xref: /openbmc/qemu/hw/i386/pc.c (revision b8bcf811)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/cpu/icc_bus.h"
57 #include "hw/boards.h"
58 #include "hw/pci/pci_host.h"
59 #include "acpi-build.h"
60 
61 /* debug PC/ISA interrupts */
62 //#define DEBUG_IRQ
63 
64 #ifdef DEBUG_IRQ
65 #define DPRINTF(fmt, ...)                                       \
66     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
67 #else
68 #define DPRINTF(fmt, ...)
69 #endif
70 
71 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
72 #define ACPI_DATA_SIZE       0x10000
73 #define BIOS_CFG_IOPORT 0x510
74 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
75 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
76 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
77 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
78 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
79 
80 #define E820_NR_ENTRIES		16
81 
82 struct e820_entry {
83     uint64_t address;
84     uint64_t length;
85     uint32_t type;
86 } QEMU_PACKED __attribute((__aligned__(4)));
87 
88 struct e820_table {
89     uint32_t count;
90     struct e820_entry entry[E820_NR_ENTRIES];
91 } QEMU_PACKED __attribute((__aligned__(4)));
92 
93 static struct e820_table e820_reserve;
94 static struct e820_entry *e820_table;
95 static unsigned e820_entries;
96 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
97 
98 void gsi_handler(void *opaque, int n, int level)
99 {
100     GSIState *s = opaque;
101 
102     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
103     if (n < ISA_NUM_IRQS) {
104         qemu_set_irq(s->i8259_irq[n], level);
105     }
106     qemu_set_irq(s->ioapic_irq[n], level);
107 }
108 
109 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
110                            unsigned size)
111 {
112 }
113 
114 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
115 {
116     return 0xffffffffffffffffULL;
117 }
118 
119 /* MSDOS compatibility mode FPU exception support */
120 static qemu_irq ferr_irq;
121 
122 void pc_register_ferr_irq(qemu_irq irq)
123 {
124     ferr_irq = irq;
125 }
126 
127 /* XXX: add IGNNE support */
128 void cpu_set_ferr(CPUX86State *s)
129 {
130     qemu_irq_raise(ferr_irq);
131 }
132 
133 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
134                            unsigned size)
135 {
136     qemu_irq_lower(ferr_irq);
137 }
138 
139 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
140 {
141     return 0xffffffffffffffffULL;
142 }
143 
144 /* TSC handling */
145 uint64_t cpu_get_tsc(CPUX86State *env)
146 {
147     return cpu_get_ticks();
148 }
149 
150 /* SMM support */
151 
152 static cpu_set_smm_t smm_set;
153 static void *smm_arg;
154 
155 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
156 {
157     assert(smm_set == NULL);
158     assert(smm_arg == NULL);
159     smm_set = callback;
160     smm_arg = arg;
161 }
162 
163 void cpu_smm_update(CPUX86State *env)
164 {
165     if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
166         smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
167     }
168 }
169 
170 
171 /* IRQ handling */
172 int cpu_get_pic_interrupt(CPUX86State *env)
173 {
174     X86CPU *cpu = x86_env_get_cpu(env);
175     int intno;
176 
177     intno = apic_get_interrupt(cpu->apic_state);
178     if (intno >= 0) {
179         return intno;
180     }
181     /* read the irq from the PIC */
182     if (!apic_accept_pic_intr(cpu->apic_state)) {
183         return -1;
184     }
185 
186     intno = pic_read_irq(isa_pic);
187     return intno;
188 }
189 
190 static void pic_irq_request(void *opaque, int irq, int level)
191 {
192     CPUState *cs = first_cpu;
193     X86CPU *cpu = X86_CPU(cs);
194 
195     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
196     if (cpu->apic_state) {
197         CPU_FOREACH(cs) {
198             cpu = X86_CPU(cs);
199             if (apic_accept_pic_intr(cpu->apic_state)) {
200                 apic_deliver_pic_intr(cpu->apic_state, level);
201             }
202         }
203     } else {
204         if (level) {
205             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
206         } else {
207             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
208         }
209     }
210 }
211 
212 /* PC cmos mappings */
213 
214 #define REG_EQUIPMENT_BYTE          0x14
215 
216 static int cmos_get_fd_drive_type(FDriveType fd0)
217 {
218     int val;
219 
220     switch (fd0) {
221     case FDRIVE_DRV_144:
222         /* 1.44 Mb 3"5 drive */
223         val = 4;
224         break;
225     case FDRIVE_DRV_288:
226         /* 2.88 Mb 3"5 drive */
227         val = 5;
228         break;
229     case FDRIVE_DRV_120:
230         /* 1.2 Mb 5"5 drive */
231         val = 2;
232         break;
233     case FDRIVE_DRV_NONE:
234     default:
235         val = 0;
236         break;
237     }
238     return val;
239 }
240 
