xref: /openbmc/qemu/hw/i386/pc.c (revision c71c3e99)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/pc.h"
26 #include "hw/serial.h"
27 #include "hw/apic.h"
28 #include "hw/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/fw_cfg.h"
33 #include "hw/hpet_emul.h"
34 #include "hw/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "hw/multiboot.h"
38 #include "hw/mc146818rtc.h"
39 #include "hw/i8254.h"
40 #include "hw/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block-common.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 
55 /* debug PC/ISA interrupts */
56 //#define DEBUG_IRQ
57 
58 #ifdef DEBUG_IRQ
59 #define DPRINTF(fmt, ...)                                       \
60     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
61 #else
62 #define DPRINTF(fmt, ...)
63 #endif
64 
65 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
66 #define ACPI_DATA_SIZE       0x10000
67 #define BIOS_CFG_IOPORT 0x510
68 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
69 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
70 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
71 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
72 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
73 
74 #define E820_NR_ENTRIES		16
75 
76 struct e820_entry {
77     uint64_t address;
78     uint64_t length;
79     uint32_t type;
80 } QEMU_PACKED __attribute((__aligned__(4)));
81 
82 struct e820_table {
83     uint32_t count;
84     struct e820_entry entry[E820_NR_ENTRIES];
85 } QEMU_PACKED __attribute((__aligned__(4)));
86 
87 static struct e820_table e820_table;
88 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
89 
90 void gsi_handler(void *opaque, int n, int level)
91 {
92     GSIState *s = opaque;
93 
94     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
95     if (n < ISA_NUM_IRQS) {
96         qemu_set_irq(s->i8259_irq[n], level);
97     }
98     qemu_set_irq(s->ioapic_irq[n], level);
99 }
100 
101 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
102                            unsigned size)
103 {
104 }
105 
106 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
107 {
108     return 0xffffffffffffffffULL;
109 }
110 
111 /* MSDOS compatibility mode FPU exception support */
112 static qemu_irq ferr_irq;
113 
114 void pc_register_ferr_irq(qemu_irq irq)
115 {
116     ferr_irq = irq;
117 }
118 
119 /* XXX: add IGNNE support */
120 void cpu_set_ferr(CPUX86State *s)
121 {
122     qemu_irq_raise(ferr_irq);
123 }
124 
125 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
126                            unsigned size)
127 {
128     qemu_irq_lower(ferr_irq);
129 }
130 
131 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
132 {
133     return 0xffffffffffffffffULL;
134 }
135 
136 /* TSC handling */
137 uint64_t cpu_get_tsc(CPUX86State *env)
138 {
139     return cpu_get_ticks();
140 }
141 
142 /* SMM support */
143 
144 static cpu_set_smm_t smm_set;
145 static void *smm_arg;
146 
147 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
148 {
149     assert(smm_set == NULL);
150     assert(smm_arg == NULL);
151     smm_set = callback;
152     smm_arg = arg;
153 }
154 
155 void cpu_smm_update(CPUX86State *env)
156 {
157     if (smm_set && smm_arg && env == first_cpu)
158         smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
159 }
160 
161 
162 /* IRQ handling */
163 int cpu_get_pic_interrupt(CPUX86State *env)
164 {
165     int intno;
166 
167     intno = apic_get_interrupt(env->apic_state);
168     if (intno >= 0) {
169         return intno;
170     }
171     /* read the irq from the PIC */
172     if (!apic_accept_pic_intr(env->apic_state)) {
173         return -1;
174     }
175 
176     intno = pic_read_irq(isa_pic);
177     return intno;
178 }
179 
180 static void pic_irq_request(void *opaque, int irq, int level)
181 {
182     CPUX86State *env = first_cpu;
183 
184     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
185     if (env->apic_state) {
186         while (env) {
187             if (apic_accept_pic_intr(env->apic_state)) {
188                 apic_deliver_pic_intr(env->apic_state, level);
189             }
190             env = env->next_cpu;
191         }
192     } else {
193         if (level)
194             cpu_interrupt(env, CPU_INTERRUPT_HARD);
195         else
