1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "hw/hw.h" 25 #include "hw/i386/pc.h" 26 #include "hw/char/serial.h" 27 #include "hw/i386/apic.h" 28 #include "hw/block/fdc.h" 29 #include "hw/ide.h" 30 #include "hw/pci/pci.h" 31 #include "monitor/monitor.h" 32 #include "hw/nvram/fw_cfg.h" 33 #include "hw/timer/hpet.h" 34 #include "hw/i386/smbios.h" 35 #include "hw/loader.h" 36 #include "elf.h" 37 #include "multiboot.h" 38 #include "hw/timer/mc146818rtc.h" 39 #include "hw/timer/i8254.h" 40 #include "hw/audio/pcspk.h" 41 #include "hw/pci/msi.h" 42 #include "hw/sysbus.h" 43 #include "sysemu/sysemu.h" 44 #include "sysemu/kvm.h" 45 #include "kvm_i386.h" 46 #include "hw/xen/xen.h" 47 #include "sysemu/blockdev.h" 48 #include "hw/block/block.h" 49 #include "ui/qemu-spice.h" 50 #include "exec/memory.h" 51 #include "exec/address-spaces.h" 52 #include "sysemu/arch_init.h" 53 #include "qemu/bitmap.h" 54 #include "qemu/config-file.h" 55 #include "hw/acpi/acpi.h" 56 #include "hw/cpu/icc_bus.h" 57 #include "hw/boards.h" 58 #include "hw/pci/pci_host.h" 59 #include "acpi-build.h" 60 61 /* debug PC/ISA interrupts */ 62 //#define DEBUG_IRQ 63 64 #ifdef DEBUG_IRQ 65 #define DPRINTF(fmt, ...) \ 66 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 67 #else 68 #define DPRINTF(fmt, ...) 69 #endif 70 71 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */ 72 #define ACPI_DATA_SIZE 0x10000 73 #define BIOS_CFG_IOPORT 0x510 74 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 75 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 76 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 77 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 78 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 79 80 #define E820_NR_ENTRIES 16 81 82 struct e820_entry { 83 uint64_t address; 84 uint64_t length; 85 uint32_t type; 86 } QEMU_PACKED __attribute((__aligned__(4))); 87 88 struct e820_table { 89 uint32_t count; 90 struct e820_entry entry[E820_NR_ENTRIES]; 91 } QEMU_PACKED __attribute((__aligned__(4))); 92 93 static struct e820_table e820_reserve; 94 static struct e820_entry *e820_table; 95 static unsigned e820_entries; 96 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 97 98 void gsi_handler(void *opaque, int n, int level) 99 { 100 GSIState *s = opaque; 101 102 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 103 if (n < ISA_NUM_IRQS) { 104 qemu_set_irq(s->i8259_irq[n], level); 105 } 106 qemu_set_irq(s->ioapic_irq[n], level); 107 } 108 109 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 110 unsigned size) 111 { 112 } 113 114 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 115 { 116 return 0xffffffffffffffffULL; 117 } 118 119 /* MSDOS compatibility mode FPU exception support */ 120 static qemu_irq ferr_irq; 121 122 void pc_register_ferr_irq(qemu_irq irq) 123 { 124 ferr_irq = irq; 125 } 126 127 /* XXX: add IGNNE support */ 128 void cpu_set_ferr(CPUX86State *s) 129 { 130 qemu_irq_raise(ferr_irq); 131 } 132 133 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 134 unsigned size) 135 { 136 qemu_irq_lower(ferr_irq); 137 } 138 139 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 140 { 141 return 0xffffffffffffffffULL; 142 } 143 144 /* TSC handling */ 145 uint64_t cpu_get_tsc(CPUX86State *env) 146 { 147 return cpu_get_ticks(); 148 } 149 150 /* SMM support */ 151 152 static cpu_set_smm_t smm_set; 153 static void *smm_arg; 154 155 void cpu_smm_register(cpu_set_smm_t callback, void *arg) 156 { 157 assert(smm_set == NULL); 158 assert(smm_arg == NULL); 159 smm_set = callback; 160 smm_arg = arg; 161 } 162 163 void cpu_smm_update(CPUX86State *env) 164 { 165 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) { 166 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg); 167 } 168 } 169 170 171 /* IRQ handling */ 172 int cpu_get_pic_interrupt(CPUX86State *env) 173 { 174 X86CPU *cpu = x86_env_get_cpu(env); 175 int intno; 176 177 intno = apic_get_interrupt(cpu->apic_state); 178 if (intno >= 0) { 179 return intno; 180 } 181 /* read the irq from the PIC */ 182 if (!apic_accept_pic_intr(cpu->apic_state)) { 183 return -1; 184 } 185 186 intno = pic_read_irq(isa_pic); 187 return intno; 188 } 189 190 static void pic_irq_request(void *opaque, int irq, int level) 191 { 192 CPUState *cs = first_cpu; 193 X86CPU *cpu = X86_CPU(cs); 194 195 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 196 if (cpu->apic_state) { 197 CPU_FOREACH(cs) { 198 cpu = X86_CPU(cs); 199 if (apic_accept_pic_intr(cpu->apic_state)) { 200 apic_deliver_pic_intr(cpu->apic_state, level); 201 } 202 } 203 } else { 204 if (level) { 205 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 206 } else { 207 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 208 } 209 } 210 } 211 212 /* PC cmos mappings */ 213 214 #define REG_EQUIPMENT_BYTE 0x14 215 216 static int cmos_get_fd_drive_type(FDriveType fd0) 217 { 218 int val; 219 220 switch (fd0) { 