So for compatibility reasons with old BIOSes we are stuck with 769 * "etc/max-cpus" actually being apic_id_limit 770 */ 771 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 772 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 773 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 774 acpi_tables, acpi_tables_len); 775 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 776 777 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 778 &e820_reserve, sizeof(e820_reserve)); 779 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 780 sizeof(struct e820_entry) * e820_entries); 781 782 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 783 /* allocate memory for the NUMA channel: one (64bit) word for the number 784 * of nodes, one word for each VCPU->node and one word for each node to 785 * hold the amount of memory. 786 */ 787 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 788 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 789 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 790 for (i = 0; i < cpus->len; i++) { 791 unsigned int apic_id = cpus->cpus[i].arch_id; 792 assert(apic_id < pcms->apic_id_limit); 793 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 794 } 795 for (i = 0; i < nb_numa_nodes; i++) { 796 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 797 cpu_to_le64(numa_info[i].node_mem); 798 } 799 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 800 (1 + pcms->apic_id_limit + nb_numa_nodes) * 801 sizeof(*numa_fw_cfg)); 802 803 return fw_cfg; 804 } 805 806 static long get_file_size(FILE *f) 807 { 808 long where, size; 809 810 /* XXX: on Unix systems, using fstat() probably makes more sense */ 811 812 where = ftell(f); 813 fseek(f, 0, SEEK_END); 814 size = ftell(f); 815 fseek(f, where, SEEK_SET); 816 817 return size; 818 } 819 820 /* setup_data types */ 821 #define SETUP_NONE 0 822 #define SETUP_E820_EXT 1 823 #define SETUP_DTB 2 824 #define SETUP_PCI 3 825 #define SETUP_EFI 4 826 827 struct setup_data { 828 uint64_t next; 829 uint32_t type; 830 uint32_t len; 831 uint8_t data[0]; 832 } __attribute__((packed)); 833 834 static void load_linux(PCMachineState *pcms, 835 FWCfgState *fw_cfg) 836 { 837 uint16_t protocol; 838 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 839 int dtb_size, setup_data_offset; 840 uint32_t initrd_max; 841 uint8_t header[8192], *setup, *kernel, *initrd_data; 842 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 843 FILE *f; 844 char *vmode; 845 MachineState *machine = MACHINE(pcms); 846 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 847 struct setup_data *setup_data; 848 const char *kernel_filename = machine->kernel_filename; 849 const char *initrd_filename = machine->initrd_filename; 850 const char *dtb_filename = machine->dtb; 851 const char *kernel_cmdline = machine->kernel_cmdline; 852 853 /* Align to 16 bytes as a paranoia measure */ 854 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 855 856 /* load the kernel header */ 857 f = fopen(kernel_filename, "rb"); 858 if (!f || !(kernel_size = get_file_size(f)) || 859 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 860 MIN(ARRAY_SIZE(header), kernel_size)) { 861 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 862 kernel_filename, strerror(errno)); 863 exit(1); 864 } 865 866 /* kernel protocol version */ 867 #if 0 868 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 869 #endif 870 if (ldl_p(header+0x202) == 0x53726448) { 871 protocol = lduw_p(header+0x206); 872 } else { 873 /* This looks like a multiboot kernel. If it is, let's stop 874 treating it like a Linux kernel. */ 875 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 876 kernel_cmdline, kernel_size, header)) { 877 return; 878 } 879 protocol = 0; 880 } 881 882 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 883 /* Low kernel */ 884 real_addr = 0x90000; 885 cmdline_addr = 0x9a000 - cmdline_size; 886 prot_addr = 0x10000; 887 } else if (protocol < 0x202) { 888 /* High but ancient kernel */ 889 real_addr = 0x90000; 890 cmdline_addr = 0x9a000 - cmdline_size; 891 prot_addr = 0x100000; 892 } else { 893 /* High and recent kernel */ 894 real_addr = 0x10000; 895 cmdline_addr = 0x20000; 896 prot_addr = 0x100000; 897 } 898 899 #if 0 900 fprintf(stderr, 901 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 902 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 903 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 904 real_addr, 905 cmdline_addr, 906 prot_addr); 907 #endif 908 909 /* highest address for loading the initrd */ 910 if (protocol >= 0x203) { 911 initrd_max = ldl_p(header+0x22c); 912 } else { 913 initrd_max = 0x37ffffff; 914 } 915 916 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 917 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 918 } 919 920 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 921 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 922 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 923 924 if (protocol >= 0x202) { 925 stl_p(header+0x228, cmdline_addr); 926 } else { 927 stw_p(header+0x20, 0xA33F); 928 stw_p(header+0x22, cmdline_addr-real_addr); 929 } 930 931 /* handle vga= parameter */ 932 vmode = strstr(kernel_cmdline, "vga="); 933 if (vmode) { 934 unsigned int video_mode; 935 /* skip "vga=" */ 936 vmode += 4; 937 if (!strncmp(vmode, "normal", 6)) { 938 video_mode = 0xffff; 939 } else if (!strncmp(vmode, "ext", 3)) { 940 video_mode = 0xfffe; 941 } else if (!strncmp(vmode, "ask", 3)) { 942 video_mode = 0xfffd; 943 } else { 944 video_mode = strtol(vmode, NULL, 0); 945 } 946 stw_p(header+0x1fa, video_mode); 947 } 948 949 /* loader type */ 950 /* High nybble = B reserved for QEMU; low nybble is revision number. 