196             cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
197     }
198 }
199 
200 /* PC cmos mappings */
201 
202 #define REG_EQUIPMENT_BYTE          0x14
203 
204 static int cmos_get_fd_drive_type(FDriveType fd0)
205 {
206     int val;
207 
208     switch (fd0) {
209     case FDRIVE_DRV_144:
210         /* 1.44 Mb 3"5 drive */
211         val = 4;
212         break;
213     case FDRIVE_DRV_288:
214         /* 2.88 Mb 3"5 drive */
215         val = 5;
216         break;
217     case FDRIVE_DRV_120:
218         /* 1.2 Mb 5"5 drive */
219         val = 2;
220         break;
221     case FDRIVE_DRV_NONE:
222     default:
223         val = 0;
224         break;
225     }
226     return val;
227 }
228 
229 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
230                          int16_t cylinders, int8_t heads, int8_t sectors)
231 {
232     rtc_set_memory(s, type_ofs, 47);
233     rtc_set_memory(s, info_ofs, cylinders);
234     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
235     rtc_set_memory(s, info_ofs + 2, heads);
236     rtc_set_memory(s, info_ofs + 3, 0xff);
237     rtc_set_memory(s, info_ofs + 4, 0xff);
238     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
239     rtc_set_memory(s, info_ofs + 6, cylinders);
240     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
241     rtc_set_memory(s, info_ofs + 8, sectors);
242 }
243 
244 /* convert boot_device letter to something recognizable by the bios */
245 static int boot_device2nibble(char boot_device)
246 {
247     switch(boot_device) {
248     case 'a':
249     case 'b':
250         return 0x01; /* floppy boot */
251     case 'c':
252         return 0x02; /* hard drive boot */
253     case 'd':
254         return 0x03; /* CD-ROM boot */
255     case 'n':
256         return 0x04; /* Network boot */
257     }
258     return 0;
259 }
260 
261 static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk)
262 {
263 #define PC_MAX_BOOT_DEVICES 3
264     int nbds, bds[3] = { 0, };
265     int i;
266 
267     nbds = strlen(boot_device);
268     if (nbds > PC_MAX_BOOT_DEVICES) {
269         error_report("Too many boot devices for PC");
270         return(1);
271     }
272     for (i = 0; i < nbds; i++) {
273         bds[i] = boot_device2nibble(boot_device[i]);
274         if (bds[i] == 0) {
275             error_report("Invalid boot device for PC: '%c'",
276                          boot_device[i]);
277             return(1);
278         }
279     }
280     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
281     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
282     return(0);
283 }
284 
285 static int pc_boot_set(void *opaque, const char *boot_device)
286 {
287     return set_boot_dev(opaque, boot_device, 0);
288 }
289 
290 typedef struct pc_cmos_init_late_arg {
291     ISADevice *rtc_state;
292     BusState *idebus[2];
293 } pc_cmos_init_late_arg;
294 
295 static void pc_cmos_init_late(void *opaque)
296 {
297     pc_cmos_init_late_arg *arg = opaque;
298     ISADevice *s = arg->rtc_state;
299     int16_t cylinders;
300     int8_t heads, sectors;
301     int val;
302     int i, trans;
303 
304     val = 0;
305     if (ide_get_geometry(arg->idebus[0], 0,
306                          &cylinders, &heads, &sectors) >= 0) {
307         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
308         val |= 0xf0;
309     }
310     if (ide_get_geometry(arg->idebus[0], 1,
311                          &cylinders, &heads, &sectors) >= 0) {
312         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
313         val |= 0x0f;
314     }
315     rtc_set_memory(s, 0x12, val);
316 
317     val = 0;
318     for (i = 0; i < 4; i++) {
319         /* NOTE: ide_get_geometry() returns the physical
320            geometry.  It is always such that: 1 <= sects <= 63, 1
321            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
322            geometry can be different if a translation is done. */
323         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
324                              &cylinders, &heads, &sectors) >= 0) {
325             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
326             assert((trans & ~3) == 0);
327             val |= trans << (i * 2);
328         }
329     }
330     rtc_set_memory(s, 0x39, val);
331 
332     qemu_unregister_reset(pc_cmos_init_late, opaque);