241 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
242                          int16_t cylinders, int8_t heads, int8_t sectors)
243 {
244     rtc_set_memory(s, type_ofs, 47);
245     rtc_set_memory(s, info_ofs, cylinders);
246     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
247     rtc_set_memory(s, info_ofs + 2, heads);
248     rtc_set_memory(s, info_ofs + 3, 0xff);
249     rtc_set_memory(s, info_ofs + 4, 0xff);
250     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
251     rtc_set_memory(s, info_ofs + 6, cylinders);
252     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
253     rtc_set_memory(s, info_ofs + 8, sectors);
254 }
255 
256 /* convert boot_device letter to something recognizable by the bios */
257 static int boot_device2nibble(char boot_device)
258 {
259     switch(boot_device) {
260     case 'a':
261     case 'b':
262         return 0x01; /* floppy boot */
263     case 'c':
264         return 0x02; /* hard drive boot */
265     case 'd':
266         return 0x03; /* CD-ROM boot */
267     case 'n':
268         return 0x04; /* Network boot */
269     }
270     return 0;
271 }
272 
273 static int set_boot_dev(ISADevice *s, const char *boot_device)
274 {
275 #define PC_MAX_BOOT_DEVICES 3
276     int nbds, bds[3] = { 0, };
277     int i;
278 
279     nbds = strlen(boot_device);
280     if (nbds > PC_MAX_BOOT_DEVICES) {
281         error_report("Too many boot devices for PC");
282         return(1);
283     }
284     for (i = 0; i < nbds; i++) {
285         bds[i] = boot_device2nibble(boot_device[i]);
286         if (bds[i] == 0) {
287             error_report("Invalid boot device for PC: '%c'",
288                          boot_device[i]);
289             return(1);
290         }
291     }
292     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
293     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
294     return(0);
295 }
296 
297 static int pc_boot_set(void *opaque, const char *boot_device)
298 {
299     return set_boot_dev(opaque, boot_device);
300 }
301 
302 typedef struct pc_cmos_init_late_arg {
303     ISADevice *rtc_state;
304     BusState *idebus[2];
305 } pc_cmos_init_late_arg;
306 
307 static void pc_cmos_init_late(void *opaque)
308 {
309     pc_cmos_init_late_arg *arg = opaque;
310     ISADevice *s = arg->rtc_state;
311     int16_t cylinders;
312     int8_t heads, sectors;
313     int val;
314     int i, trans;
315 
316     val = 0;
317     if (ide_get_geometry(arg->idebus[0], 0,
318                          &cylinders, &heads, &sectors) >= 0) {
319         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
320         val |= 0xf0;
321     }
322     if (ide_get_geometry(arg->idebus[0], 1,
323                          &cylinders, &heads, &sectors) >= 0) {
324         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
325         val |= 0x0f;
326     }
327     rtc_set_memory(s, 0x12, val);
328 
329     val = 0;
330     for (i = 0; i < 4; i++) {
331         /* NOTE: ide_get_geometry() returns the physical
332            geometry.  It is always such that: 1 <= sects <= 63, 1
333            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
334            geometry can be different if a translation is done. */
335         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
336                              &cylinders, &heads, &sectors) >= 0) {
337             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
338             assert((trans & ~3) == 0);
339             val |= trans << (i * 2);
340         }
341     }
342     rtc_set_memory(s, 0x39, val);
343 
344     qemu_unregister_reset(pc_cmos_init_late, opaque);
345 }
346 
347 typedef struct RTCCPUHotplugArg {
348     Notifier cpu_added_notifier;
349     ISADevice *rtc_state;
350 } RTCCPUHotplugArg;
351 
352 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
353 {
354     RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
355                                          cpu_added_notifier);
356     ISADevice *s = arg->rtc_state;
357 
358     /* increment the number of CPUs */
359     rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
360 }
361 
362 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
363                   const char *boot_device,
364                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
365                   ISADevice *s)
366 {
367     int val, nb, i;
368     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
369     static pc_cmos_init_late_arg arg;
370     static RTCCPUHotplugArg cpu_hotplug_cb;
371 
372     /* various important CMOS locations needed by PC/Bochs bios */
373 
374     /* memory size */
375     /* base memory (first MiB) */
376     val = MIN(ram_size / 1024, 640);
377     rtc_set_memory(s, 0x15, val);
378     rtc_set_memory(s, 0x16, val >> 8);
379     /* extended memory (next 64MiB) */
380     if (ram_size > 1024 * 1024) {
381         val = (ram_size - 1024 * 1024) / 1024;