951 If this code is substantially changed, you may want to consider 952 incrementing the revision. */ 953 if (protocol >= 0x200) { 954 header[0x210] = 0xB0; 955 } 956 /* heap */ 957 if (protocol >= 0x201) { 958 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 959 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 960 } 961 962 /* load initrd */ 963 if (initrd_filename) { 964 if (protocol < 0x200) { 965 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 966 exit(1); 967 } 968 969 initrd_size = get_image_size(initrd_filename); 970 if (initrd_size < 0) { 971 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 972 initrd_filename, strerror(errno)); 973 exit(1); 974 } 975 976 initrd_addr = (initrd_max-initrd_size) & ~4095; 977 978 initrd_data = g_malloc(initrd_size); 979 load_image(initrd_filename, initrd_data); 980 981 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 982 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 983 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 984 985 stl_p(header+0x218, initrd_addr); 986 stl_p(header+0x21c, initrd_size); 987 } 988 989 /* load kernel and setup */ 990 setup_size = header[0x1f1]; 991 if (setup_size == 0) { 992 setup_size = 4; 993 } 994 setup_size = (setup_size+1)*512; 995 if (setup_size > kernel_size) { 996 fprintf(stderr, "qemu: invalid kernel header\n"); 997 exit(1); 998 } 999 kernel_size -= setup_size; 1000 1001 setup = g_malloc(setup_size); 1002 kernel = g_malloc(kernel_size); 1003 fseek(f, 0, SEEK_SET); 1004 if (fread(setup, 1, setup_size, f) != setup_size) { 1005 fprintf(stderr, "fread() failed\n"); 1006 exit(1); 1007 } 1008 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1009 fprintf(stderr, "fread() failed\n"); 1010 exit(1); 1011 } 1012 fclose(f); 1013 1014 /* append dtb to kernel */ 1015 if (dtb_filename) { 1016 if (protocol < 0x209) { 1017 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1018 exit(1); 1019 } 1020 1021 dtb_size = get_image_size(dtb_filename); 1022 if (dtb_size <= 0) { 1023 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1024 dtb_filename, strerror(errno)); 1025 exit(1); 1026 } 1027 1028 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1029 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1030 kernel = g_realloc(kernel, kernel_size); 1031 1032 stq_p(header+0x250, prot_addr + setup_data_offset); 1033 1034 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1035 setup_data->next = 0; 1036 setup_data->type = cpu_to_le32(SETUP_DTB); 1037 setup_data->len = cpu_to_le32(dtb_size); 1038 1039 load_image_size(dtb_filename, setup_data->data, dtb_size); 1040 } 1041 1042 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1043 1044 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1045 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1046 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1047 1048 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1049 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1050 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1051 1052 option_rom[nb_option_roms].bootindex = 0; 1053 option_rom[nb_option_roms].name = "linuxboot.bin"; 1054 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1055 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1056 } 1057 nb_option_roms++; 1058 } 1059 1060 #define NE2000_NB_MAX 6 1061 1062 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1063 0x280, 0x380 }; 1064 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1065 1066 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1067 { 1068 static int nb_ne2k = 0; 1069 1070 if (nb_ne2k == NE2000_NB_MAX) 1071 return; 1072 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1073 ne2000_irq[nb_ne2k], nd); 1074 nb_ne2k++; 1075 } 1076 1077 DeviceState *cpu_get_current_apic(void) 1078 { 1079 if (current_cpu) { 1080 X86CPU *cpu = X86_CPU(current_cpu); 1081 return cpu->apic_state; 1082 } else { 1083 return NULL; 1084 } 1085 } 1086 1087 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1088 { 1089 X86CPU *cpu = opaque; 1090 1091 if (level) { 1092 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1093 } 1094 } 1095 1096 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1097 { 1098 Object *cpu = NULL; 1099 Error *local_err = NULL; 1100 1101 cpu = object_new(typename); 1102 1103 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1104 object_property_set_bool(cpu, true, "realized", &local_err); 1105 1106 object_unref(cpu); 1107 error_propagate(errp, local_err); 1108 } 1109 1110 void pc_hot_add_cpu(const int64_t id, Error **errp) 1111 { 1112 MachineState *ms = MACHINE(qdev_get_machine()); 1113 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1114 Error *local_err = NULL; 1115 1116 if (id < 0) { 1117 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1118 return; 1119 } 1120 1121 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1122 error_setg(errp, "Unable to add CPU: %" PRIi64 1123 ", resulting APIC ID (%" PRIi64 ") is too large", 1124 id, apic_id); 1125 return; 1126 } 1127 1128 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1129 if (local_err) { 1130 error_propagate(errp, local_err); 1131 return; 1132 } 1133 } 1134 1135 void pc_cpus_init(PCMachineState *pcms) 1136 { 1137 int i; 1138 const CPUArchIdList *possible_cpus; 1139 MachineState *ms = MACHINE(pcms); 1140 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1141 1142 /* Calculates the limit to CPU APIC ID values 1143 * 1144 * Limit for the APIC ID value, so that all 1145 * CPU APIC IDs are < pcms->apic_id_limit. 1146 * 1147 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1148 */ 1149 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1150 possible_cpus = mc->possible_cpu_arch_ids(ms); 1151 for (i = 0; i < smp_cpus; i++) { 1152 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id, 1153 &error_fatal); 1154 } 1155 } 1156 1157 static void pc_build_feature_control_file(PCMachineState *pcms) 1158 { 1159 MachineState *ms = MACHINE(pcms); 1160 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1161 CPUX86State *env = &cpu->env; 1162 uint32_t unused, ecx, edx; 1163 uint64_t feature_control_bits = 0; 1164 uint64_t *val; 1165 1166 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1167 if (ecx & CPUID_EXT_VMX) { 1168 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1169 } 1170 1171 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1172 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1173 (env->mcg_cap & MCG_LMCE_P)) { 1174 feature_control_bits |= FEATURE_CONTROL_LMCE; 1175 } 1176 1177 if (!feature_control_bits) { 1178 return; 1179 } 1180 1181 val = g_malloc(sizeof(*val)); 1182 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1183 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1184 } 1185 1186 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1187 { 1188 if (cpus_count > 0xff) { 1189 /* If the number of CPUs can't be represented in 8 bits, the 1190 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1191 * to make old BIOSes fail more predictably. 