333 }
334 
335 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
336                   const char *boot_device,
337                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
338                   ISADevice *s)
339 {
340     int val, nb, i;
341     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
342     static pc_cmos_init_late_arg arg;
343 
344     /* various important CMOS locations needed by PC/Bochs bios */
345 
346     /* memory size */
347     /* base memory (first MiB) */
348     val = MIN(ram_size / 1024, 640);
349     rtc_set_memory(s, 0x15, val);
350     rtc_set_memory(s, 0x16, val >> 8);
351     /* extended memory (next 64MiB) */
352     if (ram_size > 1024 * 1024) {
353         val = (ram_size - 1024 * 1024) / 1024;
354     } else {
355         val = 0;
356     }
357     if (val > 65535)
358         val = 65535;
359     rtc_set_memory(s, 0x17, val);
360     rtc_set_memory(s, 0x18, val >> 8);
361     rtc_set_memory(s, 0x30, val);
362     rtc_set_memory(s, 0x31, val >> 8);
363     /* memory between 16MiB and 4GiB */
364     if (ram_size > 16 * 1024 * 1024) {
365         val = (ram_size - 16 * 1024 * 1024) / 65536;
366     } else {
367         val = 0;
368     }
369     if (val > 65535)
370         val = 65535;
371     rtc_set_memory(s, 0x34, val);
372     rtc_set_memory(s, 0x35, val >> 8);
373     /* memory above 4GiB */
374     val = above_4g_mem_size / 65536;
375     rtc_set_memory(s, 0x5b, val);
376     rtc_set_memory(s, 0x5c, val >> 8);
377     rtc_set_memory(s, 0x5d, val >> 16);
378 
379     /* set the number of CPU */
380     rtc_set_memory(s, 0x5f, smp_cpus - 1);
381 
382     /* set boot devices, and disable floppy signature check if requested */
383     if (set_boot_dev(s, boot_device, fd_bootchk)) {
384         exit(1);
385     }
386 
387     /* floppy type */
388     if (floppy) {
389         for (i = 0; i < 2; i++) {
390             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
391         }
392     }
393     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
394         cmos_get_fd_drive_type(fd_type[1]);
395     rtc_set_memory(s, 0x10, val);
396 
397     val = 0;
398     nb = 0;
399     if (fd_type[0] < FDRIVE_DRV_NONE) {
400         nb++;
401     }
402     if (fd_type[1] < FDRIVE_DRV_NONE) {
403         nb++;
404     }
405     switch (nb) {
406     case 0:
407         break;
408     case 1:
409         val |= 0x01; /* 1 drive, ready for boot */
410         break;
411     case 2:
412         val |= 0x41; /* 2 drives, ready for boot */
413         break;
414     }
415     val |= 0x02; /* FPU is there */
416     val |= 0x04; /* PS/2 mouse installed */
417     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
418 
419     /* hard drives */
420     arg.rtc_state = s;
421     arg.idebus[0] = idebus0;
422     arg.idebus[1] = idebus1;
423     qemu_register_reset(pc_cmos_init_late, &arg);
424 }
425 
426 /* port 92 stuff: could be split off */
427 typedef struct Port92State {
428     ISADevice dev;
429     MemoryRegion io;
430     uint8_t outport;
431     qemu_irq *a20_out;
432 } Port92State;
433 
434 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
435                          unsigned size)
436 {
437     Port92State *s = opaque;
438 
439     DPRINTF("port92: write 0x%02x\n", val);
440     s->outport = val;
441     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
442     if (val & 1) {
443         qemu_system_reset_request();
444     }
445 }
446 
447 static uint64_t port92_read(void *opaque, hwaddr addr,
448                             unsigned size)
449 {
450     Port92State *s = opaque;
451     uint32_t ret;
452 
453     ret = s->outport;
454     DPRINTF("port92: read 0x%02x\n", ret);
455     return ret;
456 }
457 
458 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
459 {
460     Port92State *s = DO_UPCAST(Port92State, dev, dev);
461 
462     s->a20_out = a20_out;
463 }
464 
465 static const VMStateDescription vmstate_port92_isa = {
466     .name = "port92",
467     .version_id = 1,
468     .minimum_version_id = 1,
469     .minimum_version_id_old = 1,
470     .fields      = (VMStateField []) {
471         VMSTATE_UINT8(outport, Port92State),
472         VMSTATE_END_OF_LIST()
473     }
474 };
475 
476 static void port92_reset(DeviceState *d)
477 {
478     Port92State *s = container_of(d, Port92State, dev.qdev);