382     } else {
383         val = 0;
384     }
385     if (val > 65535)
386         val = 65535;
387     rtc_set_memory(s, 0x17, val);
388     rtc_set_memory(s, 0x18, val >> 8);
389     rtc_set_memory(s, 0x30, val);
390     rtc_set_memory(s, 0x31, val >> 8);
391     /* memory between 16MiB and 4GiB */
392     if (ram_size > 16 * 1024 * 1024) {
393         val = (ram_size - 16 * 1024 * 1024) / 65536;
394     } else {
395         val = 0;
396     }
397     if (val > 65535)
398         val = 65535;
399     rtc_set_memory(s, 0x34, val);
400     rtc_set_memory(s, 0x35, val >> 8);
401     /* memory above 4GiB */
402     val = above_4g_mem_size / 65536;
403     rtc_set_memory(s, 0x5b, val);
404     rtc_set_memory(s, 0x5c, val >> 8);
405     rtc_set_memory(s, 0x5d, val >> 16);
406 
407     /* set the number of CPU */
408     rtc_set_memory(s, 0x5f, smp_cpus - 1);
409     /* init CPU hotplug notifier */
410     cpu_hotplug_cb.rtc_state = s;
411     cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
412     qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
413 
414     if (set_boot_dev(s, boot_device)) {
415         exit(1);
416     }
417 
418     /* floppy type */
419     if (floppy) {
420         for (i = 0; i < 2; i++) {
421             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
422         }
423     }
424     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
425         cmos_get_fd_drive_type(fd_type[1]);
426     rtc_set_memory(s, 0x10, val);
427 
428     val = 0;
429     nb = 0;
430     if (fd_type[0] < FDRIVE_DRV_NONE) {
431         nb++;
432     }
433     if (fd_type[1] < FDRIVE_DRV_NONE) {
434         nb++;
435     }
436     switch (nb) {
437     case 0:
438         break;
439     case 1:
440         val |= 0x01; /* 1 drive, ready for boot */
441         break;
442     case 2:
443         val |= 0x41; /* 2 drives, ready for boot */
444         break;
445     }
446     val |= 0x02; /* FPU is there */
447     val |= 0x04; /* PS/2 mouse installed */
448     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
449 
450     /* hard drives */
451     arg.rtc_state = s;
452     arg.idebus[0] = idebus0;
453     arg.idebus[1] = idebus1;
454     qemu_register_reset(pc_cmos_init_late, &arg);
455 }
456 
457 #define TYPE_PORT92 "port92"
458 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
459 
460 /* port 92 stuff: could be split off */
461 typedef struct Port92State {
462     ISADevice parent_obj;
463 
464     MemoryRegion io;
465     uint8_t outport;
466     qemu_irq *a20_out;
467 } Port92State;
468 
469 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
470                          unsigned size)
471 {
472     Port92State *s = opaque;
473 
474     DPRINTF("port92: write 0x%02x\n", val);
475     s->outport = val;
476     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
477     if (val & 1) {
478         qemu_system_reset_request();
479     }
480 }
481 
482 static uint64_t port92_read(void *opaque, hwaddr addr,
483                             unsigned size)
484 {
485     Port92State *s = opaque;
486     uint32_t ret;
487 
488     ret = s->outport;
489     DPRINTF("port92: read 0x%02x\n", ret);
490     return ret;
491 }
492 
493 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
494 {
495     Port92State *s = PORT92(dev);
496 
497     s->a20_out = a20_out;
498 }
499 
500 static const VMStateDescription vmstate_port92_isa = {
501     .name = "port92",
502     .version_id = 1,
503     .minimum_version_id = 1,
504     .minimum_version_id_old = 1,
505     .fields      = (VMStateField []) {
506         VMSTATE_UINT8(outport, Port92State),
507         VMSTATE_END_OF_LIST()
508     }
509 };
510 
511 static void port92_reset(DeviceState *d)
512 {
513     Port92State *s = PORT92(d);
514 
515     s->outport &= ~1;
516 }
517 
518 static const MemoryRegionOps port92_ops = {
519     .read = port92_read,
520     .write = port92_write,
521     .impl = {
522         .min_access_size = 1,
523         .max_access_size = 1,
524     },
525     .endianness = DEVICE_LITTLE_ENDIAN,
526 };
527 
528 static void port92_initfn(Object *obj)
529 {
530     Port92State *s = PORT92(obj);
531 
532     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
533 
534     s->outport = 0;
535 }
536 
537 static void port92_realizefn(DeviceState *dev, Error **errp)
538 {
539     ISADevice *isadev = ISA_DEVICE(dev);
540     Port92State *s = PORT92(dev);
541 
542     isa_register_ioport(isadev, &s->io, 0x92);
543 }
544 
545 static void port92_class_initfn(ObjectClass *klass, void *data)
546 {
547     DeviceClass *dc = DEVICE_CLASS(klass);
548 
549     dc->realize = port92_realizefn;
550     dc->reset = port92_reset;
551     dc->vmsd = &vmstate_port92_isa;
552     /*
553      * Reason: unlike ordinary ISA devices, this one needs additional
554      * wiring: its A20 output line needs to be wired up by
555      * port92_init().