221 case FDRIVE_DRV_144: 222 /* 1.44 Mb 3"5 drive */ 223 val = 4; 224 break; 225 case FDRIVE_DRV_288: 226 /* 2.88 Mb 3"5 drive */ 227 val = 5; 228 break; 229 case FDRIVE_DRV_120: 230 /* 1.2 Mb 5"5 drive */ 231 val = 2; 232 break; 233 case FDRIVE_DRV_NONE: 234 default: 235 val = 0; 236 break; 237 } 238 return val; 239 } 240 241 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 242 int16_t cylinders, int8_t heads, int8_t sectors) 243 { 244 rtc_set_memory(s, type_ofs, 47); 245 rtc_set_memory(s, info_ofs, cylinders); 246 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 247 rtc_set_memory(s, info_ofs + 2, heads); 248 rtc_set_memory(s, info_ofs + 3, 0xff); 249 rtc_set_memory(s, info_ofs + 4, 0xff); 250 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 251 rtc_set_memory(s, info_ofs + 6, cylinders); 252 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 253 rtc_set_memory(s, info_ofs + 8, sectors); 254 } 255 256 /* convert boot_device letter to something recognizable by the bios */ 257 static int boot_device2nibble(char boot_device) 258 { 259 switch(boot_device) { 260 case 'a': 261 case 'b': 262 return 0x01; /* floppy boot */ 263 case 'c': 264 return 0x02; /* hard drive boot */ 265 case 'd': 266 return 0x03; /* CD-ROM boot */ 267 case 'n': 268 return 0x04; /* Network boot */ 269 } 270 return 0; 271 } 272 273 static int set_boot_dev(ISADevice *s, const char *boot_device) 274 { 275 #define PC_MAX_BOOT_DEVICES 3 276 int nbds, bds[3] = { 0, }; 277 int i; 278 279 nbds = strlen(boot_device); 280 if (nbds > PC_MAX_BOOT_DEVICES) { 281 error_report("Too many boot devices for PC"); 282 return(1); 283 } 284 for (i = 0; i < nbds; i++) { 285 bds[i] = boot_device2nibble(boot_device[i]); 286 if (bds[i] == 0) { 287 error_report("Invalid boot device for PC: '%c'", 288 boot_device[i]); 289 return(1); 290 } 291 } 292 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 293 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 294 return(0); 295 } 296 297 static int pc_boot_set(void *opaque, const char *boot_device) 298 { 299 return set_boot_dev(opaque, boot_device); 300 } 301 302 typedef struct pc_cmos_init_late_arg { 303 ISADevice *rtc_state; 304 BusState *idebus[2]; 305 } pc_cmos_init_late_arg; 306 307 static void pc_cmos_init_late(void *opaque) 308 { 309 pc_cmos_init_late_arg *arg = opaque; 310 ISADevice *s = arg->rtc_state; 311 int16_t cylinders; 312 int8_t heads, sectors; 313 int val; 314 int i, trans; 315 316 val = 0; 317 if (ide_get_geometry(arg->idebus[0], 0, 318 &cylinders, &heads, §ors) >= 0) { 319 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 320 val |= 0xf0; 321 } 322 if (ide_get_geometry(arg->idebus[0], 1, 323 &cylinders, &heads, §ors) >= 0) { 324 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 325 val |= 0x0f; 326 } 327 rtc_set_memory(s, 0x12, val); 328 329 val = 0; 330 for (i = 0; i < 4; i++) { 331 /* NOTE: ide_get_geometry() returns the physical 332 geometry. It is always such that: 1 <= sects <= 63, 1 333 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 334 geometry can be different if a translation is done. */ 335 if (ide_get_geometry(arg->idebus[i / 2], i % 2, 336 &cylinders, &heads, §ors) >= 0) { 337 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 338 assert((trans & ~3) == 0); 339 val |= trans << (i * 2); 340 } 341 } 342 rtc_set_memory(s, 0x39, val); 343 344 qemu_unregister_reset(pc_cmos_init_late, opaque); 345 } 346 347 typedef struct RTCCPUHotplugArg { 348 Notifier cpu_added_notifier; 349 ISADevice *rtc_state; 350 } RTCCPUHotplugArg; 351 352 static void rtc_notify_cpu_added(Notifier *notifier, void *data) 353 { 354 RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg, 355 cpu_added_notifier); 356 ISADevice *s = arg->rtc_state; 357 358 /* increment the number of CPUs */ 359 rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1); 360 } 361 362 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size, 363 const char *boot_device, 364 ISADevice *floppy, BusState *idebus0, BusState *idebus1, 365 ISADevice *s) 366 { 367 int val, nb, i; 368 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE }; 369 static pc_cmos_init_late_arg arg; 370 static RTCCPUHotplugArg cpu_hotplug_cb; 371 372 /* various important CMOS locations needed by PC/Bochs bios */ 373 374 /* memory size */ 375 /* base memory (first MiB) */ 376 val = MIN(ram_size / 1024, 640); 377 rtc_set_memory(s, 0x15, val); 378 rtc_set_memory(s, 0x16, val >> 8); 379 /* extended memory (next 64MiB) */ 380 if (ram_size > 1024 * 1024) { 381 val = (ram_size - 1024 * 1024) / 1024; 382 } else { 383 val = 0; 384 } 385 if (val > 65535) 386 val = 65535; 387 rtc_set_memory(s, 0x17, val); 388 rtc_set_memory(s, 0x18, val >> 8); 389 rtc_set_memory(s, 0x30, val); 390 rtc_set_memory(s, 0x31, val >> 8); 391 /* memory between 16MiB and 4GiB */ 392 if (ram_size > 16 * 1024 * 1024) { 393 val = (ram_size - 16 * 1024 * 1024) / 