1192 */ 1193 rtc_set_memory(rtc, 0x5f, 0); 1194 } else { 1195 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1196 } 1197 } 1198 1199 static 1200 void pc_machine_done(Notifier *notifier, void *data) 1201 { 1202 PCMachineState *pcms = container_of(notifier, 1203 PCMachineState, machine_done); 1204 PCIBus *bus = pcms->bus; 1205 1206 /* set the number of CPUs */ 1207 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1208 1209 if (bus) { 1210 int extra_hosts = 0; 1211 1212 QLIST_FOREACH(bus, &bus->child, sibling) { 1213 /* look for expander root buses */ 1214 if (pci_bus_is_root(bus)) { 1215 extra_hosts++; 1216 } 1217 } 1218 if (extra_hosts && pcms->fw_cfg) { 1219 uint64_t *val = g_malloc(sizeof(*val)); 1220 *val = cpu_to_le64(extra_hosts); 1221 fw_cfg_add_file(pcms->fw_cfg, 1222 "etc/extra-pci-roots", val, sizeof(*val)); 1223 } 1224 } 1225 1226 acpi_setup(); 1227 if (pcms->fw_cfg) { 1228 pc_build_smbios(pcms); 1229 pc_build_feature_control_file(pcms); 1230 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1231 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1232 } 1233 1234 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1235 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1236 1237 if (!iommu || !iommu->x86_iommu.intr_supported || 1238 iommu->intr_eim != ON_OFF_AUTO_ON) { 1239 error_report("current -smp configuration requires " 1240 "Extended Interrupt Mode enabled. " 1241 "You can add an IOMMU using: " 1242 "-device intel-iommu,intremap=on,eim=on"); 1243 exit(EXIT_FAILURE); 1244 } 1245 } 1246 } 1247 1248 void pc_guest_info_init(PCMachineState *pcms) 1249 { 1250 int i; 1251 1252 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1253 pcms->numa_nodes = nb_numa_nodes; 1254 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1255 sizeof *pcms->node_mem); 1256 for (i = 0; i < nb_numa_nodes; i++) { 1257 pcms->node_mem[i] = numa_info[i].node_mem; 1258 } 1259 1260 pcms->machine_done.notify = pc_machine_done; 1261 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1262 } 1263 1264 /* setup pci memory address space mapping into system address space */ 1265 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1266 MemoryRegion *pci_address_space) 1267 { 1268 /* Set to lower priority than RAM */ 1269 memory_region_add_subregion_overlap(system_memory, 0x0, 1270 pci_address_space, -1); 1271 } 1272 1273 void pc_acpi_init(const char *default_dsdt) 1274 { 1275 char *filename; 1276 1277 if (acpi_tables != NULL) { 1278 /* manually set via -acpitable, leave it alone */ 1279 return; 1280 } 1281 1282 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1283 if (filename == NULL) { 1284 warn_report("failed to find %s", default_dsdt); 1285 } else { 1286 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1287 &error_abort); 1288 Error *err = NULL; 1289 1290 qemu_opt_set(opts, "file", filename, &error_abort); 1291 1292 acpi_table_add_builtin(opts, &err); 1293 if (err) { 1294 warn_reportf_err(err, "failed to load %s: ", filename); 1295 } 1296 g_free(filename); 1297 } 1298 } 1299 1300 void xen_load_linux(PCMachineState *pcms) 1301 { 1302 int i; 1303 FWCfgState *fw_cfg; 1304 1305 assert(MACHINE(pcms)->kernel_filename != NULL); 1306 1307 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1308 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1309 rom_set_fw(fw_cfg); 1310 1311 load_linux(pcms, fw_cfg); 1312 for (i = 0; i < nb_option_roms; i++) { 1313 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1314 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1315 !strcmp(option_rom[i].name, "multiboot.bin")); 1316 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1317 } 1318 pcms->fw_cfg = fw_cfg; 1319 } 1320 1321 void pc_memory_init(PCMachineState *pcms, 1322 MemoryRegion *system_memory, 1323 MemoryRegion *rom_memory, 1324 MemoryRegion **ram_memory) 1325 { 1326 int linux_boot, i; 1327 MemoryRegion *ram, *option_rom_mr; 1328 MemoryRegion *ram_below_4g, *ram_above_4g; 1329 FWCfgState *fw_cfg; 1330 MachineState *machine = MACHINE(pcms); 1331 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1332 1333 assert(machine->ram_size == pcms->below_4g_mem_size + 1334 pcms->above_4g_mem_size); 1335 1336 linux_boot = (machine->kernel_filename != NULL); 1337 1338 /* Allocate RAM. We allocate it as a single memory region and use 1339 * aliases to address portions of it, mostly for backwards compatibility 1340 * with older qemus that used qemu_ram_alloc(). 1341 */ 1342 ram = g_malloc(sizeof(*ram)); 1343 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1344 machine->ram_size); 1345 *ram_memory = ram; 1346 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1347 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1348 0, pcms->below_4g_mem_size); 1349 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1350 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1351 if (pcms->above_4g_mem_size > 0) { 1352 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1353 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1354 pcms->below_4g_mem_size, 1355 pcms->above_4g_mem_size); 1356 memory_region_add_subregion(system_memory, 0x100000000ULL, 1357 ram_above_4g); 1358 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1359 } 1360 1361 if (!pcmc->has_reserved_memory && 1362 (machine->ram_slots || 1363 (machine->maxram_size > machine->ram_size))) { 1364 MachineClass *mc = MACHINE_GET_CLASS(machine); 1365 1366 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1367 mc->name); 1368 exit(EXIT_FAILURE); 1369 } 1370 1371 /* initialize hotplug memory address space */ 1372 if (pcmc->has_reserved_memory && 1373 (machine->ram_size < machine->maxram_size)) { 1374 ram_addr_t hotplug_mem_size = 1375 machine->maxram_size - machine->ram_size; 1376 1377 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1378 error_report("unsupported amount of memory slots: %"PRIu64, 1379 machine->ram_slots); 1380 exit(EXIT_FAILURE); 1381 } 1382 1383 if (QEMU_ALIGN_UP(machine->maxram_size, 1384 TARGET_PAGE_SIZE) != machine->maxram_size) { 