479 
480     s->outport &= ~1;
481 }
482 
483 static const MemoryRegionOps port92_ops = {
484     .read = port92_read,
485     .write = port92_write,
486     .impl = {
487         .min_access_size = 1,
488         .max_access_size = 1,
489     },
490     .endianness = DEVICE_LITTLE_ENDIAN,
491 };
492 
493 static int port92_initfn(ISADevice *dev)
494 {
495     Port92State *s = DO_UPCAST(Port92State, dev, dev);
496 
497     memory_region_init_io(&s->io, &port92_ops, s, "port92", 1);
498     isa_register_ioport(dev, &s->io, 0x92);
499 
500     s->outport = 0;
501     return 0;
502 }
503 
504 static void port92_class_initfn(ObjectClass *klass, void *data)
505 {
506     DeviceClass *dc = DEVICE_CLASS(klass);
507     ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
508     ic->init = port92_initfn;
509     dc->no_user = 1;
510     dc->reset = port92_reset;
511     dc->vmsd = &vmstate_port92_isa;
512 }
513 
514 static const TypeInfo port92_info = {
515     .name          = "port92",
516     .parent        = TYPE_ISA_DEVICE,
517     .instance_size = sizeof(Port92State),
518     .class_init    = port92_class_initfn,
519 };
520 
521 static void port92_register_types(void)
522 {
523     type_register_static(&port92_info);
524 }
525 
526 type_init(port92_register_types)
527 
528 static void handle_a20_line_change(void *opaque, int irq, int level)
529 {
530     X86CPU *cpu = opaque;
531 
532     /* XXX: send to all CPUs ? */
533     /* XXX: add logic to handle multiple A20 line sources */
534     x86_cpu_set_a20(cpu, level);
535 }
536 
537 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
538 {
539     int index = le32_to_cpu(e820_table.count);
540     struct e820_entry *entry;
541 
542     if (index >= E820_NR_ENTRIES)
543         return -EBUSY;
544     entry = &e820_table.entry[index++];
545 
546     entry->address = cpu_to_le64(address);
547     entry->length = cpu_to_le64(length);
548     entry->type = cpu_to_le32(type);
549 
550     e820_table.count = cpu_to_le32(index);
551     return index;
552 }
553 
554 /* Calculates the limit to CPU APIC ID values
555  *
556  * This function returns the limit for the APIC ID value, so that all
557  * CPU APIC IDs are < pc_apic_id_limit().
558  *
559  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
560  */
561 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
562 {
563     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
564 }
565 
566 static void *bochs_bios_init(void)
567 {
568     void *fw_cfg;
569     uint8_t *smbios_table;
570     size_t smbios_len;
571     uint64_t *numa_fw_cfg;
572     int i, j;
573     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
574 
575     fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
576     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
577      *
578      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
579      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
580      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
581      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
582      * may see".
583      *
584      * So, this means we must not use max_cpus, here, but the maximum possible
585      * APIC ID value, plus one.
586      *
587      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
588      *     the APIC ID, not the "CPU index"
589      */
590     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
591     fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
592     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
593     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
594                      acpi_tables, acpi_tables_len);
595     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
596 
597     smbios_table = smbios_get_table(&smbios_len);
598     if (smbios_table)
599         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
600                          smbios_table, smbios_len);
601     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
602                      &e820_table, sizeof(e820_table));
603 
604     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
605     /* allocate memory for the NUMA channel: one (64bit) word for the number
606      * of nodes, one word for each VCPU->node and one word for each node to
607      * hold the amount of memory.