65536; 394 } else { 395 val = 0; 396 } 397 if (val > 65535) 398 val = 65535; 399 rtc_set_memory(s, 0x34, val); 400 rtc_set_memory(s, 0x35, val >> 8); 401 /* memory above 4GiB */ 402 val = above_4g_mem_size / 65536; 403 rtc_set_memory(s, 0x5b, val); 404 rtc_set_memory(s, 0x5c, val >> 8); 405 rtc_set_memory(s, 0x5d, val >> 16); 406 407 /* set the number of CPU */ 408 rtc_set_memory(s, 0x5f, smp_cpus - 1); 409 /* init CPU hotplug notifier */ 410 cpu_hotplug_cb.rtc_state = s; 411 cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added; 412 qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier); 413 414 if (set_boot_dev(s, boot_device)) { 415 exit(1); 416 } 417 418 /* floppy type */ 419 if (floppy) { 420 for (i = 0; i < 2; i++) { 421 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 422 } 423 } 424 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 425 cmos_get_fd_drive_type(fd_type[1]); 426 rtc_set_memory(s, 0x10, val); 427 428 val = 0; 429 nb = 0; 430 if (fd_type[0] < FDRIVE_DRV_NONE) { 431 nb++; 432 } 433 if (fd_type[1] < FDRIVE_DRV_NONE) { 434 nb++; 435 } 436 switch (nb) { 437 case 0: 438 break; 439 case 1: 440 val |= 0x01; /* 1 drive, ready for boot */ 441 break; 442 case 2: 443 val |= 0x41; /* 2 drives, ready for boot */ 444 break; 445 } 446 val |= 0x02; /* FPU is there */ 447 val |= 0x04; /* PS/2 mouse installed */ 448 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 449 450 /* hard drives */ 451 arg.rtc_state = s; 452 arg.idebus[0] = idebus0; 453 arg.idebus[1] = idebus1; 454 qemu_register_reset(pc_cmos_init_late, &arg); 455 } 456 457 #define TYPE_PORT92 "port92" 458 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 459 460 /* port 92 stuff: could be split off */ 461 typedef struct Port92State { 462 ISADevice parent_obj; 463 464 MemoryRegion io; 465 uint8_t outport; 466 qemu_irq *a20_out; 467 } Port92State; 468 469 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 470 unsigned size) 471 { 472 Port92State *s = opaque; 473 474 DPRINTF("port92: write 0x%02x\n", val); 475 s->outport = val; 476 qemu_set_irq(*s->a20_out, (val >> 1) & 1); 477 if (val & 1) { 478 qemu_system_reset_request(); 479 } 480 } 481 482 static uint64_t port92_read(void *opaque, hwaddr addr, 483 unsigned size) 484 { 485 Port92State *s = opaque; 486 uint32_t ret; 487 488 ret = s->outport; 489 DPRINTF("port92: read 0x%02x\n", ret); 490 return ret; 491 } 492 493 static void port92_init(ISADevice *dev, qemu_irq *a20_out) 494 { 495 Port92State *s = PORT92(dev); 496 497 s->a20_out = a20_out; 498 } 499 500 static const VMStateDescription vmstate_port92_isa = { 501 .name = "port92", 502 .version_id = 1, 503 .minimum_version_id = 1, 504 .minimum_version_id_old = 1, 505 .fields = (VMStateField []) { 506 VMSTATE_UINT8(outport, Port92State), 507 VMSTATE_END_OF_LIST() 508 } 509 }; 510 511 static void port92_reset(DeviceState *d) 512 { 513 Port92State *s = PORT92(d); 514 515 s->outport &= ~1; 516 } 517 518 static const MemoryRegionOps port92_ops = { 519 .read = port92_read, 520 .write = port92_write, 521 .impl = { 522 .min_access_size = 1, 523 .max_access_size = 1, 524 }, 525 .endianness = DEVICE_LITTLE_ENDIAN, 526 }; 527 528 static void port92_initfn(Object *obj) 529 { 530 Port92State *s = PORT92(obj); 531 532 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 533 534 s->outport = 0; 535 } 536 537 static void port92_realizefn(DeviceState *dev, Error **errp) 538 { 539 ISADevice *isadev = ISA_DEVICE(dev); 540 Port92State *s = PORT92(dev); 541 542 isa_register_ioport(isadev, &s->io, 0x92); 543 } 544 545 static void port92_class_initfn(ObjectClass *klass, void *data) 546 { 547 DeviceClass *dc = DEVICE_CLASS(klass); 548 549 dc->realize = port92_realizefn; 550 dc->reset = port92_reset; 551 dc->vmsd = &vmstate_port92_isa; 552 /* 553 * Reason: unlike ordinary ISA devices, this one needs additional 554 * wiring: its A20 output line needs to be wired up by 555 * port92_init(). 556 */ 557 dc->cannot_instantiate_with_device_add_yet = true; 558 } 559 560 static const TypeInfo port92_info = { 561 .name = TYPE_PORT92, 562 .parent = TYPE_ISA_DEVICE, 563 .instance_size = sizeof(Port92State), 564 .instance_init = port92_initfn, 565 .class_init = port92_class_initfn, 566 }; 567 568 static void port92_register_types(void) 569 { 570 type_register_static(&port92_info); 571 } 572 573 type_init(port92_register_types) 574 575 static void handle_a20_line_change(void *opaque, int irq, int level) 576 { 577 X86CPU *cpu = opaque; 578 579 /* XXX: send to all CPUs ? */ 580 /* XXX: add logic to handle multiple A20 line sources */ 581 x86_cpu_set_a20(cpu, level); 582 } 583 584 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 585 { 586 int index = le32_to_cpu(e820_reserve.count); 587 struct e820_entry *entry; 588 589 if (type != E820_RAM) { 590 /* old FW_CFG_E820_TABLE entry -- reservations only */ 591 if (index >= E820_NR_ENTRIES) { 592 return -EBUSY; 593 } 594 entry = &e820_reserve.entry[index++]; 595 596 entry->address = cpu_to_le64(address); 597 entry->length = cpu_to_le64(length); 598 entry->type = cpu_to_le32(type); 599 600 e820_reserve.count = cpu_to_le32(index); 601 } 602 603 /* new "etc/e820" file -- include ram too */ 604 e820_table = g_realloc(e820_table, 605 sizeof(struct e820_entry) * (e820_entries+1)); 606 e820_table[e820_entries].address = cpu_to_le64(address); 607 e820_table[e820_entries].length = cpu_to_le64(length); 608 e820_table[e820_entries].type = cpu_to_le32(type); 609 e820_entries++; 610 611 return e820_entries; 612 } 613 614 /* Calculates the limit to CPU APIC ID values 615 * 616 * This function returns the limit for the APIC ID value, so that all 617 * CPU APIC IDs are < pc_apic_id_limit(). 618 * 619 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 620 */ 621 static unsigned int pc_apic_id_limit(unsigned int max_cpus) 622 { 623 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 624 } 625 626 static FWCfgState *bochs_bios_init(void) 627 { 628 FWCfgState *fw_cfg; 629 uint8_t *smbios_table; 630 size_t smbios_len; 631 uint64_t *numa_fw_cfg; 632 int i, j; 633 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus); 634 635 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0); 636 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 637 * 638 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug 639 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC 640 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the 641 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS 642 * may see". 643 * 644 * So, this means we must not use max_cpus, here, but the maximum possible 645 * APIC ID value, plus one. 646 * 647 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is 648 * the APIC ID, not the "CPU index" 649 */ 650 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit); 651 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); 652 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 653 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 654 acpi_tables, acpi_tables_len); 655 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 656 657 smbios_table = smbios_get_table(&smbios_len); 658 if (smbios_table) 659 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, 660 smbios_table, smbios_len); 661 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 662 &e820_reserve, sizeof(e820_reserve)); 663 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 664 sizeof(struct e820_entry) * e820_entries); 665 666 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 667 /* allocate memory for the NUMA channel: one (64bit) word for the number 668 * of nodes, one word for each VCPU->node and one word for each node to 669 * hold the amount of memory. 670 */ 671 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes); 672 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 673 for (i = 0; i < max_cpus; i++) { 674 unsigned int apic_id = x86_cpu_apic_id_from_index(i); 675 assert(apic_id < apic_id_limit); 676 for (j = 0; j < nb_numa_nodes; j++) { 677 if (test_bit(i, node_cpumask[j])) { 678 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j); 679 break; 680 } 681 } 682 } 683 for (i = 0; i < nb_numa_nodes; i++) { 684 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]); 685 } 686 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 687 (1 + apic_id_limit + nb_numa_nodes) * 688 sizeof(*numa_fw_cfg)); 689 690 return fw_cfg; 691 } 692 693 static long get_file_size(FILE *f) 694 { 695 long where, size; 696 697 /* XXX: on Unix systems, using fstat() probably makes more sense */ 698 699 where = ftell(f); 700 fseek(f, 0, SEEK_END); 701 size = ftell(f); 702 fseek(f, where, SEEK_SET); 703 704 return size; 705 } 706 707 static void load_linux(FWCfgState *fw_cfg, 708 const char *kernel_filename, 709 const char *initrd_filename, 710 const char *kernel_cmdline, 711 hwaddr max_ram_size) 712 { 713 uint16_t protocol; 714 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 715 uint32_t initrd_max; 716 uint8_t header[8192], *setup, *kernel, *initrd_data; 717 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 718 FILE *f; 719 char *vmode; 720 721 /* Align to 16 bytes as a paranoia measure */ 722 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 723 724 /* load the kernel header */ 725 f = fopen(kernel_filename, "rb"); 726 if (!f || !