1385 error_report("maximum memory size must by aligned to multiple of " 1386 "%d bytes", TARGET_PAGE_SIZE); 1387 exit(EXIT_FAILURE); 1388 } 1389 1390 pcms->hotplug_memory.base = 1391 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30); 1392 1393 if (pcmc->enforce_aligned_dimm) { 1394 /* size hotplug region assuming 1G page max alignment per slot */ 1395 hotplug_mem_size += (1ULL << 30) * machine->ram_slots; 1396 } 1397 1398 if ((pcms->hotplug_memory.base + hotplug_mem_size) < 1399 hotplug_mem_size) { 1400 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1401 machine->maxram_size); 1402 exit(EXIT_FAILURE); 1403 } 1404 1405 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms), 1406 "hotplug-memory", hotplug_mem_size); 1407 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base, 1408 &pcms->hotplug_memory.mr); 1409 } 1410 1411 /* Initialize PC system firmware */ 1412 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1413 1414 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1415 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1416 &error_fatal); 1417 if (pcmc->pci_enabled) { 1418 memory_region_set_readonly(option_rom_mr, true); 1419 } 1420 memory_region_add_subregion_overlap(rom_memory, 1421 PC_ROM_MIN_VGA, 1422 option_rom_mr, 1423 1); 1424 1425 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1426 1427 rom_set_fw(fw_cfg); 1428 1429 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) { 1430 uint64_t *val = g_malloc(sizeof(*val)); 1431 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1432 uint64_t res_mem_end = pcms->hotplug_memory.base; 1433 1434 if (!pcmc->broken_reserved_end) { 1435 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr); 1436 } 1437 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30)); 1438 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1439 } 1440 1441 if (linux_boot) { 1442 load_linux(pcms, fw_cfg); 1443 } 1444 1445 for (i = 0; i < nb_option_roms; i++) { 1446 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1447 } 1448 pcms->fw_cfg = fw_cfg; 1449 1450 /* Init default IOAPIC address space */ 1451 pcms->ioapic_as = &address_space_memory; 1452 } 1453 1454 /* 1455 * The 64bit pci hole starts after "above 4G RAM" and 1456 * potentially the space reserved for memory hotplug. 1457 */ 1458 uint64_t pc_pci_hole64_start(void) 1459 { 1460 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1461 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1462 uint64_t hole64_start = 0; 1463 1464 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) { 1465 hole64_start = pcms->hotplug_memory.base; 1466 if (!pcmc->broken_reserved_end) { 1467 hole64_start += memory_region_size(&pcms->hotplug_memory.mr); 1468 } 1469 } else { 1470 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1471 } 1472 1473 return ROUND_UP(hole64_start, 1ULL << 30); 1474 } 1475 1476 qemu_irq pc_allocate_cpu_irq(void) 1477 { 1478 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1479 } 1480 1481 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1482 { 1483 DeviceState *dev = NULL; 1484 1485 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1486 if (pci_bus) { 1487 PCIDevice *pcidev = pci_vga_init(pci_bus); 1488 dev = pcidev ? &pcidev->qdev : NULL; 1489 } else if (isa_bus) { 1490 ISADevice *isadev = isa_vga_init(isa_bus); 1491 dev = isadev ? DEVICE(isadev) : NULL; 1492 } 1493 rom_reset_order_override(); 1494 return dev; 1495 } 1496 1497 static const MemoryRegionOps ioport80_io_ops = { 1498 .write = ioport80_write, 1499 .read = ioport80_read, 1500 .endianness = DEVICE_NATIVE_ENDIAN, 1501 .impl = { 1502 .min_access_size = 1, 1503 .max_access_size = 1, 1504 }, 1505 }; 1506 1507 static const MemoryRegionOps ioportF0_io_ops = { 1508 .write = ioportF0_write, 1509 .read = ioportF0_read, 1510 .endianness = DEVICE_NATIVE_ENDIAN, 1511 .impl = { 1512 .min_access_size = 1, 1513 .max_access_size = 1, 1514 }, 1515 }; 1516 1517 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1518 ISADevice **rtc_state, 1519 bool create_fdctrl, 1520 bool no_vmport, 1521 bool has_pit, 1522 uint32_t hpet_irqs) 1523 { 1524 int i; 1525 DriveInfo *fd[MAX_FD]; 1526 DeviceState *hpet = NULL; 1527 int pit_isa_irq = 0; 1528 qemu_irq pit_alt_irq = NULL; 1529 qemu_irq rtc_irq = NULL; 1530 qemu_irq *a20_line; 1531 ISADevice *i8042, *port92, *vmmouse, *pit = NULL; 1532 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1533 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1534 1535 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1536 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1537 1538 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1539 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1540 1541 /* 1542 * Check if an HPET shall be created. 1543 * 1544 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1545 * when the HPET wants to take over. Thus we have to disable the latter. 1546 */ 1547 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1548 /* In order to set property, here not using sysbus_try_create_simple */ 1549 hpet = qdev_try_create(NULL, TYPE_HPET); 1550 if (hpet) { 1551 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1552 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1553 * IRQ8 and IRQ2. 1554 */ 1555 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1556 HPET_INTCAP, NULL); 1557 if (!compat) { 1558 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1559 } 1560 qdev_init_nofail(hpet); 1561 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1562 1563 for (i = 0; i < GSI_NUM_PINS; i++) { 1564 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1565 } 1566 pit_isa_irq = -1; 1567 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1568 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1569 } 1570 } 1571 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 1572 1573 qemu_register_boot_set(pc_boot_set, *rtc_state); 1574 1575 if (!xen_enabled() && has_pit) { 1576 if (kvm_pit_in_kernel()) { 1577 pit = kvm_pit_init(isa_bus, 0x40); 1578 } else { 1579 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1580 } 1581 if (hpet) { 1582 /* connect PIT to output control line of the HPET */ 1583 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1584 } 1585 pcspk_init(isa_bus, pit); 