608      */
609     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
610     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
611     for (i = 0; i < max_cpus; i++) {
612         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
613         assert(apic_id < apic_id_limit);
614         for (j = 0; j < nb_numa_nodes; j++) {
615             if (test_bit(i, node_cpumask[j])) {
616                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
617                 break;
618             }
619         }
620     }
621     for (i = 0; i < nb_numa_nodes; i++) {
622         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
623     }
624     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
625                      (1 + apic_id_limit + nb_numa_nodes) *
626                      sizeof(*numa_fw_cfg));
627 
628     return fw_cfg;
629 }
630 
631 static long get_file_size(FILE *f)
632 {
633     long where, size;
634 
635     /* XXX: on Unix systems, using fstat() probably makes more sense */
636 
637     where = ftell(f);
638     fseek(f, 0, SEEK_END);
639     size = ftell(f);
640     fseek(f, where, SEEK_SET);
641 
642     return size;
643 }
644 
645 static void load_linux(void *fw_cfg,
646                        const char *kernel_filename,
647 		       const char *initrd_filename,
648 		       const char *kernel_cmdline,
649                        hwaddr max_ram_size)
650 {
651     uint16_t protocol;
652     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
653     uint32_t initrd_max;
654     uint8_t header[8192], *setup, *kernel, *initrd_data;
655     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
656     FILE *f;
657     char *vmode;
658 
659     /* Align to 16 bytes as a paranoia measure */
660     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
661 
662     /* load the kernel header */
663     f = fopen(kernel_filename, "rb");
664     if (!f || !(kernel_size = get_file_size(f)) ||
665 	fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
666 	MIN(ARRAY_SIZE(header), kernel_size)) {
667 	fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
668 		kernel_filename, strerror(errno));
669 	exit(1);
670     }
671 
672     /* kernel protocol version */
673 #if 0
674     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
675 #endif
676     if (ldl_p(header+0x202) == 0x53726448)
677 	protocol = lduw_p(header+0x206);
678     else {
679 	/* This looks like a multiboot kernel. If it is, let's stop
680 	   treating it like a Linux kernel. */
681         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
682                            kernel_cmdline, kernel_size, header))
683             return;
684 	protocol = 0;
685     }
686 
687     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
688 	/* Low kernel */
689 	real_addr    = 0x90000;
690 	cmdline_addr = 0x9a000 - cmdline_size;
691 	prot_addr    = 0x10000;
692     } else if (protocol < 0x202) {
693 	/* High but ancient kernel */
694 	real_addr    = 0x90000;
695 	cmdline_addr = 0x9a000 - cmdline_size;
696 	prot_addr    = 0x100000;
697     } else {
698 	/* High and recent kernel */
699 	real_addr    = 0x10000;
700 	cmdline_addr = 0x20000;
701 	prot_addr    = 0x100000;
702     }
703 
704 #if 0
705     fprintf(stderr,
706 	    "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
707 	    "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
708 	    "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
709 	    real_addr,
710 	    cmdline_addr,
711 	    prot_addr);
712 #endif
713 
714     /* highest address for loading the initrd */
715     if (protocol >= 0x203)
716 	initrd_max = ldl_p(header+0x22c);
717     else
718 	initrd_max = 0x37ffffff;
719 
720     if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
721     	initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
722 
723     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
724     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
725     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
726 
727     if (protocol >= 0x202) {
728 	stl_p(header+0x228, cmdline_addr);
729     } else {
730 	stw_p(header+0x20, 0xA33F);
731 	stw_p(header+0x22, cmdline_addr-real_addr);
732     }
733 
734     /* handle vga= parameter */
735     vmode = strstr(kernel_cmdline, "vga=");
736     if (vmode) {
737         unsigned int video_mode;
738         /* skip "vga=" */
739         vmode += 4;
740         if (!strncmp(vmode, "normal", 6)) {
741             video_mode = 0xffff;
742         } else if (!strncmp(vmode, "ext", 3)) {
743             video_mode = 0xfffe;
744         } else if (!strncmp(vmode, "ask", 3)) {
745             video_mode = 0xfffd;
746         } else {
747             video_mode = strtol(vmode, NULL, 0);
748         }
749         stw_p(header+0x1fa, video_mode);
750     }
751 
752     /* loader type */
753     /* High nybble = B reserved for QEMU; low nybble is revision number.