556      */
557     dc->cannot_instantiate_with_device_add_yet = true;
558 }
559 
560 static const TypeInfo port92_info = {
561     .name          = TYPE_PORT92,
562     .parent        = TYPE_ISA_DEVICE,
563     .instance_size = sizeof(Port92State),
564     .instance_init = port92_initfn,
565     .class_init    = port92_class_initfn,
566 };
567 
568 static void port92_register_types(void)
569 {
570     type_register_static(&port92_info);
571 }
572 
573 type_init(port92_register_types)
574 
575 static void handle_a20_line_change(void *opaque, int irq, int level)
576 {
577     X86CPU *cpu = opaque;
578 
579     /* XXX: send to all CPUs ? */
580     /* XXX: add logic to handle multiple A20 line sources */
581     x86_cpu_set_a20(cpu, level);
582 }
583 
584 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
585 {
586     int index = le32_to_cpu(e820_reserve.count);
587     struct e820_entry *entry;
588 
589     if (type != E820_RAM) {
590         /* old FW_CFG_E820_TABLE entry -- reservations only */
591         if (index >= E820_NR_ENTRIES) {
592             return -EBUSY;
593         }
594         entry = &e820_reserve.entry[index++];
595 
596         entry->address = cpu_to_le64(address);
597         entry->length = cpu_to_le64(length);
598         entry->type = cpu_to_le32(type);
599 
600         e820_reserve.count = cpu_to_le32(index);
601     }
602 
603     /* new "etc/e820" file -- include ram too */
604     e820_table = g_realloc(e820_table,
605                            sizeof(struct e820_entry) * (e820_entries+1));
606     e820_table[e820_entries].address = cpu_to_le64(address);
607     e820_table[e820_entries].length = cpu_to_le64(length);
608     e820_table[e820_entries].type = cpu_to_le32(type);
609     e820_entries++;
610 
611     return e820_entries;
612 }
613 
614 /* Calculates the limit to CPU APIC ID values
615  *
616  * This function returns the limit for the APIC ID value, so that all
617  * CPU APIC IDs are < pc_apic_id_limit().
618  *
619  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
620  */
621 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
622 {
623     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
624 }
625 
626 static FWCfgState *bochs_bios_init(void)
627 {
628     FWCfgState *fw_cfg;
629     uint8_t *smbios_table;
630     size_t smbios_len;
631     uint64_t *numa_fw_cfg;
632     int i, j;
633     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
634 
635     fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
636     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
637      *
638      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
639      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
640      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
641      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
642      * may see".
643      *
644      * So, this means we must not use max_cpus, here, but the maximum possible
645      * APIC ID value, plus one.
646      *
647      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
648      *     the APIC ID, not the "CPU index"
649      */
650     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
651     fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
652     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
653     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
654                      acpi_tables, acpi_tables_len);
655     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
656 
657     smbios_table = smbios_get_table(&smbios_len);
658     if (smbios_table)
659         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
660                          smbios_table, smbios_len);
661     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
662                      &e820_reserve, sizeof(e820_reserve));
663     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
664                     sizeof(struct e820_entry) * e820_entries);
665 
666     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
667     /* allocate memory for the NUMA channel: one (64bit) word for the number
668      * of nodes, one word for each VCPU->node and one word for each node to
669      * hold the amount of memory.
670      */
671     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
672     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
673     for (i = 0; i < max_cpus; i++) {
674         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
675         assert(apic_id < apic_id_limit);
676         for (j = 0; j < nb_numa_nodes; j++) {
677             if (test_bit(i, node_cpumask[j])) {
678                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
679                 break;
680             }
681         }
682     }
683     for (i = 0; i < nb_numa_nodes; i++) {
684         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
685     }
686     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
687                      (1 + apic_id_limit + nb_numa_nodes) *
688                      sizeof(*numa_fw_cfg));
689 
690     return fw_cfg;
691 }
692 
693 static long get_file_size(FILE *f)
694 {
695     long where, size;
696 
697     /* XXX: on Unix systems, using fstat() probably makes more sense */
698 
699     where = ftell(f);
700     fseek(f, 0, SEEK_END);
701     size = ftell(f);
702     fseek(f, where, SEEK_SET);
703 
704     return size;
705 }
706 
707 static void load_linux(FWCfgState *fw_cfg,
708                        const char *kernel_filename,
709                        const char *initrd_filename,
710                        const char *kernel_cmdline,
711                        hwaddr max_ram_size)
712 {