1586 } 1587 1588 serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS); 1589 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1590 1591 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1592 i8042 = isa_create_simple(isa_bus, "i8042"); 1593 i8042_setup_a20_line(i8042, a20_line[0]); 1594 if (!no_vmport) { 1595 vmport_init(isa_bus); 1596 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1597 } else { 1598 vmmouse = NULL; 1599 } 1600 if (vmmouse) { 1601 DeviceState *dev = DEVICE(vmmouse); 1602 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1603 qdev_init_nofail(dev); 1604 } 1605 port92 = isa_create_simple(isa_bus, "port92"); 1606 port92_init(port92, a20_line[1]); 1607 g_free(a20_line); 1608 1609 DMA_init(isa_bus, 0); 1610 1611 for(i = 0; i < MAX_FD; i++) { 1612 fd[i] = drive_get(IF_FLOPPY, 0, i); 1613 create_fdctrl |= !!fd[i]; 1614 } 1615 if (create_fdctrl) { 1616 fdctrl_init_isa(isa_bus, fd); 1617 } 1618 } 1619 1620 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus) 1621 { 1622 int i; 1623 1624 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1625 for (i = 0; i < nb_nics; i++) { 1626 NICInfo *nd = &nd_table[i]; 1627 const char *model = nd->model ? nd->model : pcmc->default_nic_model; 1628 1629 if (g_str_equal(model, "ne2k_isa")) { 1630 pc_init_ne2k_isa(isa_bus, nd); 1631 } else { 1632 pci_nic_init_nofail(nd, pci_bus, model, NULL); 1633 } 1634 } 1635 rom_reset_order_override(); 1636 } 1637 1638 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1639 { 1640 DeviceState *dev; 1641 SysBusDevice *d; 1642 unsigned int i; 1643 1644 if (kvm_ioapic_in_kernel()) { 1645 dev = qdev_create(NULL, "kvm-ioapic"); 1646 } else { 1647 dev = qdev_create(NULL, "ioapic"); 1648 } 1649 if (parent_name) { 1650 object_property_add_child(object_resolve_path(parent_name, NULL), 1651 "ioapic", OBJECT(dev), NULL); 1652 } 1653 qdev_init_nofail(dev); 1654 d = SYS_BUS_DEVICE(dev); 1655 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1656 1657 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1658 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1659 } 1660 } 1661 1662 static void pc_dimm_plug(HotplugHandler *hotplug_dev, 1663 DeviceState *dev, Error **errp) 1664 { 1665 HotplugHandlerClass *hhc; 1666 Error *local_err = NULL; 1667 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1668 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1669 PCDIMMDevice *dimm = PC_DIMM(dev); 1670 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1671 MemoryRegion *mr; 1672 uint64_t align = TARGET_PAGE_SIZE; 1673 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1674 1675 mr = ddc->get_memory_region(dimm, &local_err); 1676 if (local_err) { 1677 goto out; 1678 } 1679 1680 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) { 1681 align = memory_region_get_alignment(mr); 1682 } 1683 1684 /* 1685 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1686 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1687 * addition to cover this case. 1688 */ 1689 if (!pcms->acpi_dev || !acpi_enabled) { 1690 error_setg(&local_err, 1691 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1692 goto out; 1693 } 1694 1695 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) { 1696 error_setg(&local_err, 1697 "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1698 goto out; 1699 } 1700 1701 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err); 1702 if (local_err) { 1703 goto out; 1704 } 1705 1706 if (is_nvdimm) { 1707 nvdimm_plug(&pcms->acpi_nvdimm_state); 1708 } 1709 1710 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1711 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1712 out: 1713 error_propagate(errp, local_err); 1714 } 1715 1716 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev, 1717 DeviceState *dev, Error **errp) 1718 { 1719 HotplugHandlerClass *hhc; 1720 Error *local_err = NULL; 1721 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1722 1723 /* 1724 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1725 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1726 * addition to cover this case. 1727 */ 1728 if (!pcms->acpi_dev || !acpi_enabled) { 1729 error_setg(&local_err, 1730 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1731 goto out; 1732 } 1733 1734 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1735 error_setg(&local_err, 1736 "nvdimm device hot unplug is not supported yet."); 1737 goto out; 1738 } 1739 1740 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1741 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1742 1743 out: 1744 error_propagate(errp, local_err); 1745 } 1746 1747 static void pc_dimm_unplug(HotplugHandler *hotplug_dev, 1748 DeviceState *dev, Error **errp) 1749 { 1750 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1751 PCDIMMDevice *dimm = PC_DIMM(dev); 1752 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1753 MemoryRegion *mr; 1754 HotplugHandlerClass *hhc; 1755 Error *local_err = NULL; 1756 1757 mr = ddc->get_memory_region(dimm, &local_err); 1758 if (local_err) { 1759 goto out; 1760 } 1761 1762 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1763 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1764 1765 if (local_err) { 1766 goto out; 1767 } 1768 1769 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr); 1770 object_unparent(OBJECT(dev)); 1771 1772 out: 1773 error_propagate(errp, local_err); 1774 } 1775 1776 static int pc_apic_cmp(const void *a, const void *b) 1777 { 1778 CPUArchId *apic_a = (CPUArchId *)a; 1779 CPUArchId *apic_b = (CPUArchId *)b; 1780 1781 return apic_a->arch_id - apic_b->arch_id; 1782 } 1783 1784 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1785 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1786 * entry corresponding to CPU's apic_id returns NULL. 1787 */ 1788 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1789 { 1790 CPUArchId apic_id, *found_cpu; 1791 1792 apic_id.arch_id = id; 1793 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1794 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1795 pc_apic_cmp); 1796 if (found_cpu && idx) { 1797 *idx = found_cpu - ms->possible_cpus->cpus; 1798 } 1799 return found_cpu; 1800 } 1801 1802 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1803 