754        If this code is substantially changed, you may want to consider
755        incrementing the revision. */
756     if (protocol >= 0x200)
757 	header[0x210] = 0xB0;
758 
759     /* heap */
760     if (protocol >= 0x201) {
761 	header[0x211] |= 0x80;	/* CAN_USE_HEAP */
762 	stw_p(header+0x224, cmdline_addr-real_addr-0x200);
763     }
764 
765     /* load initrd */
766     if (initrd_filename) {
767 	if (protocol < 0x200) {
768 	    fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
769 	    exit(1);
770 	}
771 
772 	initrd_size = get_image_size(initrd_filename);
773         if (initrd_size < 0) {
774             fprintf(stderr, "qemu: error reading initrd %s\n",
775                     initrd_filename);
776             exit(1);
777         }
778 
779         initrd_addr = (initrd_max-initrd_size) & ~4095;
780 
781         initrd_data = g_malloc(initrd_size);
782         load_image(initrd_filename, initrd_data);
783 
784         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
785         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
786         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
787 
788 	stl_p(header+0x218, initrd_addr);
789 	stl_p(header+0x21c, initrd_size);
790     }
791 
792     /* load kernel and setup */
793     setup_size = header[0x1f1];
794     if (setup_size == 0)
795 	setup_size = 4;
796     setup_size = (setup_size+1)*512;
797     kernel_size -= setup_size;
798 
799     setup  = g_malloc(setup_size);
800     kernel = g_malloc(kernel_size);
801     fseek(f, 0, SEEK_SET);
802     if (fread(setup, 1, setup_size, f) != setup_size) {
803         fprintf(stderr, "fread() failed\n");
804         exit(1);
805     }
806     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
807         fprintf(stderr, "fread() failed\n");
808         exit(1);
809     }
810     fclose(f);
811     memcpy(setup, header, MIN(sizeof(header), setup_size));
812 
813     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
814     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
815     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
816 
817     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
818     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
819     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
820 
821     option_rom[nb_option_roms].name = "linuxboot.bin";
822     option_rom[nb_option_roms].bootindex = 0;
823     nb_option_roms++;
824 }
825 
826 #define NE2000_NB_MAX 6
827 
828 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
829                                               0x280, 0x380 };
830 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
831 
832 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
833 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
834 
835 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
836 {
837     static int nb_ne2k = 0;
838 
839     if (nb_ne2k == NE2000_NB_MAX)
840         return;
841     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
842                     ne2000_irq[nb_ne2k], nd);
843     nb_ne2k++;
844 }
845 
846 DeviceState *cpu_get_current_apic(void)
847 {
848     if (cpu_single_env) {
849         return cpu_single_env->apic_state;
850     } else {
851         return NULL;
852     }
853 }
854 
855 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
856 {
857     CPUX86State *s = opaque;
858 
859     if (level) {
860         cpu_interrupt(s, CPU_INTERRUPT_SMI);
861     }
862 }
863 
864 void pc_cpus_init(const char *cpu_model)
865 {
866     int i;
867 
868     /* init CPUs */
869     if (cpu_model == NULL) {
870 #ifdef TARGET_X86_64
871         cpu_model = "qemu64";
872 #else
873         cpu_model = "qemu32";
874 #endif
875     }
876 
877     for (i = 0; i < smp_cpus; i++) {
878         if (!cpu_x86_init(cpu_model)) {
879             exit(1);
880         }
881     }
882 }
883 
884 void pc_acpi_init(const char *default_dsdt)
885 {
886     char *filename = NULL, *arg = NULL;
887 
888     if (acpi_tables != NULL) {
889         /* manually set via -acpitable, leave it alone */
890         return;
891     }
892 
893     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
894     if (filename == NULL) {
895         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
896         return;
897     }
898 
899     arg = g_strdup_printf("file=%s", filename);
900     if (acpi_table_add(arg) != 0) {
901         fprintf(stderr, "WARNING: failed to load %s\n", filename);
902     }
903     g_free(arg);
904     g_free(filename);
905 }
906 
907 void *pc_memory_init(MemoryRegion *system_memory,
908                     const char *kernel_filename,
909                     const char *kernel_cmdline,
910                     const char *initrd_filename,
911                     ram_addr_t below_4g_mem_size,
912                     ram_addr_t above_4g_mem_size,
913                     MemoryRegion *rom_memory,
914                     MemoryRegion **ram_memory)
915 {
916     int linux_boot, i;
917     MemoryRegion *ram, *option_rom_mr;
918     MemoryRegion *ram_below_4g, *ram_above_4g;
919     void *fw_cfg;
920 
921     linux_boot = (kernel_filename != NULL);
922 
923     /* Allocate RAM.  We allocate it as a single memory region and use
924      * aliases to address portions of it, mostly for backwards compatibility
925      * with older qemus that used qemu_ram_alloc().