713     uint16_t protocol;
714     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
715     uint32_t initrd_max;
716     uint8_t header[8192], *setup, *kernel, *initrd_data;
717     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
718     FILE *f;
719     char *vmode;
720 
721     /* Align to 16 bytes as a paranoia measure */
722     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
723 
724     /* load the kernel header */
725     f = fopen(kernel_filename, "rb");
726     if (!f || !(kernel_size = get_file_size(f)) ||
727         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
728         MIN(ARRAY_SIZE(header), kernel_size)) {
729         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
730                 kernel_filename, strerror(errno));
731         exit(1);
732     }
733 
734     /* kernel protocol version */
735 #if 0
736     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
737 #endif
738     if (ldl_p(header+0x202) == 0x53726448) {
739         protocol = lduw_p(header+0x206);
740     } else {
741         /* This looks like a multiboot kernel. If it is, let's stop
742            treating it like a Linux kernel. */
743         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
744                            kernel_cmdline, kernel_size, header)) {
745             return;
746         }
747         protocol = 0;
748     }
749 
750     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
751         /* Low kernel */
752         real_addr    = 0x90000;
753         cmdline_addr = 0x9a000 - cmdline_size;
754         prot_addr    = 0x10000;
755     } else if (protocol < 0x202) {
756         /* High but ancient kernel */
757         real_addr    = 0x90000;
758         cmdline_addr = 0x9a000 - cmdline_size;
759         prot_addr    = 0x100000;
760     } else {
761         /* High and recent kernel */
762         real_addr    = 0x10000;
763         cmdline_addr = 0x20000;
764         prot_addr    = 0x100000;
765     }
766 
767 #if 0
768     fprintf(stderr,
769             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
770             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
771             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
772             real_addr,
773             cmdline_addr,
774             prot_addr);
775 #endif
776 
777     /* highest address for loading the initrd */
778     if (protocol >= 0x203) {
779         initrd_max = ldl_p(header+0x22c);
780     } else {
781         initrd_max = 0x37ffffff;
782     }
783 
784     if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
785     	initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
786 
787     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
788     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
789     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
790 
791     if (protocol >= 0x202) {
792         stl_p(header+0x228, cmdline_addr);
793     } else {
794         stw_p(header+0x20, 0xA33F);
795         stw_p(header+0x22, cmdline_addr-real_addr);
796     }
797 
798     /* handle vga= parameter */
799     vmode = strstr(kernel_cmdline, "vga=");
800     if (vmode) {
801         unsigned int video_mode;
802         /* skip "vga=" */
803         vmode += 4;
804         if (!strncmp(vmode, "normal", 6)) {
805             video_mode = 0xffff;
806         } else if (!strncmp(vmode, "ext", 3)) {
807             video_mode = 0xfffe;
808         } else if (!strncmp(vmode, "ask", 3)) {
809             video_mode = 0xfffd;
810         } else {
811             video_mode = strtol(vmode, NULL, 0);
812         }
813         stw_p(header+0x1fa, video_mode);
814     }
815 
816     /* loader type */
817     /* High nybble = B reserved for QEMU; low nybble is revision number.
818        If this code is substantially changed, you may want to consider
819        incrementing the revision. */
820     if (protocol >= 0x200) {
821         header[0x210] = 0xB0;
822     }
823     /* heap */
824     if (protocol >= 0x201) {
825         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
826         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
827     }
828 
829     /* load initrd */
830     if (initrd_filename) {
831         if (protocol < 0x200) {
832             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
833             exit(1);
834         }
835 
836         initrd_size = get_image_size(initrd_filename);
837         if (initrd_size < 0) {
838             fprintf(stderr, "qemu: error reading initrd %s\n",
839                     initrd_filename);
840             exit(1);
841         }
842 
843         initrd_addr = (initrd_max-initrd_size) & ~4095;
844 
845         initrd_data = g_malloc(initrd_size);
846         load_image(initrd_filename, initrd_data);
847 
848         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
849         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
850         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
851 
852         stl_p(header+0x218, initrd_addr);
853         stl_p(header+0x21c, initrd_size);
854     }
855 
856     /* load kernel and setup */
857     setup_size = header[0x1f1];
858     if (setup_size == 0) {
859         setup_size = 4;
860     }
861     setup_size = (setup_size+1)*512;
862     kernel_size -= setup_size;
863 
864     setup  = g_malloc(setup_size);
865     kernel = g_malloc(kernel_size);
866     fseek(f, 0, SEEK_SET);
867     if (fread(setup, 1, setup_size, f) != setup_size) {
868         fprintf(stderr, "fread() failed\n");
869         exit(1);
870     }
871     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
872         fprintf(stderr, "fread() failed\n");