DeviceState *dev, Error **errp) 1804 { 1805 CPUArchId *found_cpu; 1806 HotplugHandlerClass *hhc; 1807 Error *local_err = NULL; 1808 X86CPU *cpu = X86_CPU(dev); 1809 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1810 1811 if (pcms->acpi_dev) { 1812 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1813 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1814 if (local_err) { 1815 goto out; 1816 } 1817 } 1818 1819 /* increment the number of CPUs */ 1820 pcms->boot_cpus++; 1821 if (pcms->rtc) { 1822 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1823 } 1824 if (pcms->fw_cfg) { 1825 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1826 } 1827 1828 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1829 found_cpu->cpu = OBJECT(dev); 1830 out: 1831 error_propagate(errp, local_err); 1832 } 1833 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1834 DeviceState *dev, Error **errp) 1835 { 1836 int idx = -1; 1837 HotplugHandlerClass *hhc; 1838 Error *local_err = NULL; 1839 X86CPU *cpu = X86_CPU(dev); 1840 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1841 1842 if (!pcms->acpi_dev) { 1843 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 1844 goto out; 1845 } 1846 1847 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1848 assert(idx != -1); 1849 if (idx == 0) { 1850 error_setg(&local_err, "Boot CPU is unpluggable"); 1851 goto out; 1852 } 1853 1854 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1855 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1856 1857 if (local_err) { 1858 goto out; 1859 } 1860 1861 out: 1862 error_propagate(errp, local_err); 1863 1864 } 1865 1866 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1867 DeviceState *dev, Error **errp) 1868 { 1869 CPUArchId *found_cpu; 1870 HotplugHandlerClass *hhc; 1871 Error *local_err = NULL; 1872 X86CPU *cpu = X86_CPU(dev); 1873 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1874 1875 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1876 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1877 1878 if (local_err) { 1879 goto out; 1880 } 1881 1882 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1883 found_cpu->cpu = NULL; 1884 object_unparent(OBJECT(dev)); 1885 1886 /* decrement the number of CPUs */ 1887 pcms->boot_cpus--; 1888 /* Update the number of CPUs in CMOS */ 1889 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1890 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1891 out: 1892 error_propagate(errp, local_err); 1893 } 1894 1895 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 1896 DeviceState *dev, Error **errp) 1897 { 1898 int idx; 1899 CPUState *cs; 1900 CPUArchId *cpu_slot; 1901 X86CPUTopoInfo topo; 1902 X86CPU *cpu = X86_CPU(dev); 1903 MachineState *ms = MACHINE(hotplug_dev); 1904 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1905 1906 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 1907 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 1908 ms->cpu_type); 1909 return; 1910 } 1911 1912 /* if APIC ID is not set, set it based on socket/core/thread properties */ 1913 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 1914 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 1915 1916 if (cpu->socket_id < 0) { 1917 error_setg(errp, "CPU socket-id is not set"); 1918 return; 1919 } else if (cpu->socket_id > max_socket) { 1920 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 1921 cpu->socket_id, max_socket); 1922 return; 1923 } 1924 if (cpu->core_id < 0) { 1925 error_setg(errp, "CPU core-id is not set"); 1926 return; 1927 } else if (cpu->core_id > (smp_cores - 1)) { 1928 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 1929 cpu->core_id, smp_cores - 1); 1930 return; 1931 } 1932 if (cpu->thread_id < 0) { 1933 error_setg(errp, "CPU thread-id is not set"); 1934 return; 1935 } else if (cpu->thread_id > (smp_threads - 1)) { 1936 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 1937 cpu->thread_id, smp_threads - 1); 1938 return; 1939 } 1940 1941 topo.pkg_id = cpu->socket_id; 1942 topo.core_id = cpu->core_id; 1943 topo.smt_id = cpu->thread_id; 1944 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 1945 } 1946 1947 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1948 if (!cpu_slot) { 1949 MachineState *ms = MACHINE(pcms); 1950 1951 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1952 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 1953 " APIC ID %" PRIu32 ", valid index range 0:%d", 1954 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 1955 ms->possible_cpus->len - 1); 1956 return; 1957 } 1958 1959 if (cpu_slot->cpu) { 1960 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 1961 idx, cpu->apic_id); 1962 return; 1963 } 1964 1965 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 1966 * so that machine_query_hotpluggable_cpus would show correct values 1967 */ 1968 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 1969 * once -smp refactoring is complete and there will be CPU private 1970 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 1971 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1972 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 1973 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 1974 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 1975 return; 1976 } 1977 cpu->socket_id = topo.pkg_id; 1978 1979 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 1980 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 1981 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 1982 return; 1983 } 1984 cpu->core_id = topo.core_id; 1985 1986 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 1987 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 1988 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 1989 return; 1990 } 1991 cpu->thread_id = topo.smt_id; 1992 1993 cs = CPU(cpu); 1994 cs->cpu_index = idx; 1995 1996 numa_cpu_pre_plug(cpu_slot, dev, errp); 1997 } 1998 1999 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2000 DeviceState *dev, Error **errp) 2001 { 2002 if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2003 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2004 } 2005 } 2006 2007 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2008 DeviceState *dev, Error **errp) 2009 { 