(kernel_size = get_file_size(f)) || 727 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 728 MIN(ARRAY_SIZE(header), kernel_size)) { 729 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 730 kernel_filename, strerror(errno)); 731 exit(1); 732 } 733 734 /* kernel protocol version */ 735 #if 0 736 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 737 #endif 738 if (ldl_p(header+0x202) == 0x53726448) { 739 protocol = lduw_p(header+0x206); 740 } else { 741 /* This looks like a multiboot kernel. If it is, let's stop 742 treating it like a Linux kernel. */ 743 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 744 kernel_cmdline, kernel_size, header)) { 745 return; 746 } 747 protocol = 0; 748 } 749 750 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 751 /* Low kernel */ 752 real_addr = 0x90000; 753 cmdline_addr = 0x9a000 - cmdline_size; 754 prot_addr = 0x10000; 755 } else if (protocol < 0x202) { 756 /* High but ancient kernel */ 757 real_addr = 0x90000; 758 cmdline_addr = 0x9a000 - cmdline_size; 759 prot_addr = 0x100000; 760 } else { 761 /* High and recent kernel */ 762 real_addr = 0x10000; 763 cmdline_addr = 0x20000; 764 prot_addr = 0x100000; 765 } 766 767 #if 0 768 fprintf(stderr, 769 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 770 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 771 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 772 real_addr, 773 cmdline_addr, 774 prot_addr); 775 #endif 776 777 /* highest address for loading the initrd */ 778 if (protocol >= 0x203) { 779 initrd_max = ldl_p(header+0x22c); 780 } else { 781 initrd_max = 0x37ffffff; 782 } 783 784 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE) 785 initrd_max = max_ram_size-ACPI_DATA_SIZE-1; 786 787 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 788 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 789 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 790 791 if (protocol >= 0x202) { 792 stl_p(header+0x228, cmdline_addr); 793 } else { 794 stw_p(header+0x20, 0xA33F); 795 stw_p(header+0x22, cmdline_addr-real_addr); 796 } 797 798 /* handle vga= parameter */ 799 vmode = strstr(kernel_cmdline, "vga="); 800 if (vmode) { 801 unsigned int video_mode; 802 /* skip "vga=" */ 803 vmode += 4; 804 if (!strncmp(vmode, "normal", 6)) { 805 video_mode = 0xffff; 806 } else if (!strncmp(vmode, "ext", 3)) { 807 video_mode = 0xfffe; 808 } else if (!strncmp(vmode, "ask", 3)) { 809 video_mode = 0xfffd; 810 } else { 811 video_mode = strtol(vmode, NULL, 0); 812 } 813 stw_p(header+0x1fa, video_mode); 814 } 815 816 /* loader type */ 817 /* High nybble = B reserved for QEMU; low nybble is revision number. 818 If this code is substantially changed, you may want to consider 819 incrementing the revision. */ 820 if (protocol >= 0x200) { 821 header[0x210] = 0xB0; 822 } 823 /* heap */ 824 if (protocol >= 0x201) { 825 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 826 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 827 } 828 829 /* load initrd */ 830 if (initrd_filename) { 831 if (protocol < 0x200) { 832 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 833 exit(1); 834 } 835 836 initrd_size = get_image_size(initrd_filename); 837 if (initrd_size < 0) { 838 fprintf(stderr, "qemu: error reading initrd %s\n", 839 initrd_filename); 840 exit(1); 841 } 842 843 initrd_addr = (initrd_max-initrd_size) & ~4095; 844 845 initrd_data = g_malloc(initrd_size); 846 load_image(initrd_filename, initrd_data); 847 848 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 849 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 850 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 851 852 stl_p(header+0x218, initrd_addr); 853 stl_p(header+0x21c, initrd_size); 854 } 855 856 /* load kernel and setup */ 857 setup_size = header[0x1f1]; 858 if (setup_size == 0) { 859 setup_size = 4; 860 } 861 setup_size = (setup_size+1)*512; 862 kernel_size -= setup_size; 863 864 setup = g_malloc(setup_size); 865 kernel = g_malloc(kernel_size); 866 fseek(f, 0, SEEK_SET); 867 if (fread(setup, 1, setup_size, f) != setup_size) { 868 fprintf(stderr, "fread() failed\n"); 869 exit(1); 870 } 871 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 872 fprintf(stderr, "fread() failed\n"); 873 exit(1); 874 } 875 fclose(f); 876 memcpy(setup, header, MIN(sizeof(header), setup_size)); 877 878 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 879 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 880 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 881 882 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 883 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 884 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 885 886 option_rom[nb_option_roms].name = "linuxboot.bin"; 887 option_rom[nb_option_roms].bootindex = 0; 888 nb_option_roms++; 889 } 890 891 #define NE2000_NB_MAX 6 892 893 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 894 0x280, 0x380 }; 895 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 896 897 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc }; 898 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 }; 899 900 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 901 { 902 static int nb_ne2k = 0; 903 904 if (nb_ne2k == NE2000_NB_MAX) 905 return; 906 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 907 ne2000_irq[nb_ne2k], nd); 908 nb_ne2k++; 909 } 910 911 DeviceState *cpu_get_current_apic(void) 912 { 913 if (current_cpu) { 914 X86CPU *cpu = X86_CPU(current_cpu); 915 return cpu->apic_state; 916 } else { 917 return NULL; 918 } 919 } 920 921 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 922 { 923 X86CPU *cpu = opaque; 924 925 if (level) { 926 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 927 } 928 } 929 930 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id, 931 DeviceState *icc_bridge, Error **errp) 932 { 933 X86CPU *cpu; 934 Error *local_err = NULL; 935 936 cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err); 937 if (local_err != NULL) { 938 error_propagate(errp, local_err); 939 return NULL; 940 } 941 942 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err); 943 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err); 944 945 if (local_err) { 946 error_propagate(errp, local_err); 947 object_unref(OBJECT(cpu)); 948 cpu = NULL; 949 } 950 return cpu; 951 } 952 953 static const char *current_cpu_model; 954 955 void pc_hot_add_cpu(const int64_t id, Error **errp) 956 { 957 DeviceState *icc_bridge; 958 int64_t apic_id = x86_cpu_apic_id_from_index(id); 959 960 if (id < 0) { 961 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 962 return; 963 } 964 965 if (cpu_exists(apic_id)) { 966 error_setg(errp, "Unable to add CPU: %" PRIi64 967 ", it already exists", id); 968 return; 969 } 970 971 if (id >= max_cpus) { 972 error_setg(errp, "Unable to add CPU: %" PRIi64 973 ", max allowed: %d", id, max_cpus - 1); 974 return; 975 } 976 977 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge", 978 TYPE_ICC_BRIDGE, NULL)); 979 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp); 980 } 981 982 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge) 983 { 984 int i; 985 X86CPU *cpu = NULL; 986 Error *error = NULL; 987 988 /* init CPUs */ 989 if (cpu_model == NULL) { 990 #ifdef TARGET_X86_64 991 cpu_model = "qemu64"; 992 #else 993 cpu_model = "qemu32"; 994 #endif 995 } 996 current_cpu_model = cpu_model; 997 998 for (i = 0; i < smp_cpus; i++) { 999 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i), 1000 icc_bridge, &error); 1001 if (error) { 1002 error_report("%s", error_get_pretty(error)); 1003 error_free(error); 1004 exit(1); 1005 } 1006 } 1007 1008 /* map APIC MMIO area if CPU has APIC */ 1009 if (cpu && cpu->apic_state) { 1010 /* XXX: what if the base changes? */ 1011 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0, 1012 APIC_DEFAULT_ADDRESS, 0x1000); 1013 } 1014 } 1015 1016 /* pci-info ROM file. Little endian format */ 1017 typedef struct PcRomPciInfo { 1018 uint64_t w32_min; 1019 uint64_t w32_max; 1020 uint64_t w64_min; 1021 uint64_t w64_max; 1022 } PcRomPciInfo; 1023 1024 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info) 1025 { 1026 PcRomPciInfo *info; 1027 Object *pci_info; 1028 bool ambiguous = false; 1029 1030 if (!guest_info->has_pci_info || !guest_info->fw_cfg) { 1031 return; 1032 } 1033 pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous); 1034 g_assert(!ambiguous); 1035 if (!pci_info) { 1036 return; 1037 } 1038 1039 info = g_malloc(sizeof *info); 1040 info->w32_min = cpu_to_le64(object_property_get_int(pci_info, 1041 PCI_HOST_PROP_PCI_HOLE_START, NULL)); 1042 info->w32_max = cpu_to_le64(object_property_get_int(pci_info, 1043 PCI_HOST_PROP_PCI_HOLE_END, NULL)); 1044 info->w64_min = cpu_to_le64(object_property_get_int(pci_info, 1045 PCI_HOST_PROP_PCI_HOLE64_START, NULL)); 1046 info->w64_max = cpu_to_le64(object_property_get_int(pci_info, 1047 PCI_HOST_PROP_PCI_HOLE64_END, NULL)); 1048 /* Pass PCI hole info to guest via a side channel. 1049 * Required so guest PCI enumeration does the right thing. */ 1050 fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info); 1051 } 1052 1053 typedef struct PcGuestInfoState { 1054 PcGuestInfo info; 1055 Notifier machine_done; 1056 } PcGuestInfoState; 1057 1058 static 1059 void pc_guest_info_machine_done(Notifier *notifier, void *data) 1060 { 1061 PcGuestInfoState *guest_info_state = container_of(notifier, 1062 PcGuestInfoState, 1063 machine_done); 1064 pc_fw_cfg_guest_info(&guest_info_state->info); 1065 acpi_setup(&guest_info_state->info); 1066 } 1067 1068 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size, 1069 ram_addr_t above_4g_mem_size) 1070 { 1071 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 1072 PcGuestInfo *guest_info = &guest_info_state->info; 1073 int i, j; 1074 1075 guest_info->ram_size_below_4g = below_4g_mem_size; 1076 guest_info->ram_size = below_4g_mem_size + above_4g_mem_size; 1077 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus); 1078 guest_info->apic_xrupt_override = kvm_allows_irq0_override(); 1079 guest_info->numa_nodes = nb_numa_nodes; 1080 guest_info->node_mem = g_memdup(node_mem, guest_info->numa_nodes * 1081 sizeof *guest_info->node_mem); 1082 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit * 1083 sizeof *guest_info->node_cpu); 1084 1085 for (i = 0; i < max_cpus; i++) { 1086 unsigned int apic_id = x86_cpu_apic_id_from_index(i); 1087 assert(apic_id < guest_info->apic_id_limit); 1088 for (j = 0; j < nb_numa_nodes; j++) { 1089 if (test_bit(i, node_cpumask[j])) { 1090 guest_info->node_cpu[apic_id] = j; 1091 break; 1092 } 1093 } 1094 } 1095 1096 guest_info_state->machine_done.notify = pc_guest_info_machine_done; 1097 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 1098 return guest_info; 1099 } 1100 1101 /* setup pci memory address space mapping into system address space */ 1102 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1103 MemoryRegion *pci_address_space) 1104 { 1105 /* Set to lower priority than RAM */ 1106 memory_region_add_subregion_overlap(system_memory, 0x0, 1107 pci_address_space, -1); 1108 } 1109 1110 void pc_acpi_init(const char *default_dsdt) 1111 { 1112 char *filename; 1113 1114 if (acpi_tables != NULL) { 1115 /* manually set via -acpitable, leave it alone */ 1116 return; 1117 } 1118 1119 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1120 if (filename == NULL) { 1121 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt); 1122 } else { 1123 char *arg; 1124 QemuOpts *opts; 1125 Error *err = NULL; 1126 1127 arg = g_strdup_printf("file=%s", filename); 1128 1129 /* creates a deep copy of "arg" */ 1130 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0); 1131 g_assert(opts != NULL); 1132 1133 acpi_table_add_builtin(opts, &err); 1134 if (err) { 1135 error_report("WARNING: failed to load %s: %s", filename, 1136 error_get_pretty(err)); 1137 error_free(err); 1138 } 1139 g_free(arg); 1140 g_free(filename); 1141 } 1142 } 1143 1144 FWCfgState *pc_memory_init(MemoryRegion *system_memory, 1145 const char *kernel_filename, 1146 const char *kernel_cmdline, 1147 const char *initrd_filename, 1148 ram_addr_t below_4g_mem_size, 1149 ram_addr_t above_4g_mem_size, 1150 MemoryRegion *rom_memory, 1151 MemoryRegion **ram_memory, 1152 PcGuestInfo *guest_info) 1153 { 1154 int linux_boot, i; 1155 MemoryRegion *ram, *option_rom_mr; 1156 MemoryRegion *ram_below_4g, *ram_above_4g; 1157 FWCfgState *fw_cfg; 1158 1159 linux_boot = (kernel_filename != NULL); 1160 1161 /* Allocate RAM. We allocate it as a single memory region and use 1162 * aliases to address portions of it, mostly for backwards compatibility 1163 * with older qemus that used qemu_ram_alloc(). 1164 */ 1165 ram = g_malloc(sizeof(*ram)); 1166 memory_region_init_ram(ram, NULL, "pc.ram", 1167 below_4g_mem_size + above_4g_mem_size); 1168 vmstate_register_ram_global(ram); 1169 *ram_memory = ram; 1170 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1171 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1172 0, below_4g_mem_size); 1173 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1174 e820_add_entry(0, below_4g_mem_size, E820_RAM); 1175 if (above_4g_mem_size > 0) { 1176 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1177 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1178 below_4g_mem_size, above_4g_mem_size); 1179 memory_region_add_subregion(system_memory, 0x100000000ULL, 1180 ram_above_4g); 1181 e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM); 1182 } 1183 1184 1185 /* Initialize PC system firmware */ 1186 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw); 1187 1188 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1189 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE); 1190 vmstate_register_ram_global(option_rom_mr); 1191 memory_region_add_subregion_overlap(rom_memory, 1192 PC_ROM_MIN_VGA, 1193 option_rom_mr, 1194 1); 1195 1196 fw_cfg = bochs_bios_init(); 1197 rom_set_fw(fw_cfg); 1198 1199 if (linux_boot) { 1200 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size); 1201 } 1202 1203 for (i = 0; i < nb_option_roms; i++) { 1204 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1205 } 1206 guest_info->fw_cfg = fw_cfg; 1207 return fw_cfg; 1208 } 1209 1210 qemu_irq *pc_allocate_cpu_irq(void) 1211 { 1212 return qemu_allocate_irqs(pic_irq_request, NULL, 1); 1213 } 1214 1215 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1216 { 1217 DeviceState *dev = NULL; 1218 1219 if (pci_bus) { 1220 PCIDevice *pcidev = pci_vga_init(pci_bus); 1221 dev = pcidev ? &pcidev->qdev : NULL; 1222 } else if (isa_bus) { 1223 ISADevice *isadev = isa_vga_init(isa_bus); 1224 dev = isadev ? DEVICE(isadev) : NULL; 1225 } 1226 return dev; 1227 } 1228 1229 static void cpu_request_exit(void *opaque, int irq, int level) 1230 { 1231 CPUState *cpu = current_cpu; 1232 1233 if (cpu && level) { 1234 cpu_exit(cpu); 1235 } 1236 } 1237 1238 static const MemoryRegionOps ioport80_io_ops = { 1239 .write = ioport80_write, 1240 .read = ioport80_read, 1241 .endianness = DEVICE_NATIVE_ENDIAN, 1242 .impl = { 1243 .min_access_size = 1, 1244 .max_access_size = 1, 1245 }, 1246 }; 1247 1248 static const MemoryRegionOps ioportF0_io_ops = { 