873         exit(1);
874     }
875     fclose(f);
876     memcpy(setup, header, MIN(sizeof(header), setup_size));
877 
878     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
879     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
880     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
881 
882     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
883     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
884     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
885 
886     option_rom[nb_option_roms].name = "linuxboot.bin";
887     option_rom[nb_option_roms].bootindex = 0;
888     nb_option_roms++;
889 }
890 
891 #define NE2000_NB_MAX 6
892 
893 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
894                                               0x280, 0x380 };
895 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
896 
897 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
898 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
899 
900 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
901 {
902     static int nb_ne2k = 0;
903 
904     if (nb_ne2k == NE2000_NB_MAX)
905         return;
906     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
907                     ne2000_irq[nb_ne2k], nd);
908     nb_ne2k++;
909 }
910 
911 DeviceState *cpu_get_current_apic(void)
912 {
913     if (current_cpu) {
914         X86CPU *cpu = X86_CPU(current_cpu);
915         return cpu->apic_state;
916     } else {
917         return NULL;
918     }
919 }
920 
921 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
922 {
923     X86CPU *cpu = opaque;
924 
925     if (level) {
926         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
927     }
928 }
929 
930 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
931                           DeviceState *icc_bridge, Error **errp)
932 {
933     X86CPU *cpu;
934     Error *local_err = NULL;
935 
936     cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
937     if (local_err != NULL) {
938         error_propagate(errp, local_err);
939         return NULL;
940     }
941 
942     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
943     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
944 
945     if (local_err) {
946         error_propagate(errp, local_err);
947         object_unref(OBJECT(cpu));
948         cpu = NULL;
949     }
950     return cpu;
951 }
952 
953 static const char *current_cpu_model;
954 
955 void pc_hot_add_cpu(const int64_t id, Error **errp)
956 {
957     DeviceState *icc_bridge;
958     int64_t apic_id = x86_cpu_apic_id_from_index(id);
959 
960     if (id < 0) {
961         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
962         return;
963     }
964 
965     if (cpu_exists(apic_id)) {
966         error_setg(errp, "Unable to add CPU: %" PRIi64
967                    ", it already exists", id);
968         return;
969     }
970 
971     if (id >= max_cpus) {
972         error_setg(errp, "Unable to add CPU: %" PRIi64
973                    ", max allowed: %d", id, max_cpus - 1);
974         return;
975     }
976 
977     icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
978                                                  TYPE_ICC_BRIDGE, NULL));
979     pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
980 }
981 
982 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
983 {
984     int i;
985     X86CPU *cpu = NULL;
986     Error *error = NULL;
987 
988     /* init CPUs */
989     if (cpu_model == NULL) {
990 #ifdef TARGET_X86_64
991         cpu_model = "qemu64";
992 #else
993         cpu_model = "qemu32";
994 #endif
995     }
996     current_cpu_model = cpu_model;
997 
998     for (i = 0; i < smp_cpus; i++) {
999         cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1000                          icc_bridge, &error);
1001         if (error) {
1002             error_report("%s", error_get_pretty(error));
1003             error_free(error);
1004             exit(1);
1005         }
1006     }
1007 
1008     /* map APIC MMIO area if CPU has APIC */
1009     if (cpu && cpu->apic_state) {
1010         /* XXX: what if the base changes? */
1011         sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1012                                 APIC_DEFAULT_ADDRESS, 0x1000);
1013     }
1014 }
1015 
1016 /* pci-info ROM file. Little endian format */
1017 typedef struct PcRomPciInfo {
1018     uint64_t w32_min;
1019     uint64_t w32_max;
1020     uint64_t w64_min;
1021     uint64_t w64_max;
1022 } PcRomPciInfo;
1023 
1024 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
1025 {
1026     PcRomPciInfo *info;
1027     Object *pci_info;
1028     bool ambiguous = false;
1029 
1030     if (!guest_info->has_pci_info || !guest_info->fw_cfg) {
1031         return;
1032     }
1033     pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous);
1034     g_assert(!ambiguous);
1035     if (!pci_info) {
1036         return;
1037     }
1038 
1039     info = g_malloc(sizeof *info);
1040     info->w32_min = cpu_to_le64(object_property_get_int(pci_info,
1041                                 PCI_HOST_PROP_PCI_HOLE_START, NULL));
1042     info->w32_max = cpu_to_le64(object_property_get_int(pci_info,
1043                                 PCI_HOST_PROP_PCI_HOLE_END, NULL));
1044     info->w64_min = cpu_to_le64(object_property_get_int(pci_info,
1045                                 PCI_HOST_PROP_PCI_HOLE64_START, NULL));
1046     info->w64_max = cpu_to_le64(object_property_get_int(pci_info,
1047                                 PCI_HOST_PROP_PCI_HOLE64_END, NULL));
1048     /* Pass PCI hole info to guest via a side channel.