926      */
927     ram = g_malloc(sizeof(*ram));
928     memory_region_init_ram(ram, "pc.ram",
929                            below_4g_mem_size + above_4g_mem_size);
930     vmstate_register_ram_global(ram);
931     *ram_memory = ram;
932     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
933     memory_region_init_alias(ram_below_4g, "ram-below-4g", ram,
934                              0, below_4g_mem_size);
935     memory_region_add_subregion(system_memory, 0, ram_below_4g);
936     if (above_4g_mem_size > 0) {
937         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
938         memory_region_init_alias(ram_above_4g, "ram-above-4g", ram,
939                                  below_4g_mem_size, above_4g_mem_size);
940         memory_region_add_subregion(system_memory, 0x100000000ULL,
941                                     ram_above_4g);
942     }
943 
944 
945     /* Initialize PC system firmware */
946     pc_system_firmware_init(rom_memory);
947 
948     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
949     memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE);
950     vmstate_register_ram_global(option_rom_mr);
951     memory_region_add_subregion_overlap(rom_memory,
952                                         PC_ROM_MIN_VGA,
953                                         option_rom_mr,
954                                         1);
955 
956     fw_cfg = bochs_bios_init();
957     rom_set_fw(fw_cfg);
958 
959     if (linux_boot) {
960         load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
961     }
962 
963     for (i = 0; i < nb_option_roms; i++) {
964         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
965     }
966     return fw_cfg;
967 }
968 
969 qemu_irq *pc_allocate_cpu_irq(void)
970 {
971     return qemu_allocate_irqs(pic_irq_request, NULL, 1);
972 }
973 
974 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
975 {
976     DeviceState *dev = NULL;
977 
978     if (pci_bus) {
979         PCIDevice *pcidev = pci_vga_init(pci_bus);
980         dev = pcidev ? &pcidev->qdev : NULL;
981     } else if (isa_bus) {
982         ISADevice *isadev = isa_vga_init(isa_bus);
983         dev = isadev ? &isadev->qdev : NULL;
984     }
985     return dev;
986 }
987 
988 static void cpu_request_exit(void *opaque, int irq, int level)
989 {
990     CPUX86State *env = cpu_single_env;
991 
992     if (env && level) {
993         cpu_exit(env);
994     }
995 }
996 
997 static const MemoryRegionOps ioport80_io_ops = {
998     .write = ioport80_write,
999     .read = ioport80_read,
1000     .endianness = DEVICE_NATIVE_ENDIAN,
1001     .impl = {
1002         .min_access_size = 1,
1003         .max_access_size = 1,
1004     },
1005 };
1006 
1007 static const MemoryRegionOps ioportF0_io_ops = {
1008     .write = ioportF0_write,
1009     .read = ioportF0_read,
1010     .endianness = DEVICE_NATIVE_ENDIAN,
1011     .impl = {
1012         .min_access_size = 1,
1013         .max_access_size = 1,
1014     },
1015 };
1016 
1017 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1018                           ISADevice **rtc_state,
1019                           ISADevice **floppy,
1020                           bool no_vmport)
1021 {
1022     int i;
1023     DriveInfo *fd[MAX_FD];
1024     DeviceState *hpet = NULL;
1025     int pit_isa_irq = 0;
1026     qemu_irq pit_alt_irq = NULL;
1027     qemu_irq rtc_irq = NULL;
1028     qemu_irq *a20_line;
1029     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1030     qemu_irq *cpu_exit_irq;
1031     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1032     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1033 
1034     memory_region_init_io(ioport80_io, &ioport80_io_ops, NULL, "ioport80", 1);
1035     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1036 
1037     memory_region_init_io(ioportF0_io, &ioportF0_io_ops, NULL, "ioportF0", 1);
1038     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1039 
1040     /*
1041      * Check if an HPET shall be created.