1249 .write = ioportF0_write, 1250 .read = ioportF0_read, 1251 .endianness = DEVICE_NATIVE_ENDIAN, 1252 .impl = { 1253 .min_access_size = 1, 1254 .max_access_size = 1, 1255 }, 1256 }; 1257 1258 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1259 ISADevice **rtc_state, 1260 ISADevice **floppy, 1261 bool no_vmport, 1262 uint32 hpet_irqs) 1263 { 1264 int i; 1265 DriveInfo *fd[MAX_FD]; 1266 DeviceState *hpet = NULL; 1267 int pit_isa_irq = 0; 1268 qemu_irq pit_alt_irq = NULL; 1269 qemu_irq rtc_irq = NULL; 1270 qemu_irq *a20_line; 1271 ISADevice *i8042, *port92, *vmmouse, *pit = NULL; 1272 qemu_irq *cpu_exit_irq; 1273 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1274 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1275 1276 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1277 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1278 1279 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1280 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1281 1282 /* 1283 * Check if an HPET shall be created. 1284 * 1285 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1286 * when the HPET wants to take over. Thus we have to disable the latter. 1287 */ 1288 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1289 /* In order to set property, here not using sysbus_try_create_simple */ 1290 hpet = qdev_try_create(NULL, TYPE_HPET); 1291 if (hpet) { 1292 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1293 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1294 * IRQ8 and IRQ2. 1295 */ 1296 uint8_t compat = object_property_get_int(OBJECT(hpet), 1297 HPET_INTCAP, NULL); 1298 if (!compat) { 1299 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1300 } 1301 qdev_init_nofail(hpet); 1302 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1303 1304 for (i = 0; i < GSI_NUM_PINS; i++) { 1305 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1306 } 1307 pit_isa_irq = -1; 1308 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1309 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1310 } 1311 } 1312 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq); 1313 1314 qemu_register_boot_set(pc_boot_set, *rtc_state); 1315 1316 if (!xen_enabled()) { 1317 if (kvm_irqchip_in_kernel()) { 1318 pit = kvm_pit_init(isa_bus, 0x40); 1319 } else { 1320 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1321 } 1322 if (hpet) { 1323 /* connect PIT to output control line of the HPET */ 1324 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1325 } 1326 pcspk_init(isa_bus, pit); 1327 } 1328 1329 for(i = 0; i < MAX_SERIAL_PORTS; i++) { 1330 if (serial_hds[i]) { 1331 serial_isa_init(isa_bus, i, serial_hds[i]); 1332 } 1333 } 1334 1335 for(i = 0; i < MAX_PARALLEL_PORTS; i++) { 1336 if (parallel_hds[i]) { 1337 parallel_init(isa_bus, i, parallel_hds[i]); 1338 } 1339 } 1340 1341 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1342 i8042 = isa_create_simple(isa_bus, "i8042"); 1343 i8042_setup_a20_line(i8042, &a20_line[0]); 1344 if (!no_vmport) { 1345 vmport_init(isa_bus); 1346 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1347 } else { 1348 vmmouse = NULL; 1349 } 1350 if (vmmouse) { 1351 DeviceState *dev = DEVICE(vmmouse); 1352 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1353 qdev_init_nofail(dev); 1354 } 1355 port92 = isa_create_simple(isa_bus, "port92"); 1356 port92_init(port92, &a20_line[1]); 1357 1358 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1); 1359 DMA_init(0, cpu_exit_irq); 1360 1361 for(i = 0; i < MAX_FD; i++) { 1362 fd[i] = drive_get(IF_FLOPPY, 0, i); 1363 } 1364 *floppy = fdctrl_init_isa(isa_bus, fd); 1365 } 1366 1367 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) 1368 { 1369 int i; 1370 1371 for (i = 0; i < nb_nics; i++) { 1372 NICInfo *nd = &nd_table[i]; 1373 1374 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { 1375 pc_init_ne2k_isa(isa_bus, nd); 1376 } else { 1377 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL); 1378 } 1379 } 1380 } 1381 1382 void pc_pci_device_init(PCIBus *pci_bus) 1383 { 1384 int max_bus; 1385 int bus; 1386 1387 max_bus = drive_get_max_bus(IF_SCSI); 1388 for (bus = 0; bus <= max_bus; bus++) { 1389 pci_create_simple(pci_bus, -1, "lsi53c895a"); 1390 } 1391 } 1392 1393 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1394 { 1395 DeviceState *dev; 1396 SysBusDevice *d; 1397 unsigned int i; 1398 1399 if (kvm_irqchip_in_kernel()) { 1400 dev = qdev_create(NULL, "kvm-ioapic"); 1401 } else { 1402 dev = qdev_create(NULL, "ioapic"); 1403 } 1404 if (parent_name) { 1405 object_property_add_child(object_resolve_path(parent_name, NULL), 1406 "ioapic", OBJECT(dev), NULL); 1407 } 1408 qdev_init_nofail(dev); 1409 d = SYS_BUS_DEVICE(dev); 1410 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1411 1412 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1413 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1414 } 1415 } 1416