1049      * Required so guest PCI enumeration does the right thing. */
1050     fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
1051 }
1052 
1053 typedef struct PcGuestInfoState {
1054     PcGuestInfo info;
1055     Notifier machine_done;
1056 } PcGuestInfoState;
1057 
1058 static
1059 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1060 {
1061     PcGuestInfoState *guest_info_state = container_of(notifier,
1062                                                       PcGuestInfoState,
1063                                                       machine_done);
1064     pc_fw_cfg_guest_info(&guest_info_state->info);
1065     acpi_setup(&guest_info_state->info);
1066 }
1067 
1068 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1069                                 ram_addr_t above_4g_mem_size)
1070 {
1071     PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1072     PcGuestInfo *guest_info = &guest_info_state->info;
1073     int i, j;
1074 
1075     guest_info->ram_size_below_4g = below_4g_mem_size;
1076     guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1077     guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1078     guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1079     guest_info->numa_nodes = nb_numa_nodes;
1080     guest_info->node_mem = g_memdup(node_mem, guest_info->numa_nodes *
1081                                     sizeof *guest_info->node_mem);
1082     guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1083                                      sizeof *guest_info->node_cpu);
1084 
1085     for (i = 0; i < max_cpus; i++) {
1086         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1087         assert(apic_id < guest_info->apic_id_limit);
1088         for (j = 0; j < nb_numa_nodes; j++) {
1089             if (test_bit(i, node_cpumask[j])) {
1090                 guest_info->node_cpu[apic_id] = j;
1091                 break;
1092             }
1093         }
1094     }
1095 
1096     guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1097     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1098     return guest_info;
1099 }
1100 
1101 /* setup pci memory address space mapping into system address space */
1102 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1103                             MemoryRegion *pci_address_space)
1104 {
1105     /* Set to lower priority than RAM */
1106     memory_region_add_subregion_overlap(system_memory, 0x0,
1107                                         pci_address_space, -1);
1108 }
1109 
1110 void pc_acpi_init(const char *default_dsdt)
1111 {
1112     char *filename;
1113 
1114     if (acpi_tables != NULL) {
1115         /* manually set via -acpitable, leave it alone */
1116         return;
1117     }
1118 
1119     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1120     if (filename == NULL) {
1121         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1122     } else {
1123         char *arg;
1124         QemuOpts *opts;
1125         Error *err = NULL;
1126 
1127         arg = g_strdup_printf("file=%s", filename);
1128 
1129         /* creates a deep copy of "arg" */
1130         opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1131         g_assert(opts != NULL);
1132 
1133         acpi_table_add_builtin(opts, &err);
1134         if (err) {
1135             error_report("WARNING: failed to load %s: %s", filename,
1136                          error_get_pretty(err));
1137             error_free(err);
1138         }
1139         g_free(arg);
1140         g_free(filename);
1141     }
1142 }
1143 
1144 FWCfgState *pc_memory_init(MemoryRegion *system_memory,
1145                            const char *kernel_filename,
1146                            const char *kernel_cmdline,
1147                            const char *initrd_filename,
1148                            ram_addr_t below_4g_mem_size,
1149                            ram_addr_t above_4g_mem_size,
1150                            MemoryRegion *rom_memory,
1151                            MemoryRegion **ram_memory,
1152                            PcGuestInfo *guest_info)
1153 {
1154     int linux_boot, i;
1155     MemoryRegion *ram, *option_rom_mr;
1156     MemoryRegion *ram_below_4g, *ram_above_4g;
1157     FWCfgState *fw_cfg;
1158 
1159     linux_boot = (kernel_filename != NULL);
1160 
1161     /* Allocate RAM.  We allocate it as a single memory region and use
1162      * aliases to address portions of it, mostly for backwards compatibility
1163      * with older qemus that used qemu_ram_alloc().
1164      */
1165     ram = g_malloc(sizeof(*ram));
1166     memory_region_init_ram(ram, NULL, "pc.ram",
1167                            below_4g_mem_size + above_4g_mem_size);
1168     vmstate_register_ram_global(ram);
1169     *ram_memory = ram;
1170     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1171     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1172                              0, below_4g_mem_size);
1173     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1174     e820_add_entry(0, below_4g_mem_size, E820_RAM);
1175     if (above_4g_mem_size > 0) {
1176         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1177         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1178                                  below_4g_mem_size, above_4g_mem_size);
1179         memory_region_add_subregion(system_memory, 0x100000000ULL,
1180                                     ram_above_4g);
1181         e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1182     }
1183 
1184 
1185     /* Initialize PC system firmware */
1186     pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1187 
1188     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1189     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
1190     vmstate_register_ram_global(option_rom_mr);
1191     memory_region_add_subregion_overlap(rom_memory,
1192                                         PC_ROM_MIN_VGA,
1193                                         option_rom_mr,
1194                                         1);
1195 
1196     fw_cfg = bochs_bios_init();
1197     rom_set_fw(fw_cfg);
1198 
1199     if (linux_boot) {
1200         load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1201     }
1202 
1203     for (i = 0; i < nb_option_roms; i++) {
1204         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1205     }
1206     guest_info->fw_cfg = fw_cfg;
1207     return fw_cfg;
1208 }
1209 
1210 qemu_irq *pc_allocate_cpu_irq(void)
1211 {
1212     return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1213 }
1214 
1215 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1216 {
1217     DeviceState *dev = NULL;
1218 
1219     if (pci_bus) {
1220         PCIDevice *pcidev = pci_vga_init(pci_bus);
1221         dev = pcidev ? &pcidev->qdev : NULL;
1222     } else if (isa_bus) {
1223         ISADevice *isadev = isa_vga_init(isa_bus);
1224         dev = isadev ? DEVICE(isadev) : NULL;
1225     }
1226     return dev;
1227 }
1228 
1229 static void cpu_request_exit(void *opaque, int irq, int level)
1230 {
1231     CPUState *cpu = current_cpu;
1232 
1233     if (cpu && level) {
1234         cpu_exit(cpu);
1235     }
1236 }
1237 
1238 static const MemoryRegionOps ioport80_io_ops = {
1239     .write = ioport80_write,
1240     .read = ioport80_read,
1241     .endianness = DEVICE_NATIVE_ENDIAN,
1242     .impl = {
1243         .min_access_size = 1,
1244         .max_access_size = 1,
1245     },
1246 };
1247 
1248 static const MemoryRegionOps ioportF0_io_ops = {
1249     .write = ioportF0_write,
1250     .read = ioportF0_read,
1251     .endianness = DEVICE_NATIVE_ENDIAN,
1252     .impl = {
1253         .min_access_size = 1,
1254         .max_access_size = 1,
1255     },
1256 };
1257 
1258 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1259                           ISADevice **rtc_state,
1260                           ISADevice **floppy,
1261                           bool no_vmport,
1262                           uint32 hpet_irqs)
1263 {
1264     int i;
1265     DriveInfo *fd[MAX_FD];
1266     DeviceState *hpet = NULL;
1267     int pit_isa_irq = 0;
1268     qemu_irq pit_alt_irq = NULL;
1269     qemu_irq rtc_irq = NULL;
1270     qemu_irq *a20_line;
1271     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1272     qemu_irq *cpu_exit_irq;
1273     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1274     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1275 
1276     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1277     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1278 
1279     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1280     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1281 
1282     /*
1283      * Check if an HPET shall be created.