2010 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2011 pc_dimm_plug(hotplug_dev, dev, errp); 2012 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2013 pc_cpu_plug(hotplug_dev, dev, errp); 2014 } 2015 } 2016 2017 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2018 DeviceState *dev, Error **errp) 2019 { 2020 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2021 pc_dimm_unplug_request(hotplug_dev, dev, errp); 2022 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2023 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2024 } else { 2025 error_setg(errp, "acpi: device unplug request for not supported device" 2026 " type: %s", object_get_typename(OBJECT(dev))); 2027 } 2028 } 2029 2030 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2031 DeviceState *dev, Error **errp) 2032 { 2033 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2034 pc_dimm_unplug(hotplug_dev, dev, errp); 2035 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2036 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2037 } else { 2038 error_setg(errp, "acpi: device unplug for not supported device" 2039 " type: %s", object_get_typename(OBJECT(dev))); 2040 } 2041 } 2042 2043 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2044 DeviceState *dev) 2045 { 2046 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine); 2047 2048 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2049 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2050 return HOTPLUG_HANDLER(machine); 2051 } 2052 2053 return pcmc->get_hotplug_handler ? 2054 pcmc->get_hotplug_handler(machine, dev) : NULL; 2055 } 2056 2057 static void 2058 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, 2059 const char *name, void *opaque, 2060 Error **errp) 2061 { 2062 PCMachineState *pcms = PC_MACHINE(obj); 2063 int64_t value = memory_region_size(&pcms->hotplug_memory.mr); 2064 2065 visit_type_int(v, name, &value, errp); 2066 } 2067 2068 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2069 const char *name, void *opaque, 2070 Error **errp) 2071 { 2072 PCMachineState *pcms = PC_MACHINE(obj); 2073 uint64_t value = pcms->max_ram_below_4g; 2074 2075 visit_type_size(v, name, &value, errp); 2076 } 2077 2078 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2079 const char *name, void *opaque, 2080 Error **errp) 2081 { 2082 PCMachineState *pcms = PC_MACHINE(obj); 2083 Error *error = NULL; 2084 uint64_t value; 2085 2086 visit_type_size(v, name, &value, &error); 2087 if (error) { 2088 error_propagate(errp, error); 2089 return; 2090 } 2091 if (value > (1ULL << 32)) { 2092 error_setg(&error, 2093 "Machine option 'max-ram-below-4g=%"PRIu64 2094 "' expects size less than or equal to 4G", value); 2095 error_propagate(errp, error); 2096 return; 2097 } 2098 2099 if (value < (1ULL << 20)) { 2100 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2101 "BIOS may not work with less than 1MiB", value); 2102 } 2103 2104 pcms->max_ram_below_4g = value; 2105 } 2106 2107 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2108 void *opaque, Error **errp) 2109 { 2110 PCMachineState *pcms = PC_MACHINE(obj); 2111 OnOffAuto vmport = pcms->vmport; 2112 2113 visit_type_OnOffAuto(v, name, &vmport, errp); 2114 } 2115 2116 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2117 void *opaque, Error **errp) 2118 { 2119 PCMachineState *pcms = PC_MACHINE(obj); 2120 2121 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2122 } 2123 2124 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2125 { 2126 bool smm_available = false; 2127 2128 if (pcms->smm == ON_OFF_AUTO_OFF) { 2129 return false; 2130 } 2131 2132 if (tcg_enabled() || qtest_enabled()) { 2133 smm_available = true; 2134 } else if (kvm_enabled()) { 2135 smm_available = kvm_has_smm(); 2136 } 2137 2138 if (smm_available) { 2139 return true; 2140 } 2141 2142 if (pcms->smm == ON_OFF_AUTO_ON) { 2143 error_report("System Management Mode not supported by this hypervisor."); 2144 exit(1); 2145 } 2146 return false; 2147 } 2148 2149 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2150 void *opaque, Error **errp) 2151 { 2152 PCMachineState *pcms = PC_MACHINE(obj); 2153 OnOffAuto smm = pcms->smm; 2154 2155 visit_type_OnOffAuto(v, name, &smm, errp); 2156 } 2157 2158 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2159 void *opaque, Error **errp) 2160 { 2161 PCMachineState *pcms = PC_MACHINE(obj); 2162 2163 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2164 } 2165 2166 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2167 { 2168 PCMachineState *pcms = PC_MACHINE(obj); 2169 2170 return pcms->acpi_nvdimm_state.is_enabled; 2171 } 2172 2173 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2174 { 2175 PCMachineState *pcms = PC_MACHINE(obj); 2176 2177 pcms->acpi_nvdimm_state.is_enabled = value; 2178 } 2179 2180 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2181 { 2182 PCMachineState *pcms = PC_MACHINE(obj); 2183 2184 return pcms->smbus; 2185 } 2186 2187 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2188 { 2189 PCMachineState *pcms = PC_MACHINE(obj); 2190 2191 pcms->smbus = value; 2192 } 2193 2194 static bool pc_machine_get_sata(Object *obj, Error **errp) 2195 { 2196 PCMachineState *pcms = PC_MACHINE(obj); 2197 2198 return pcms->sata; 2199 } 2200 2201 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2202 { 2203 PCMachineState *pcms = PC_MACHINE(obj); 2204 2205 pcms->sata = value; 2206 } 2207 2208 static bool pc_machine_get_pit(Object *obj, Error **errp) 2209 { 2210 PCMachineState *pcms = PC_MACHINE(obj); 2211 2212 return pcms->pit; 2213 } 2214 2215 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2216 { 2217 PCMachineState *pcms = PC_MACHINE(obj); 2218 2219 pcms->pit = value; 2220 } 2221 2222 static void pc_machine_initfn(Object *obj) 2223 { 2224 PCMachineState *pcms = PC_MACHINE(obj); 2225 2226 pcms->max_ram_below_4g = 0; /* use default */ 2227 pcms->smm = ON_OFF_AUTO_AUTO; 2228 pcms->vmport = ON_OFF_AUTO_AUTO; 2229 /* nvdimm is disabled on default. */ 2230 pcms->acpi_nvdimm_state.is_enabled = false; 2231 /* acpi build is enabled by default if machine supports it */ 2232 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2233 pcms->smbus = true; 2234 pcms->sata = true; 2235 pcms->pit = true; 2236 } 