1042      *
1043      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1044      * when the HPET wants to take over. Thus we have to disable the latter.
1045      */
1046     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1047         hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1048 
1049         if (hpet) {
1050             for (i = 0; i < GSI_NUM_PINS; i++) {
1051                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1052             }
1053             pit_isa_irq = -1;
1054             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1055             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1056         }
1057     }
1058     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1059 
1060     qemu_register_boot_set(pc_boot_set, *rtc_state);
1061 
1062     if (!xen_enabled()) {
1063         if (kvm_irqchip_in_kernel()) {
1064             pit = kvm_pit_init(isa_bus, 0x40);
1065         } else {
1066             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1067         }
1068         if (hpet) {
1069             /* connect PIT to output control line of the HPET */
1070             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(&pit->qdev, 0));
1071         }
1072         pcspk_init(isa_bus, pit);
1073     }
1074 
1075     for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1076         if (serial_hds[i]) {
1077             serial_isa_init(isa_bus, i, serial_hds[i]);
1078         }
1079     }
1080 
1081     for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1082         if (parallel_hds[i]) {
1083             parallel_init(isa_bus, i, parallel_hds[i]);
1084         }
1085     }
1086 
1087     a20_line = qemu_allocate_irqs(handle_a20_line_change,
1088                                   x86_env_get_cpu(first_cpu), 2);
1089     i8042 = isa_create_simple(isa_bus, "i8042");
1090     i8042_setup_a20_line(i8042, &a20_line[0]);
1091     if (!no_vmport) {
1092         vmport_init(isa_bus);
1093         vmmouse = isa_try_create(isa_bus, "vmmouse");
1094     } else {
1095         vmmouse = NULL;
1096     }
1097     if (vmmouse) {
1098         qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042);
1099         qdev_init_nofail(&vmmouse->qdev);
1100     }
1101     port92 = isa_create_simple(isa_bus, "port92");
1102     port92_init(port92, &a20_line[1]);
1103 
1104     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1105     DMA_init(0, cpu_exit_irq);
1106 
1107     for(i = 0; i < MAX_FD; i++) {
1108         fd[i] = drive_get(IF_FLOPPY, 0, i);
1109     }
1110     *floppy = fdctrl_init_isa(isa_bus, fd);
1111 }
1112 
1113 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1114 {
1115     int i;
1116 
1117     for (i = 0; i < nb_nics; i++) {
1118         NICInfo *nd = &nd_table[i];
1119 
1120         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1121             pc_init_ne2k_isa(isa_bus, nd);
1122         } else {
1123             pci_nic_init_nofail(nd, "e1000", NULL);
1124         }
1125     }
1126 }
1127 
1128 void pc_pci_device_init(PCIBus *pci_bus)
1129 {
1130     int max_bus;
1131     int bus;
1132 
1133     max_bus = drive_get_max_bus(IF_SCSI);
1134     for (bus = 0; bus <= max_bus; bus++) {
1135         pci_create_simple(pci_bus, -1, "lsi53c895a");
1136     }
1137 }
1138 
1139 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1140 {
1141     DeviceState *dev;
1142     SysBusDevice *d;
1143     unsigned int i;
1144 
1145     if (kvm_irqchip_in_kernel()) {
1146         dev = qdev_create(NULL, "kvm-ioapic");
1147     } else {
1148         dev = qdev_create(NULL, "ioapic");
1149     }
1150     if (parent_name) {
1151         object_property_add_child(object_resolve_path(parent_name, NULL),
1152                                   "ioapic", OBJECT(dev), NULL);
1153     }
1154     qdev_init_nofail(dev);
1155     d = SYS_BUS_DEVICE(dev);
1156     sysbus_mmio_map(d, 0, 0xfec00000);
1157 
1158     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1159         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1160     }
1161 }
1162