1284      *
1285      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1286      * when the HPET wants to take over. Thus we have to disable the latter.
1287      */
1288     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1289         /* In order to set property, here not using sysbus_try_create_simple */
1290         hpet = qdev_try_create(NULL, TYPE_HPET);
1291         if (hpet) {
1292             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1293              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1294              * IRQ8 and IRQ2.
1295              */
1296             uint8_t compat = object_property_get_int(OBJECT(hpet),
1297                     HPET_INTCAP, NULL);
1298             if (!compat) {
1299                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1300             }
1301             qdev_init_nofail(hpet);
1302             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1303 
1304             for (i = 0; i < GSI_NUM_PINS; i++) {
1305                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1306             }
1307             pit_isa_irq = -1;
1308             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1309             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1310         }
1311     }
1312     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1313 
1314     qemu_register_boot_set(pc_boot_set, *rtc_state);
1315 
1316     if (!xen_enabled()) {
1317         if (kvm_irqchip_in_kernel()) {
1318             pit = kvm_pit_init(isa_bus, 0x40);
1319         } else {
1320             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1321         }
1322         if (hpet) {
1323             /* connect PIT to output control line of the HPET */
1324             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1325         }
1326         pcspk_init(isa_bus, pit);
1327     }
1328 
1329     for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1330         if (serial_hds[i]) {
1331             serial_isa_init(isa_bus, i, serial_hds[i]);
1332         }
1333     }
1334 
1335     for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1336         if (parallel_hds[i]) {
1337             parallel_init(isa_bus, i, parallel_hds[i]);
1338         }
1339     }
1340 
1341     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1342     i8042 = isa_create_simple(isa_bus, "i8042");
1343     i8042_setup_a20_line(i8042, &a20_line[0]);
1344     if (!no_vmport) {
1345         vmport_init(isa_bus);
1346         vmmouse = isa_try_create(isa_bus, "vmmouse");
1347     } else {
1348         vmmouse = NULL;
1349     }
1350     if (vmmouse) {
1351         DeviceState *dev = DEVICE(vmmouse);
1352         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1353         qdev_init_nofail(dev);
1354     }
1355     port92 = isa_create_simple(isa_bus, "port92");
1356     port92_init(port92, &a20_line[1]);
1357 
1358     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1359     DMA_init(0, cpu_exit_irq);
1360 
1361     for(i = 0; i < MAX_FD; i++) {
1362         fd[i] = drive_get(IF_FLOPPY, 0, i);
1363     }
1364     *floppy = fdctrl_init_isa(isa_bus, fd);
1365 }
1366 
1367 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1368 {
1369     int i;
1370 
1371     for (i = 0; i < nb_nics; i++) {
1372         NICInfo *nd = &nd_table[i];
1373 
1374         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1375             pc_init_ne2k_isa(isa_bus, nd);
1376         } else {
1377             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1378         }
1379     }
1380 }
1381 
1382 void pc_pci_device_init(PCIBus *pci_bus)
1383 {
1384     int max_bus;
1385     int bus;
1386 
1387     max_bus = drive_get_max_bus(IF_SCSI);
1388     for (bus = 0; bus <= max_bus; bus++) {
1389         pci_create_simple(pci_bus, -1, "lsi53c895a");
1390     }
1391 }
1392 
1393 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1394 {
1395     DeviceState *dev;
1396     SysBusDevice *d;
1397     unsigned int i;
1398 
1399     if (kvm_irqchip_in_kernel()) {
1400         dev = qdev_create(NULL, "kvm-ioapic");
1401     } else {
1402         dev = qdev_create(NULL, "ioapic");
1403     }
1404     if (parent_name) {
1405         object_property_add_child(object_resolve_path(parent_name, NULL),
1406                                   "ioapic", OBJECT(dev), NULL);
1407     }
1408     qdev_init_nofail(dev);
1409     d = SYS_BUS_DEVICE(dev);
1410     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1411 
1412     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1413         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1414     }
1415 }
1416