2237 2238 static void pc_machine_reset(void) 2239 { 2240 CPUState *cs; 2241 X86CPU *cpu; 2242 2243 qemu_devices_reset(); 2244 2245 /* Reset APIC after devices have been reset to cancel 2246 * any changes that qemu_devices_reset() might have done. 2247 */ 2248 CPU_FOREACH(cs) { 2249 cpu = X86_CPU(cs); 2250 2251 if (cpu->apic_state) { 2252 device_reset(cpu->apic_state); 2253 } 2254 } 2255 } 2256 2257 static CpuInstanceProperties 2258 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2259 { 2260 MachineClass *mc = MACHINE_GET_CLASS(ms); 2261 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2262 2263 assert(cpu_index < possible_cpus->len); 2264 return possible_cpus->cpus[cpu_index].props; 2265 } 2266 2267 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2268 { 2269 X86CPUTopoInfo topo; 2270 2271 assert(idx < ms->possible_cpus->len); 2272 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2273 smp_cores, smp_threads, &topo); 2274 return topo.pkg_id % nb_numa_nodes; 2275 } 2276 2277 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2278 { 2279 int i; 2280 2281 if (ms->possible_cpus) { 2282 /* 2283 * make sure that max_cpus hasn't changed since the first use, i.e. 2284 * -smp hasn't been parsed after it 2285 */ 2286 assert(ms->possible_cpus->len == max_cpus); 2287 return ms->possible_cpus; 2288 } 2289 2290 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2291 sizeof(CPUArchId) * max_cpus); 2292 ms->possible_cpus->len = max_cpus; 2293 for (i = 0; i < ms->possible_cpus->len; i++) { 2294 X86CPUTopoInfo topo; 2295 2296 ms->possible_cpus->cpus[i].type = ms->cpu_type; 2297 ms->possible_cpus->cpus[i].vcpus_count = 1; 2298 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2299 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2300 smp_cores, smp_threads, &topo); 2301 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2302 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2303 ms->possible_cpus->cpus[i].props.has_core_id = true; 2304 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2305 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2306 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2307 } 2308 return ms->possible_cpus; 2309 } 2310 2311 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2312 { 2313 /* cpu index isn't used */ 2314 CPUState *cs; 2315 2316 CPU_FOREACH(cs) { 2317 X86CPU *cpu = X86_CPU(cs); 2318 2319 if (!cpu->apic_state) { 2320 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2321 } else { 2322 apic_deliver_nmi(cpu->apic_state); 2323 } 2324 } 2325 } 2326 2327 static void pc_machine_class_init(ObjectClass *oc, void *data) 2328 { 2329 MachineClass *mc = MACHINE_CLASS(oc); 2330 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2331 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2332 NMIClass *nc = NMI_CLASS(oc); 2333 2334 pcmc->get_hotplug_handler = mc->get_hotplug_handler; 2335 pcmc->pci_enabled = true; 2336 pcmc->has_acpi_build = true; 2337 pcmc->rsdp_in_ram = true; 2338 pcmc->smbios_defaults = true; 2339 pcmc->smbios_uuid_encoded = true; 2340 pcmc->gigabyte_align = true; 2341 pcmc->has_reserved_memory = true; 2342 pcmc->kvmclock_enabled = true; 2343 pcmc->enforce_aligned_dimm = true; 2344 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2345 * to be used at the moment, 32K should be enough for a while. */ 2346 pcmc->acpi_data_size = 0x20000 + 0x8000; 2347 pcmc->save_tsc_khz = true; 2348 pcmc->linuxboot_dma_enabled = true; 2349 mc->get_hotplug_handler = pc_get_hotpug_handler; 2350 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2351 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2352 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2353 mc->auto_enable_numa_with_memhp = true; 2354 mc->has_hotpluggable_cpus = true; 2355 mc->default_boot_order = "cad"; 2356 mc->hot_add_cpu = pc_hot_add_cpu; 2357 mc->block_default_type = IF_IDE; 2358 mc->max_cpus = 255; 2359 mc->reset = pc_machine_reset; 2360 hc->pre_plug = pc_machine_device_pre_plug_cb; 2361 hc->plug = pc_machine_device_plug_cb; 2362 hc->unplug_request = pc_machine_device_unplug_request_cb; 2363 hc->unplug = pc_machine_device_unplug_cb; 2364 nc->nmi_monitor_handler = x86_nmi; 2365 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2366 2367 object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int", 2368 pc_machine_get_hotplug_memory_region_size, NULL, 2369 NULL, NULL, &error_abort); 2370 2371 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2372 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2373 NULL, NULL, &error_abort); 2374 2375 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2376 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2377 2378 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2379 pc_machine_get_smm, pc_machine_set_smm, 2380 NULL, NULL, &error_abort); 2381 object_class_property_set_description(oc, PC_MACHINE_SMM, 2382 "Enable SMM (pc & q35)", &error_abort); 2383 2384 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2385 pc_machine_get_vmport, pc_machine_set_vmport, 2386 NULL, NULL, &error_abort); 2387 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2388 "Enable vmport (pc & q35)", &error_abort); 2389 2390 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2391 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2392 2393 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2394 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2395 2396 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2397 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2398 2399 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2400 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2401 } 2402 2403 static const TypeInfo pc_machine_info = { 2404 .name = TYPE_PC_MACHINE, 2405 .parent = TYPE_MACHINE, 2406 .abstract = true, 2407 .instance_size = sizeof(PCMachineState), 2408 .instance_init = pc_machine_initfn, 2409 .class_size = sizeof(PCMachineClass), 2410 .class_init = pc_machine_class_init, 2411 .interfaces = (InterfaceInfo[]) { 2412 { TYPE_HOTPLUG_HANDLER }, 2413 { TYPE_NMI }, 2414 { } 2415 }, 2416 }; 2417 2418 static void pc_machine_register_types(void) 2419 { 2420 type_register_static(&pc_machine_info); 2421 } 2422 2423 type_init(pc_machine_register_types) 2424